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Abstract

By leveraging contrastive learning, clustering, and other
pretext tasks, unsupervised methods for learning image rep-
resentations have reached impressive results on standard
benchmarks. The result has been a crowded field – many
methods with substantially different implementations yield
results that seem nearly identical on popular benchmarks,
such as linear evaluation on ImageNet. However, a single
result does not tell the whole story. In this paper, we com-
pare methods using performance-based benchmarks such
as linear evaluation, nearest neighbor classification, and
clustering for several different datasets, demonstrating the
lack of a clear front-runner within the current state-of-the-
art. In contrast to prior work that performs only super-
vised vs. unsupervised comparison, we compare several
different unsupervised methods against each other. To en-
rich this comparison, we analyze embeddings with mea-
surements such as uniformity, tolerance, and centered ker-
nel alignment (CKA), and propose two new metrics of our
own: nearest neighbor graph similarity and linear predic-
tion overlap. We reveal through our analysis that in iso-
lation, single popular methods should not be treated as
though they represent the field as a whole, and that future
work ought to consider how to leverage the complimentary
nature of these methods. We also leverage CKA to provide
a framework to robustly quantify augmentation invariance,
and provide a reminder that certain types of invariance will
be undesirable for downstream tasks.

1. Introduction
Image features are critical components in many com-

puter vision (CV) pipelines. In this paper, we define im-
age features, also referred to as embeddings, encodings, or
representations, as an n-dimensional vector that represents
the content of an image. With the emergence of deep learn-
ing, classical approaches to computing image features have
been supplanted by neural networks that use large amounts
of data to generate powerful image representations. The
most widespread method is straightforward: a neural net-
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Figure 1. Results for a sample of classification benchmarks we
perform in this paper. While these bar charts report real results,
lack of axes is intentional – the exact numbers are in Section 4. Im-
portantly, between the four tasks, there is no clear “best” method.

work (e.g., a ResNet50 [30]) is trained to classify the im-
ages in some large dataset, typically ImageNet. The portion
of the network that performs the classification, usually just
the final layer, is then removed, and the outputs of the penul-
timate layer for a given image are considered the features
for that image. This process relies on image classification,
a supervised learning task, and thus requires the availability
of large amounts of annotated, high-quality data.

Recent successes make unsupervised learning a viable
alternative paradigm where image features are learned with-
out the need for class labels. Within unsupervised learning,
methods can be considered either generative or discrimi-
native. Generative methods are typically designed for re-
construction or similar tasks [5, 19, 20, 35, 51]. Since we
are more concerned with a potential transfer to downstream
tasks such as image classification and object detection, we
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Figure 2. Similarity between learned representations, based on the outputs of ResNet50s on the validation images from ImageNet. For the
metrics shown, which are described in more detail in Section 4, higher values indicate similarity. While the supervised model tends to be
more dissimilar from the unsupervised models, there are many ways in which unsupervised methods differ substantially from each other.

choose to focus on discriminative methods.
There are many different ways to compare image repre-

sentation learning algorithms. In this paper, we opt to fo-
cus on the role of the methods as feature extractors, where
a model that is pre-trained for some task is expected to be
able to generate useful features for unseen images. Thus, we
only use benchmarks that keep the backbone (the portion of
the neural network that generates the embedding) frozen.
Prior works are often limited by their focus on a single
benchmark, single method, or toy datasets. In contrast, we
compare 6 SOTA unsupervised methods on ImageNet and
6 fine-grained visual categorization (FGVC) datasets using
several different benchmarks. Figure 1 provides a sample
of this angle of analysis.

Comparing these methods to each other is very impor-
tant. Nevertheless, prior analysis works tend to lump unsu-
pervised methods together, and often choose only a single
representative such as MoCo or SimCLR for comparison
against supervised representation learning [1,14,22,26,54].
This ignores the significant ways in which unsupervised
methods differ from each other. In contrast to prior work,
we extend existing methods and introduce novel methods to
prove that unsupervised methods vary significantly in terms
of how they learn to represent images, as shown in Figure 2.

State-of-the-art convolution-based unsupervised algo-
rithms, whether they use contrastive learning, clustering, or
some pretext task such as colorization, all attempt to learn
invariance to some class of augmentations. In other words,
they seek to learn a function f , such that f(I) = f(IA)
for some image I and some set of augmentations A that are
applied to that image. Xiao et al. speculate on the negative
effect this may have on learned representations and perfor-
mance on downstream tasks [56]. However, a careful read-
ing reveals they don’t provide evidence for the existence of

transform invariance in unsupervised models, only that their
method seems to perform better than MoCo on tasks related
to transform invariance. This inspires Section 4.4 – we take
a closer look at the presence of augmentation invariance in
representations learned by different unsupervised methods.

Prior work is constrained by some combination of lim-
ited metrics, use of toy datasets, and a tendency to consider
a single unsupervised method as though it is representative
of the field. In contrast to this, we contribute the following:

• We utilize multiple methods for measuring proper-
ties of learned embeddings, including 3 performance-
based benchmarks, and an extension of prior work
on uniformity-tolerance analysis to more unsupervised
methods across more realistic datasets.

• We perform novel comparison by extending Linear
Centered Kernel Alignment (CKA) analysis beyond
toy datasets, and by developing two new metrics for
comparing embeddings: nearest neighbor graph simi-
larity and linear overlap.

• We propose a framework for measuring augmentation
invariance, and demonstrate its results across several
methods, augmentations, and datasets.

We conclude in Section 5 with key insights for future unsu-
pervised methods for representation learning:

• Currently, there is no clear “best” method.

• Unsupervised models share properties that are circum-
stantially undesirable, e.g., color invariance.

• Unsupervised models have similar representations in
most layers, but diverge substantially in the last layer.
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2. Related Work
2.1. Unsupervised Learning Methods

Some of the first unsupervised methods of the deep
learning era were fashioned after pretext tasks from natu-
ral language processing. A network would be trained to
perform some auxiliary task before transfer for downstream
tasks. These auxiliary pretexts task included solving jigsaw
puzzles [44], colorization from grayscale [39, 60], inpaint-
ing [46], relative patch prediction [17], predicting rotation
angle [23], or a combination of tasks [18]. However, the in-
troduction of Noise Contrastive Estimation (NCE) [27] trig-
gered a paradigm shift within unsupervised learning [55],
and subsequent methods which utilized contrastive learn-
ing [10, 12, 42] would surpass all of these.

Contrastive Learning, which implicitly performs in-
stance discrimination, involves training a model to attract
positive pairs (typically augmented views of a given image)
and repel negative pairs (augmented views of two different
images) [27, 28]. Many papers have proposed successful
methods using contrastive learning [4, 11, 12, 29, 31, 32, 42,
45,48,55,58]. In this study, we include Barlow Twins [59],
MoCov2 [12], and SimCLR [11].

Clustering has emerged as another important class of
unsupervised methods [3, 6–8]. Popular methods such as
DeepCluster [6] and SwAV [8], and even methods that
don’t explicitly attempt representation learning, such as
SCAN [49], share many traits with contrastive learning.
Among these are the tendency to rely on a large batch size,
the use of strong augmentations, which all of these have
in common, and implementation details such as the use of
projection heads, which are used by SwAV and DeepClus-
terv2 [6, 8]. We take as our representatives from this cate-
gory DeepClusterv2 and SwAV.

Other methods, such as SimSiam [13], use neither neg-
ative pairs nor clustering objectives. Other methods high-
light the potential of vision transformers within unsuper-
vised regimes [9,40,57]. However, in this paper, we choose
to compare methods that use ResNet-50 backbones. Fur-
thermore, we believe the sample of methods we select are
sufficient to support our main points.

2.2. Analysis of Unsupervised Learning

While each paper proposing a new algorithm uses some
tasks to attempt to demonstrate their success compared to
the prior art, other popular papers have entirely focused
on benchmarking, evaluation, and comparison of specific
methods. [47] studies augmentation invariance from the per-
spective of accuracy by using natural images that attempt
to vary certain conditions, such as illumination. [54] and
[53] address properties of the learned embeddings such as
alignment, uniformity, and tolerance. Other works bench-
mark unsupervised performance on various tasks and con-

ditions [14, 22, 33, 37]. [26] uses the centered kernel align-
ment (CKA) framework from [36] to compare supervised
and unsupervised representations.

This prior work operates under certain constraints. Many
papers consider only a single unsupervised method, either
MoCo [1,22,54] or SimCLR [14,26], as though it represents
the entire field; of those that consider other methods, none
consider more than three [33,37,47]. We extend uniformity-
tolerance analysis [53] to multiple unsupervised methods.
We extend CKA analysis [15, 26, 36] beyond tiny datasets,
and to multiple methods. We perform FGVC benchmark-
ing [14, 33] for additional metrics and algorithms. We per-
form CKA analysis [36] to examine augmentation invari-
ance without relying on linear classification as a confound-
ing intermediate step [47]. We develop additional meth-
ods for comparing pairs or groups of methods for our first-
of-its-kind comprehensive analysis of the similarities and
complementary attributes of pretrained unsupervised meth-
ods for image representation learning. Our work follows
in the spirit of Ericcson et al. in that we perform a com-
prehensive analysis using a sample of many unsupervised
methods [21]. However, by using an entirely different set of
tasks and datasets, we are able to both provide further evi-
dence for one of their main conclusions (that no one method
is the best), and uncover novel insights as well.

3. Methods
3.1. Performance-based Comparison

To measure the quality of the learned representations, we
perform three performance-based measurements. For lin-
ear evaluation, we use the VISSL repository [24] to train a
linear classifier on frozen features. For k-nearest neighbor
classification, we also use the settings in VISSL, varying the
number of neighbors for fine-grained datasets as described
in the appendix. For k-means clustering, we try 10 initial-
izations with the k-means++ method [2], and for ImageNet
we use mini-batches of 16,384 images.

To obtain the accuracy for k-means cluster assignments
when the number of classes is equal to the number of
clusters, we use hungarian matching, mapping clusters to
classes one-to-one in such a way that maximizes correspon-
dence to ground truth classes. For overclustering, we greed-
ily map each cluster to the ground truth class which has the
most images in the cluster. Accuracy is then computed nor-
mally, using the cluster-to-class mapping result as the pre-
diction. For each of linear evaluation, k-NN classification,
and k-means clustering, models are trained on training data,
and results come from the evaluation on test data.

3.2. Uniformity-Tolerance Tradeoff

To analyze how embeddings are distributed on the hy-
persphere, we borrow two key properties from prior work:
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uniformity [54] and tolerance [53]. Uniformity, U , which
describes how closely the embeddings match a uniform dis-
tribution on a hypersphere, is defined in Equation 1, where
t is a scaling hyperparameter that we set to 2, f represents
the model, and x and y are any pair of images.

U = log E
x,y∼pdata

[
e−t||f(x)−f(y)||22

]
(1)

Tolerance, T , is given in Equation 2, where f , x, and y
are the same as in Equation 1, and I is the indicator function
for the ground truth labels, returning 1 when x and y belong
to the same class, and 0 otherwise.

T = E
x,y∼pdata

[
(||f(x)||T2 ||f(y)||2) · Il(x)=l(y)

]
(2)

Whereas uniformity measures how equally spread out
the features are, tolerance leverages ground truth labels to
indicate how well the embeddings reflect the semantic rela-
tionships between the images.

3.3. Linear CKA for Comparing Representations

We follow procedures from prior work to compute Cen-
tered Kernel Alignment (CKA) values [26, 36], including
using only a linear kernel [26]. To compute this, we first
obtain the matrices containing the embeddings for two dif-
ferent methods, such as SimCLR and MoCo, which we rep-
resent X and Y . We then compute the Gram matrices of
the embedding matrices: K = XXT , L = Y Y T . The CKA
value is given by the normalized Hilbert-Schmidt Indepen-
dence Criterion (HSIC) [25] as follows:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(3)

Prior work [26] performs these computations for tiny
datasets, consisting of 32×32 images. Since we extend this
to 224×224 images, we compensate for the increased mem-
ory requirements by taking a set random sample of 10,000
test images when working with ImageNet.

3.4. Proposed Metric: NN Graph Similarity

Even for pure contrastive learning, images that belong to
the same ground truth class tend to be semantically similar.
In contrast to this tolerance, which relies on ground truth
labels and describes the semantic structure in terms of a sin-
gle model, we propose an unsupervised way to compare the
structure of the semantic relationships between two or more
learned representations. Specifically, we consider models in
terms of their nearest neighbor graphs for a given dataset.
Each image is a node, and an image’s top-k neighbors are
represented by directed edges. We can thus compute the
similarity between two representations by comparing their

nearest neighbor graphs. We choose to perform this compu-
tation in terms of neighbor overlap, where neighbor overlap
refers to the average number of shared edges (neighbors)
per node (image) for the graphs (unsupervised algorithms)
considered. This neighbor overlap conveys the similarity in
semantic structure learned by different algorithms. A score
of 1.0 would indicate the structures are identical – the im-
ages have the same nearest k neighbors for both unsuper-
vised algorithms. A score of 0.0 would indicate there are no
shared neighbors. We use this method to compare pairs of
models, as in Figure 2.

3.5. Proposed Metric: Linear Prediction Overlap

Unlike nearest neighbor graph similarity, this metric
takes an indirect approach to compare two or more repre-
sentations. For each image in a dataset, we get the pre-
dictions from the linear classifiers trained on each unsu-
pervised backbone, described in Section 3.1. We then per-
form a few different calculations. For analysis that relies on
ground truth labels, we calculate the portion of the dataset
that all models classify correctly, or that no models classify
correctly, or that only some subset of models from a group
classifies correctly. For analysis that ignores the labels, we
compute the percentage of the dataset for which some set
of classifiers has the same prediction, regardless of the cor-
rectness of the prediction. For this measure, a score of 1.0
would indicate the set of classifiers make the same predic-
tions for all images, while 0.0 would mean they do not have
identical predictions for any image. We thus use linear over-
lap both to compare pairs of methods, as in Figure 2, as well
as to compare sets of multiple models, as in Table 5.

3.6. Proposed Analysis: Augmentation Invariance

Popular unsupervised algorithms train models to be aug-
mentation invariant. We develop a method for analyzing
the prevalence of augmentation invariance in the repre-
sentations learned by unsupervised models. Unlike prior
work [47], we consider a broader set of unsupervised al-
gorithms, and perform measurements on learned represen-
tations directly rather than relying on the performance of
learned linear classifiers as a proxy. Instead, we use CKA to
compare the similarity between embeddings of augmented
and non-augmented images. We take CKA(K,L) on K =
XXT , L = XAX

T
A where X is the embedding matrix for

the images for a given dataset, and XA is the embedding
matrix for the same images after some augmentation A.
We thus extend Linear CKA for unsupervised algorithms
to overcome the limitations of previous methods and look
directly at augmentation invariance for image representa-
tions.
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Figure 3. Linear Classifier Results on ImageNet and 6 FGVC datasets. Barlow Twins, DeepCluster, and SwAV tend to outperform Moco,
SimCLR, and SimSiam, but there is no obvious winner.

4. Analysis
For our representative set of discriminative unsupervised

methods, we consider contrastive methods SimCLR [11]
and MoCo [12], clustering methods DeepClusterv2 [6] and
SwAV [8], as well as Barlow Twins [59], which attempts
redundancy reduction, and SimSiam [13], which uses nei-
ther negative pairs nor clustering. For SimCLR, DeepClus-
ter, and SwAV, we use the 800 epoch checkpoints from the
VISSL model zoo [24], unless otherwise specified. For Bar-
low Twins, we use VISSL’s 1000 epoch checkpoint. For
MoCo, we use the 800 epoch checkpoint from the authors.
For SimSiam, we use the author-provided 100 epoch check-
point. While we could have opted to retrain the models,
we believe that discrepancy in training time is not a legiti-
mate confounding factor in our analysis, and any attempt to
create some “fair” setting would inevitably favor whichever
models perform best under that setting. These methods can
be tuned on a variety of hyperparameters, and any given set-
ting that is “fair” to one inevitably favors others, so we opt
to use the settings for which models are available. Addition-
ally, our ablation experiments (Figure 6) indicate training
time would not impact any of our findings.

We perform the experiments here on some subset of the
datasets in Table 1, which contain realistic images.

4.1. Performance Benchmarks

As explained in Section 3, we perform VISSL’s linear
evaluation, where we train linear classifiers on frozen fea-
tures from the first convolutional layer and for each of the
4 bottleneck blocks of the ResNet-50 network. We show
results for the linear classifier trained on the outputs of the

final block in Figure 3. We show results for k-NN classifica-
tion in Table 2 and for k-means clustering in Table 3. As an
additional benchmark for DeepCluster and SwAV, we also
compare their clustering heads, which partition ImageNet
into 3000 clusters, to k-means clustering in Table 4. We
don’t consider other performance benchmarks such as full
finetuning because we are trying to evaluate only the learned
embeddings, and not the network initializations.

Table 1. Datasets used for experiments in this paper.

Dataset #Cls #Train #Test

FGVC Aircraft [41] (Aircraft) 100 6,667 3,333
Stanford Cars [38] (Cars) 196 8,144 8,041
Caltech Birds [52] (CUB) 200 5,994 5,794
Stanford Dogs [34] (Dogs) 120 12,000 8,580
Oxford Flowers [43] (Flowers) 102 2,040 6,149
NABirds V1 [50] (NABirds) 555 23,929 24,633
ImageNet [16] 1000 1.3mil 50,000

Figure 3 shows that contrary to claims in some prior
work, unsupervised methods do not necessarily struggle on
FGVC datasets [33]. This is possibly because that work
used linear SVMs that were perhaps less accommodating
to the ways the unsupervised embeddings tend to be dis-
tributed; since our linear evaluation protocol uses batch
norm, it is able to better account for this. Nevertheless, we
demonstrate while performance is worse for the two birds
datasets and the dogs dataset, Barlow Twins, DeepCluster,
and SwAV all outperform supervised pre-training for air-
craft, cars, and flowers. We suggest that significant over-
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Table 2. k-NN Results. Again, there is no obvious frontrunner.

Method Dataset

ImageNet Aircraft Flowers NABirds

Supervised 73.41 31.59 77.96 43.25
BTwins 62.90 31.83 86.18 22.29
DCv2 63.70 32.70 84.76 21.05
MoCo 58.59 21.39 74.53 15.40
SimCLR 54.57 21.21 74.78 14.03
SimSiam 53.66 27.39 80.01 15.18
SwAV 61.14 28.77 82.24 15.72

Table 3. K-Means Results. Supervised is best for most datasets.

Method Dataset

ImageNet Aircraft Flowers NABirds

Supervised 58.92 15.69 54.97 25.95
BTwins 34.88 13.20 63.70 11.87
DCv2 31.79 13.92 60.20 10.86
MoCo 38.30 9.84 43.34 10.75
SimCLR 29.78 11.16 43.99 9.08
SimSiam 26.20 12.66 54.51 9.53
SwAV 28.69 12.60 56.04 9.26

Table 4. K-Means Overclustering Results. The clustering heads
of DeepClusterv2 and SwAV outperform k-means on the learned
embeddings of DeepClusterv2 and SwAV.

Method ImageNet

k =1000 k =3000 ∆

Supervised K-Means 58.92 65.66 +6.74
DCV2 K-Means 31.79 43.02 +11.23
DCV2 Clustering Head n/a 54.35 n/a
SwAV K-Means 28.69 37.94 +9.25
SwAV Clustering Head n/a 48.9 n/a

lap with ImageNet contributes to part of the gap for per-
formance on CUB and Dogs, which likely confounds those
results; nevertheless, NABirds results confirm that unsuper-
vised methods have substantial struggles on that dataset.

Table 2 echoes the results in Figure 3. Table 3 and Ta-
ble 4, however, show that supervised pre-training dominates
the k-means metric, except on Flowers. It seems clear that
pre-training with labels gives supervised learning a strong
advantage for k-NN classification and k-means clustering
on ImageNet, to the extent that supervised representations
even outperform the clustering heads of DeepCluster and
SwAV in the overclustering regime on ImageNet.

We distill 3 key findings from this. First, from each
of our benchmarks, unsupervised methods are comparable
with supervised for generating embeddings for FGVC, and
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Figure 4. Uniformity (U) and Tolerance (T) on ImageNet and
6 FGVC datasets, with datasets sorted for ascending uniformity.
Methods with similar objectives (such as the contrastive methods:
Barlow Twins, MoCo, and SimCLR) tend to have similar scores.

methods like Barlow Twins, DeepCluster, and SwAV seem
particularly competitive. Second, setup matters – architec-
tural decisions such as the design of the classification head
can create subtle biases that favor certain methods, such as
the SVM analysis from [33] favoring supervised representa-
tions. Finally, breadth is helpful; each of our benchmarking
methods relies on some assumptions, and indirectly evalu-
ates the robustness of the learned embeddings. Taken to-
gether, linear evaluation, k-NN classification, and k-means
clustering give a more holistic view of how the representa-
tions compare.

4.2. Uniformity-Tolerance Tradeoff

High values for uniformity and tolerance are simultane-
ously desirable, as they indicate favorable distribution of the
embeddings on the hypersphere. Nevertheless, our results
in Figure 4 reinforce that in practice, these values have an
inverse correlation. This is because as embeddings are more
spread out on the hypersphere in general, they tend to also
be more spread out with respect to each ground truth class.
It is perhaps for this reason that supervised pre-training has,
in general, the most tolerant and least uniform embeddings.

DeepCluster is similar to supervised for both these met-
rics. This is unsurprising when considering the DeepCluster
objective: cross-entropy loss for pseudolabels. SwAV, with
its own clustering objective, exhibits some of these same
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Figure 5. Linear CKA for initial convolutional layer and first 3 bottleneck blocks for validation set of Imagenet. Linear CKA for the
last block can be found in Figure 2. In contrast to the final layer, representations are fairly similar in the initial and intermediate blocks.

tendencies, whereas the contrastive methods are the oppo-
site. This strengthens support for our hypothesis – unsuper-
vised methods are quite diverse in terms of the distribution
of learned embeddings on the hypersphere.

4.3. Measuring Similarity of Representations

We consider three main metrics for measuring the sim-
ilarity between representations: linear CKA, which com-
pares embeddings for any given pair of models, nearest
neighbor graph similarity, which compares nearest neigh-
bors for a set of models, and overlap in linear predictions,
which compares the predictions of linear classifiers trained
on a set of models. See Figure 2 for linear CKA, neighbor
similarity, and overlap in linear predictions for the outputs
of each ResNet50’s final block for ImageNet. For linear
CKA for the other layers we measure, see Figure 5. In Ta-
ble 5, we perform an analysis of linear overlap for groups
of models, and leverage ground truth labels to evaluate the
uniqueness of the different linear classifiers.

Results in Figure 2 indicate that similar representations
tend to have similar neighbors, and classifiers trained on
more similar representations tend to make more similar pre-
dictions. The metrics reveal similarities between algorithms
with related objectives, such as DeepCluster and SwAV.
More surprisingly, we find more similarity between super-
vised and unsupervised representations such as DeepClus-
ter than we do between some unsupervised representations,
such as MoCo and Barlow Twins. Figure 5 simultaneously
confirms these findings and those of [26], who found that
supervised and unsupervised representations diverged the
most in the final layer. We thus extend their hypothesis
from SimCLR to additional unsupervised methods, and pro-
vide evidence that unsupervised algorithms differ enough
from each other to have very different final representations.
This highlights the idea that it is unreasonable to make the
“supervised” vs. “unsupervised” comparisons that are so
common in the literature where the “unsupervised” is rep-
resented by only a couple of algorithms.

We also compute CKA for unsupervised models under

Table 5. Results for linear overlap. We examine overlap in pre-
dictions for linear classifiers trained on frozen features. On the top,
we report how many images were predicted correctly by classifiers
for both supervised and any unsupervised method, by either, and
by neither. On the bottom, we compare within unsupervised, con-
sidering how many images were uniquely classified correctly by
a single linear classifier. We find substantial uniqueness for each
algorithm, which attests to their complementary nature.

Method Dataset

ImageNet Aircraft NABirds

Sup. and Unsup. 73.64 81.40 55.05
Sup. Only 2.40 0.03 6.05
Unsup. Only 10.34 18.45 17.78
Neither 13.62 0.12 21.12

All Unsup. 58.19 80.08 30.49
BTwins Only 0.97 0.24 2.46
DCv2 Only 1.74 0.18 4.16
MoCo Only 0.69 0.09 0.87
SimSiam Only 0.64 0.00 0.86
SwAV Only 1.74 0.21 2.80
No Unsup. 16.02 0.15 27.17

non-default settings, to validate our other findings. Figure 6,
when compared to Figure 2, shows that training time, at
least in the case of SimCLR, induces a comparatively small
difference in learned representations, despite the large gaps
in performance on benchmarks such as linear evaluation.
While linear evaluation accuracies are different by several
percentage points, SimCLR models trained 800 epochs are
more similar to the other SimCLR checkpoints than to any
other unsupervised algorithm. Our finding on training time
stands in contrast to the results from other settings. We find
details such as cropping strategy and batch size can have a
massive impact on the similarity of neural representations,
to the extent that SwAV with its full batch size and cropping
strategy is more related to DeepCluster with the same set-
tings than to SwAV methods that utilize small batch sizes.
We suggest that future work should probe these effects fur-
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1000 epochs. On the bottom, we compare SU with DeepClus-
ter (DC) and SwAV (SW) trained for 400 epochs, as well as with
SwAV and DeepCluster trained for 400 epochs with no crops (NC)
and SwAV for 400 epochs with a smaller batch size (256).

ther, and examine the extent to which the number of crops,
batch size, and data augmentations can affect learned rep-
resentations and downstream applications for various unsu-
pervised algorithms.

4.4. Augmentation Invariance

We use linear CKA to test for augmentation invariance
with respect to color jitter, blurring, jitter with blurring,
horizontal and vertical flipping, and rotation. Figure 7 pro-
vides evidence that, contrary to the conclusions of [47], and
confirming most other prior work, unsupervised algorithms
learn representations that are invariant to their training aug-
mentations. We note that the invariance is at least somewhat
weaker for the clustering algorithms, SwAV and DeepClus-
ter. Also, the unsupervised methods tend to be somewhat
more invariant to augmentations not used at training time,

SU BT DC MC SC SS SW
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Image Blur

Jitter Blur

Horiz. Flip

Vert. Flip

Rotate 90

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Linear C
KA, Aug vs. N

on

Figure 7. Augmentation Invariance, using Linear CKA for 7 al-
gorithms on ImageNet, for 1 augmentation used in all pretrainings
(horizontal flip), 3 used in unsupervised pretraining (color jitter,
blurring, and both simultaneously), as well as 2 not used. Unsu-
pervised models exhibit invariance to their training augmentations.

rotation, and vertical flips. Nevertheless, these experiments
suggest that for applications where color is critical, such as
bird classification, methods that rely on learned color in-
variance are destined to underperform. Future works which
seek to mitigate color invariance can leverage our frame-
work as a way to evaluate success.

5. Key Takeaways and Conclusion
We highlight the following as key takeaways from our

findings. First, there is no clear “best” method. Therefore,
it is essential to avoid over-indexing on a given metric, and
in the context of applications, representations should be se-
lected to optimize for both downstream data and task. Sec-
ond, unsupervised methods share properties that are situa-
tionally undesirable, such as robust color invariance. Thus,
it is important for future work to develop methods that mit-
igate certain invariances when necessary, and our CKA-
based framework can be utilized to validate their success.
Finally, representations for all algorithms we considered
are fairly similar until the last layer, where specialized loss
functions or even training settings such as augmentation
strategy and batch size can induce learning of substantially
different representations. Therefore, it is critical to not as-
sume that one method, such as MoCo or SimCLR, can act as
a representative of the field. Additionally, taken in the con-
text of our other findings, we suggest researchers continue
to pursue meta-learning, distillation, ensembles, and other
approaches that effectively combine different unsupervised
algorithms to leverage their complementary nature.
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