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Abstract

Spherical novel view synthesis (SNVS) is the task of es-
timating 360◦ views at dynamic novel views given a set
of 360◦ input views. Prior arts learn multi-sphere image
(MSI) representations that enable fast rendering times but
are only limited to modelling low-dimensional color val-
ues. Modelling high-dimensional appearance features in
MSI can result in better view synthesis, but it is not feasible
to represent high-dimensional features in a large number
(> 64) of MSI spheres. We propose a novel MSI representa-
tion called Soft Occlusion MSI (SOMSI) that enables mod-
elling high-dimensional appearance features in MSI while
retaining the fast rendering times of a standard MSI. Our
key insight is to model appearance features in a smaller set
(e.g. 3) of occlusion levels instead of larger number of MSI
levels. Experiments on both synthetic and real-world scenes
demonstrate that using SOMSI can provide a good balance
between accuracy and run-time. SOMSI can produce con-
siderably better results compared to MSI based MODS [1],
while having similar fast rendering time. SOMSI view syn-
thesis quality is on-par with state-of-the-art NeRF [24]
like model while being 2 orders of magnitude faster. For
code, additional results and data, please visit https:
//tedyhabtegebrial.github.io/somsi.

1. Introduction

The advent of low-cost 360◦ imaging devices makes
spherical images a standard choice of representation for 3D
scenes in comparison to more expensive 3D modelling with
artists or depth sensors. Spherical images are widely used to
capture and visualize 360◦ views of scenes with several ap-
plications in virtual tourism, navigation, advertisement, etc.
However, a spherical image alone delivers a limited viewing
experience with only rotations around the center. User navi-
gation (translation) is usually enabled by capturing multiple
spherical images thereby allowing the user to hop from one
to another. Spherical novel view synthesis (SNVS) is the
task of estimating in-between 360◦ views making it possi-
ble for seamless continuous user navigation in a scene. See

Fig. 1 (left) for a sample illustration of the problem setting.
A practical SNVS system would have the following

properties: 1. High-quality synthesis of disoccluded con-
tent and view-dependent effects in novel views, 2. Fast
synthesis time enabling realtime user navigation in a scene
and, 3. Low memory consumption to run SNVS on mobile
hardware such as VR headsets. Satisfying all these prop-
erties is quite challenging. Current SNVS techniques are
based on Multi-Sphere Image (MSI) representation [1, 4].
MSI can be seen as a spherical extension of Multi-Plane Im-
ages (MPI) [32, 37], which are widely adopted in view syn-
thesis of common perspective images. More specifically,
MSIs represent a scene as a set of textured spheres centered
around a reference point. A key advantage of using MSIs is
that rendering spheres is extremely efficient with standard
rendering softwares. The simplicity of the rendering and
seamless integration with graphics software makes MSIs an
appealing choice for real-time rendering applications. On
the other hand, current MSI based techniques such as Ma-
tryODSHkha (MODS) [1] suffer from unsatisfactory qual-
ity in synthesized novel views.

The use of Coordinate Multi-Layer Perceptrons (CMLP)
is revolutionizing the field of novel view synthesis with very
high-quality results such as in NeRF [24]. A key drawback
of CMLP based techniques is the requirement of large num-
ber of training views as well as slow rendering. Several
very recent works try to improve NeRF-like techniques in
different aspects: improving rendering speed [13, 19, 26],
modelling reflectance properties [3], working with in-the-
wild images [23], re-lighting [30], generalizing across
scenes [36], etc. Even though one could adapt a NeRF-
like technique for SNVS task, rendering novel 360◦ views
would be prohibitively slow. Several concurrent techniques
to improve rendering speed of NeRFs [13, 19, 26] are either
specific to perspective images or did not demonstrate their
use for spherical images in the SNVS task.

In this work, we propose a novel SNVS technique
that provides a good trade-off between different favourable
properties: high-quality view synthesis and fast runtime
with low memory requirements. Following [1], we also
make use of MSI representation for fast rendering. [1]
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Figure 1. High quality view synthesis with SOMSI. (Left) Illustration of sample input and held-out target spherical views of a scene.
(right) Synthesized novel views and the corresponding error maps for SOMSI (Ours), MODS [1] and S-NeRF [24].

learns a CNN that takes spherical images as input and pro-
duces an MSI representation where each point in each lay-
ered sphere has an RGB color and an alpha value associated
with it. Several recent MPI works [17, 21, 34] on view syn-
thesis demonstrate the use of high-dimensional learned fea-
tures in MPI planes instead of color MPIs. Following these
approaches and coordinate MLPs, we propose to learn high-
dimensional appearance features in MSI using coordinate
MLPs. In essence, we combine the strengths of coordinate
MLPs with MSI representation, thereby achieving both high
quality and fast runtime (rendering).

A key issue in representing high-dimensional features at
each point in MSI is high memory consumption. For in-
stance, representing f -dimensional features in d (usually
> 64) spheres with m points each leads to a memory com-
plexity of O(m × d × f). Since the number of points m
in a 360◦ spherical image are usually high, the memory
complexity will be prohibitively high if we represent high-
dimensional features in each MSI sphere. We argue that
representing dense features in MSI sphere is superfluous as
much of the 3D space is empty. As a remedy, we propose
a novel MSI scene representation where the scene appear-
ance and geometry are factored into two separate data struc-
tures. We call this novel MSI representation Soft Occlusion
MSI (SOMSI). SOMSI represents the scene geometry with
standard MSI data structure, while the scene appearance is
represented as a set of layered 2D feature maps. The key
in SOMSI is to represent appearance feature maps using
a smaller set of scene-specific occlusion levels instead of
large set of predefined MSI spheres. In essence, SOMSI
representation takesO(m×d×k) memory for scene geom-
etry with soft occlusion masks and O(m× k × f) memory
to represent scene appearance features, where k denotes the
number of occlusion levels. This strategy scales much bet-

ter in terms of memory with increasing feature dimension
as the number of occlusion levels are significantly lower
(k = 3 in our case) compared to spheres in MSI (usually
d > 64). We also propose a novel SOMSI rendering formu-
lation that allows the fast rendering of novel views like with
standard MSI representation.

We demonstrate the effectiveness of our SOMSI tech-
nique with results on both synthetic and real-world scenes.
Fig. 1 shows sample input and held-out spherical views
along with sample results of different techniques. Results
show that our approach can considerably outperform previ-
ous MSI based techniques [1]. Our approach can produce
high quality novel views that are on-par with spherical adap-
tation of NeRF [24] technique (S-NeRF) while being 2 or-
ders of magnitude faster, with rendering time close to MSI
techniques [1]. We make the following contributions:

• We propose a novel Soft Occlusion Spherical Multi-
Sphere (SOMSI) representation that can effectively scale
to encode high-dimensional scene appearance features in
MSI representation using learnable occlusion layers.

• We propose an efficient way to render novel views from
the learned SOMSI representation.

• Our approach effectively combines the advantages of dif-
ferent techniques with high quality view synthesis that
is on-par with implicit volumetric representations [24]
while having fast runtime like with standard MSI repre-
sentations [1].

2. Related Work
View synthesis research has a long history in com-

puter vision and graphics starting from the seminal work of
image-space morphing in Chen and Williams [8], light field
rendering [20], Lumigraphs [5, 15] followed by multi-view
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stereo reconstruction techniques [6, 7, 10, 14, 18]. Here, we
briefly review the relevant learning based techniques.
Novel View Synthesis. One of the earliest learning based
IBR techniques is the DeepStereo method by Flynn et
al. [12]. DeepStereo trains a CNN to produce novel views
from input plane-sweep volumes. An important milestone
for the learning based IBR research was the re-introduction
of the Multi-plane Images (MPI) by Zhou et al. [37]. The
view synthesis capabilities of MPIs have been pushed ever
further by the DeepView [11] technique. DeepView com-
bines the MPI scene representation with a learned gradient
descent based optimization to render highly accurate novel
views of challenging real world scenes. A recent exten-
sion of MPIs model view dependent effects [35]. Recently,
Neural Radiance Fields (NeRF) [24] techniques uses Coor-
dinate Multi-layer Perceptrons to model a given scene re-
sulting in very high-quality view synthesis results. NeRF
renders a scene by performing standard volumetric render-
ing. However, the visibility and color information for every
point in the rendering volume are determined by invoking
the trained MLP which is time-consuming.
Spherical View Synthesis. Single spherical images or
panoramic stereo cannot provide parallax as head move-
ment (translation) is not possible. Rendering panoramic
scenes with motion parallax is studied in several works [2,
22, 29]. Synthesizing novel views “on demand” is key to
enhance user experience by allowing for head movement.
Broxton et al. [4] presented a light-weight immersive light
field video rendering technique by extending MPI formula-
tion of DeepView [11] into a Multi-sphere Image (MSI) rep-
resentation. Moreover, sparse set of MSI spheres are used
in order to create a light-weight layered mesh representation
that can be rendered on mobile and web platforms. Concur-
rently with Bronxton et al. [4], the MODS [1] technique
showed the effectiveness of MSIs for 360◦ view synthe-
sis. MSIs are an attractive option for SNVS as they support
real-time rendering with standard rendering softwares. In
this paper we build upon the MSI scene representation and
propose a novel MSI reprsentation that can more efficiently
model high-dimensional appearance features.

3. Preliminaries

Spherical Image Representation. A spherical image is
an environment mapping that captures the entire visible
scene from a single point in space. In other words, it
comprises a 360◦× 180◦ panoramic view of the surround-
ings of the camera. Spherical images are usually stored
as a 2D pixel map of dimensions h × w often referred
to as Equirectangular Projection (ERP). Each ERP pixel
p = [u, v]T , where u ∈ [0, w − 1], v ∈ [0, h − 1], cor-
responds to a point on a unit sphere [θ, ϕ, 1]T expressed in
spherical coordinates. This mapping between a point on the

unit sphere and its pixel location on the ERP is given as

u = w (1− θ

2π
), v = h

ϕ

π
, (1)

with x-axis pointing into the screen, y-axis to the left and
z-axis up; a Cartesian point x = [x, y, z]T is converted into
spherical coordinates xs = [θ, ϕ, r]T as

θ = atan(
y

x
) ϕ = acos(

z

r
) r =

√
x2 + y2 + z2. (2)

A cartesian point x in 3D can be projected on to an ERP
by first obtaining xs = [θ, ϕ, r]T with Equation 2, followed
by mapping xs to the ERP location [u, v]T via Equation 1.
Multi-Sphere Images (MSI). This is the most commonly
used representation for SNVS [1, 4]. MSI can be seen as
a spherical extension of Multi-Plane Images (MPI) that are
widely used in view synthesis literature [32,37]. An MSI is
composed of a set of concentric RGBα spheres. The use of
spheres to represent a scene allows real-time rendering and
easy integration with common rendering softwares such as
Unity3D [16] and Blender [9]. This makes MSIs highly
suitable for downstream VR applications.

Formally, an MSI is a set of concentric spheres of radii
{ri}di=1 with each sphere representing a spherical image.
The ri values are set by linearly sampling the inverse depth
range between predefined near rnear and far rfar values.
Each of the d spheres in an MSI has transparency α ∈
[0, 1]m×1 and color C ∈ [0, 255]m×3, where m = h × w
is the pixel resolution of the spherical images and d is the
number of spheres. The number of spheres controls the
trade-off between the fidelity of the scene representation
and the computational costs (rendering time and memory).
Increasing d yields higher fidelity but requires more mem-
ory and results in slower rendering. These spherical images
can be represented either in 3D with spherical coordinates
or with 2D ERP planes.
MSI Rendering. Fig. 2 shows an illustration of MSI
spheres centered around reference view r. Suppose we want
to render a spherical image from a novel view center t, we
shoot rays from the target center and alpha composite the
colors along the intersection points w.r.t. reference-view
MSI spheres. Specifically, for a sample ray direction (cor-
responding to a location p = [u, v]T in the target ERP), we
first compute the ray intersections xpi ∈ R3; i ∈ {1, ..., d}
with the d MSI spheres using a standard sphere-ray intersec-
tion technique [25]. We then record MSI transparency and
color values at these intersection points: {(αp

i , C
p
i )}di=1.

The final color Cp for target ray p is calculated by over-
compositing Cp

i s with αp
i s in a back-to-front manner (also

known as alpha composition):

Cp =

d∑
i=1

αp
i C

p
i

∏
j<i

(1− αp
j ). (3)
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The same process is used for all the ray directions in the
target view to obtain final novel view spherical image at
the target location. Since this process is trivially paralleliz-
able, it is straightforward to use GPUs for fast rendering of
novel views. One could also export MSI spheres as textured
meshes to leverage standard rendering engines for real-time
novel view rendering.

4. Approach
Problem. We tackle the problem of Unstructured Spher-
ical Light-Field Interpolation also referred to as Spherical
View Synthesis: Given a set of 360◦ spherical images cap-
tured at different locations in a scene, the aim is to esti-
mate spherical images from novel camera viewpoints. For-
mally, the input to our method is a set of n spherical im-
ages, Ii ∈ Rm×3; i ∈ {1, ..., n} each with m pixels, and
their SE(3) camera poses, P ∈ Rn×3×4. Given a set
of posed spherical images, we learn a scene representation
from which one can dynamically render novel views from
target camera poses.

Fig. 3 illustrates the overview of our spherical novel view
synthesis (SNVS) technique. We consider one of the input
camera poses as reference and optimize a coordinate MLP
network that learns to estimate a novel scene representation
called ‘Soft Occlusion MSI’ (SOMSI) at that reference lo-
cation. We can then use this representation to dynamically
render novel views from this scene representation at the tar-
get locations. Next, we describe the SOMSI representation
and how we can render novel views from that representa-
tion.

4.1. Soft Occlusion MSI (SOMSI)

Motivation. Even though standard MSI representation is
efficient in terms of rendering speed, it is limited to low-
dimensional RGB appearance in each MSI sphere. Re-
cent works on view synthesis [17, 21, 34] show that it is
beneficial to represent the appearance in 3D scene with
high-dimensional deep features instead of simple RGB col-
ors. Representing higher dimensional features at each MSI
sphere is memory intensive as representing f -dimensional
features at each point in each MSI sphere leads to a memory
complexity of O(m× d× f) which is not feasible even for
moderate values of f > 10.

In this work, we propose a novel MSI representation
called Soft occlusion MSI (SOMSI) which scales much bet-
ter with increasing appearance feature dimensionality. The
key to our technique is decoupling appearance features from
scene geometry in MSI representation. In SOMSI, we use
standard MSI ERPs to represent geometry and soft occlu-
sions; and use a small set of occlusion layers/ERPs to rep-
resent appearance features. Our key insight is that much of
the points in MSI spheres are empty and we can represent
multi-sphere appearance features with a much smaller set of
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Figure 2. SOMSI Rendering. Illustration of SO-Geometry and
SO-Appearance planens in our SOMSI scene representation in the
reference view at r. Rendering a target ray p involves computing
expected target ray termination and expection occlusion level, us-
ing which we can composite the appearance features to estimate
the final target ray color.

occlusion appearance features.

SOMSI Representation. As illustrated in Fig. 2, SOMSI
representation has two sets of ERPs: SO-Geometry and SO-
Appearance. SO-Appearance comprises of soft occlusion
appearance features S ∈ Rm×k×f , where f denotes the
size of color/appearance descriptors and k the number of
occlusion layers. Each of the k ERPs denotes the scene
appearance at a specific occlusion layer. The first ERP rep-
resents all the visible surface appearances in the reference
view; second ERP represents the appearance of occluded
surfaces that are behind the visible surfaces and the third
ERP represents the further occluded surfaces and so on.
In practice, we observe that 3 layers (k = 3) are enough
to represent most occluded content in general scenes. In
short, SO-Appearance represents the scene appearance fea-
tures with much smaller set (k = 3) of occlusion layers in
comparison to larger number (d > 32) of ERPs in a stan-
dard MSI representation.

SO-Geometry, on other hand, represents scene geometry
using all the d spheres. Specifically, SO-Geometry consists
of multi-sphere transparencies α ∈ Rm×d and soft occlu-
sion masks β ∈ Rm×d×k. As the name indicates, trans-
parencies α represent the sphere transparencies like in stan-
dard MSI representation. The k-dimensional soft-occlusion
mask βp

i of a 3D point at ith sphere along ray/pixel 1 p
represents the occlusion level of that 3D point xp

i in a soft
manner. For example, βp

i [0, 1, 0] denotes that xp
i belongs

1Note: We often refer to pixels as rays since ERP pixels correspond to
a specific ray direction.
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Figure 3. Approach Overview. We learn an MLP that takes spherical locations and colors from multi-resolution reference view images;
and estimates SOMSI scene representation at those locations. We can then efficiently render novel view images from the learned SOMSI.

to second occlusion level i.e., occluded by one visible sur-
face. The soft occlusion masks β provide the association of
planes in SO-Geometry and SO-Appearance. SO-Geometry
and SO-Appearance planes have the memory complexity of
O(m × d × k) and O(m × k × f) respectively. Since
k << d, the combined memory complexity of these two
will be smaller than representing f -dimensional features at
each of the d planes, which has O(m × d × f) memory
complexity. This makes SOMSI representation scale bet-
ter with higher dimensional features while retaining the fast
rendering times of MSI representation.
SOMSI Rendering. Novel view rendering with SOMSI
is not a simple alpha composition process, (Eqn. 3) as we
do not represent appearance features at each of the MSI
planes. One can simply convert SO-Appearance features
into full MSI planes, and then can use alpha composi-
tion for novel view rendering. Converting SO-Appearance
features into full MSI feature planes would again incur
O(m×d×f) memory complexity which we want to avoid.
In contrast, we propose a technique that directly utilizes SO-
Appearance features for rendering. Our SOMSI rendering
along each ray from the target center has three main steps:
1. Computing expected ray termination on the target ray; 2.
expected occlusion along the target ray; and then 3. using
both these estimates to composite novel view appearance
features from SO-Appearance layers. Let us discuss each
of these steps in detail.

1. Expected Ray Termination. Following the same nota-
tion as in Sec. 3 and as illustrated in Fig. 2, let us suppose
we learn an SOMSI centered at reference r and we want to
do the rendering from target location t. Consider the ren-
dering of target appearance features along the sample target
ray direction p, as shown in Fig. 2. Similar to standard MSI
rendering, we first compute these target ray intersections
xpi ∈ R2; i ∈ {1, ..., d}with the d MSI spheres (in reference
view) using standard sphere-ray intersection technique [25].

Each of these points xp
i has the corresponding 2D points in

SO-Geometry ERP planes with locations Gp
i ∈ R2, trans-

parency αp
i and soft occlusion βp

i as shown in Fig. 2. These
points {Gp

i }di=1 lie on an epipolar line in the reference view.
We compute the 2D ERP location (of ray p in the reference
camera) G̃p ∈ R2 of the target ray p as:

G̃p =

d∑
i=1

αp
i G

p
i

∏
j<i

(1− αp
j ), (4)

which is an alpha composition of 2D ERP locations
{Gp

i }di=1 instead of color values as in standard MSI ren-
dering (Eqn. 3). The expected ray on the Epipolar line, G̃p

is a 2D location in SOMSI. This point effectively computes
the location of target ray termination in the reference cam-
era (denoted as orange dots in Fig. 2). Note that, one can
equivalently compute the ray termination in 3D by alpha
compositing the ray-sphere intersection points and project
the result to the reference ERP to get G̃p.

2. Expected Occlusion. The expected ray termination G̃p

at the reference view provides the correspondence, in the
reference view, for the target ray p. Thus, we can use this
ERP location G̃p to get the corresponding appearance fea-
tures from SO-Appearance. Since SO-Appearance has dif-
ferent occlusion layers, we also need to estimate expected
occlusion level for the target ray p. We compute the ex-
pected occlusion level S̃p ∈ Rk using the same alpha com-
positing formulation, but compositing the soft-occlusion
masks β in back-to-front manner:

β̃p =

d∑
i=1

αp
i β

p
i

∏
j<i

(1− αp
j ). (5)

3. Appearance Composition. To compute an appearance
feature for the target ray/pixel p, we first bilinearly interpo-
late the SO-Appearance features S at the nearest grid points
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resulting in a multi-layer appearance feature S̃p ∈ Rk×f .
We then multiply this feature map with the estimated soft
occlusion mask β̃p to obtain a single appearance feature for
the target ray: Q̃p = S̃pβ̃p. Multiplying β̃p with S̃p ef-
fectively chooses the SO-Appearance feature Q̃p ∈ Rf at
the expected occlusion level in a soft manner. In summary,
we render appearance features along a target ray by first
computing the corresponding ERP location in the reference
view and then choosing the appearance feature at that ERP
location and the expected occlusion level.

Synthesizing Novel View ERPs. We still need to convert
the appearance feature Q̃p into RGB color for the target ray
p. We use a simple MLP to convert Q̃p into target ray color
C̃p ∈ R3. We repeat the same SOMSI rendering processing
for all the target rays followed by conversion to color values
to obtain the complete novel view spherical image.

Modeling view dependent effects. Color based MSI ap-
proaches such as MODS [1] can not robustly model view
dependent effects such as specular reflections in target
views as color values are baked in the reference MSI. Fol-
lowing the neural basis decomposition approach [35], our
SO-Appearance model can also incorporate view depen-
dent effects in a natural way. A neural basis decomposi-
tion approach replaces each RGB color value (in the MPI
or MSI) by reflectance coefficients (ω ∈ Re×3, where e
is the number of reflection coefficients). The coefficient
images can be combined into a single color image using
learned basis functions {γi : R3 7→ R1}e−1

i=1 , as follows
C = ω0 +

∑e−1
i=1 γi ωi. γi are the scalar outputs of MLP

networks that take viewing direction as input.

Applying this view dependent modelling scheme directly
in a standard MSI representation leads to a high memory
complexity of O(m × d × 3 × e) as we need to repre-
sent e-dimensional reflectance coefficients for each color
value at each MSI point. For MPIs, to overcome this is-
sue, NeXMPI [35] proposes a coefficient sharing strategy
by grouping different MPI layers and using same reflectance
coefficients within each MPI layer group. Eventhough one
could use similar grouping strategy in MSI representation,
the grouping of MSI spheres is somewhat arbitrary. Our
SO-Appearance layers provides a more physically mean-
ingful grouping of MSI spheres based on occlusions and
thus provide a natural choice to efficiently represent re-
flectance coefficients with O(m × k × 3 × e) instead of
O(m × d × 3 × e). More specifically, just like appearance
features, we need to represent reflectance coefficients only
at k occlusion layers in SO-Appearance instead of much
larger d layers in MSI. In the experiments, we observe that
using modelling view dependent effects with reflectance co-
efficients in SO-Appearance improves the view synthesis
results (Table 4).

4.2. Learning SOMSI with Coordinate MLP

We learn a scene-specific SOMSI from a given set of
input spherical images captured at different 3D locations in
a scene. Following the recent success of coordinate MLPs
for view synthesis [23,24], we make use of MLPs that takes
2D ERP pixel locations as input and produces SOMSI scene
representation at those locations w.r.t. a reference view. As
illustrated in Fig. 3, MLP takes the spherical coordinates
[θ, ϕ] for a point r along with reference image color Irref at
that location as inputs, and produces SOMSI representation
at that location:

N : (ζ(θ, ϕ), Irref ) 7→ (αr, βr, Sr), (6)
where ζ(θ, ϕ) denotes the Fourier embedding of the coor-
dinates as used in recent coordinate networks such as [24].
Contrasting to existing works that only feed Fourier em-
bedded coordinates into MLPs, we also input RGB color
values Iref as well to the MLP. We observe faster training
convergence and better novel view synthesis quality with
additional Iref as input to the network. Another distinc-
tion in our network is the use of multi-resolution coordinate
maps. As shown in Fig. 3, we start with low-resolution grid
as network input and upsample the grid locations as well
as input spherical image after every few linear+ReLu lay-
ers. We again observe that this multi-resolution strategy
resulted in better results compared to using a single reso-
lution grid. Once we learn an SOMSI for a given scene,
we can dynamically render spherical images from arbitrary
novel view locations using the SOMSI rendering technique
described in the previous section.
Training. We train the network N on a specific scene by
randomly sampling a mini-batch of input cameras and ren-
dering their corresponding held-out novel views. Our ren-
dering pipeline is fully differentiable (due to our soft oc-
clusion formulation) and thus allows for training with back-
propagation. The network parameters are learned by min-
imizing the L2 distance between the predicted novel view
Ît and its respective groundtruth ERP image It for every
camera in the mini-batch.

5. Experiments
We analyzed our SOMSI technique for spherical novel

view synthesis on both synthetic and real-world datasets;
with both structured (input views captured with cameras
placed on a regular grid) and unstructured spherical light
fields.
Baselines. We compare SOMSI with two baseline tech-
niques: MODS [1] and S-NeRF [24]. MODS is a spher-
ical view synthesis method that renders novel views from
an Omnidirectional Stereo (ODS) input pair. We adapted
MODS to work with a pair of ERPs as input, like in our
setting. Given a spherical light field, we train MODS by
randomly sampling a triplet of spherical images where the

15730



Ground-truth SOMSI (Ours) MODS S-NeRF

Figure 4. Sample visual results. Novel views on the Sea Port (row-1), Coffee Area (row-2) and Residential (row-3) datasets. Coffee Area
is a real dataset captured with Ricoh-Theta-S camera, while the rest are synthetic. In the first row, MODS produces blurred images and
struggles with thin structures. S-NeRF creates images with even less details than MODS (see the cobblestones) and far away objects (eg.
the tree beyond the gate) are not well reconstructed. Specular reflections (2nd row) and thin structures (3rd row) are better captured with
our method. For a better visualization, we encourage the reader to zoom-in on the insets.

SOMSI (Ours) MODS [1] S-NeRF [24]
13 ms 10 ms 2710 ms

Scene PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Residential 37.01 0.946 33.37 0.907 36.29 0.944
Replica 39.54 0.986 35.91 0.970 42.51 0.992
Coffee Area 1,2 32.48 0.872 28.73 0.794 32.59 0.874
Sea Port 27.67 0.825 23.79 0.626 27.76 0.825

Table 1. Comparison with state-of-the-art. SOMSI (Ours)
can produce considerably higher quality results compared to
MODS [1] with similar runtime. SOMSI produces on-par results
with S-NeRF [24] while being 2 orders of magnitude faster.

first two serve as the input and the last one is used as tar-
get. During test, we render target novel views by using
the first and last training cameras as input. We omitted the
inverse-transform regularization in MODS [1] baseline as
the MODS work itself noted that this adversely effects the
view synthesis results. Our second baseline is a NeRF [24]
based technique. The original NeRF technique is designed
to work with perspective images. We trained NeRF with
spherical images by changing the camera model from pin-
hole (perspective) to spherical. We refer to this spherical
NeRF baseline as ‘S-NeRF’ in the experiments. We train
all three techniques (MODS, S-NeRF and SOMSI (Ours))
on a per-scene basis.
Datsets. We experiment with a total of 20 scenes from the
following 4 datasets:
• Replica [31] public dataset contains 18 different photo-

realistic reconstructions of indoor scenes. We used 12
randomly selected scenes. We used the HabitatAPI [27]
to render a 5× 5 grid of spherical images, where cameras
are placed 20 cm apart.

• Residential dataset consists of 3 synthetic scenes de-
picting residential houses that were created using

Unity3D [16]. We create 3×3 views per scene with cam-
eras that are 20 cm.

• Coffee Area dataset consists of 4 real-world scenes that
are self-captured using Ricoh-Theta-S spherical cam-
era. The first 2 of scenes have mainly diffuse ob-
jects, while the last 2 contain reflective objects. We use
COLMAP [28] to calibrate the cameras. See details in the
supplementary material.

• Sea Port dataset is an synthetic 3D model of a medieval
sea port. This dataset is created by improving assets that
where borrowed from blendwap. This dataset consists of
a 5× 5 spherical light-field with 20cm camera baseline.

Training and evaluation. Following MODS [1], we use
320×640 resolution spherical images for training and eval-
uation. Training our model takes about 18 hours on RTX-
2080Ti GPU. SOMSI can be trained to up to 1024 × 2048
resolution images on a single RTX-A100 GPU. See the sup-
plementary material for more details. For quantitative eval-
uation, we compare the predicted novel views with the held-
out ground-truth views and then compute the commonly
used metrics in view synthesis literature: Peak Signal-
to-Noise Ratio (PSNR) and Structured Similarity Index
(SSIM) [33]. Unless specified otherwise, we train our main
model with: number of spheres d = 64, occlusion lay-
ers k = 3 and the appearance features size f = 24.
Comparisons. Table 1 shows the comparison of differ-
ent metrics across different datasets and techniques. As
the PSNR and SSIM metrics clearly demonstrate, SOMSI
has considerably and consistently better PSNR and SSIM
across all the datasets when compared to MODS [1].
SOMSI has on-par metrics compared to the spherical ver-
sion of NeRF (S-NeRF) [24]. S-NeRF is a strong baseline
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that stores the scene using MLPs in an implicit manner. As a
result, the rendering speed is quite slow (2710ms) compared
to SOMSI (13ms). Both SOMSI and MODS learn explicit
scene representation enabling fast rendering. In summary,
SOMSI provides a good balance between rendering speed
and view synthesis quality. That is, SOMSI can produce on-
par view synthesis results with S-NeRF while being two or-
ders of magnitude faster (similar rendering time as MODS).

Ablations. We perform ablations with the appearance fea-
ture dimensions f and the number of occlusion layers k in
SO-Appearance features. Table 2 shows metrics with differ-
ent feature dimensions f = 3, 12, 24 on three scenes from
Replica, Residential and Sea Port. Results clearly show that
both PSNR and SSIM improves with increasing feature di-
mensions. We observe minimal performance improvements
with even higher feature dimensions f > 24. This obser-
vation is inline with recent view synthesis studies [17, 34]
on perspective images. These results demonstrates the use
of high dimensional features to model appearance details
in an MSI instead of commonly used RGB values thereby
justifying the need for our efficient SOMSI representation.
Using SOMSI representation makes it feasible to increase
the appearance feature dimensions without incurring signif-
icant memory or runtime costs, compared to representing
appearance features using standard MSI representation.

Table 3 shows the view synthesis metrics with the differ-
ent number of occlusion levels k. We notice some increase
in performance with using 3 levels compared to 2 levels.
Using more occlusion levels did not show any considerable
improvement in performance. This shows that 3 occlusions
levels are usually enough to represent a scene in SOMSI
representation.

f=3 f=12 f=24

Scene PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Residential 36.96 0.943 36.82 0.944 37.01 0.946
Replica 38.75 0.980 38.97 0.981 40.23 0.986
CoffeArea 1,2 32.33 0.873 32.44 0.873 32.48 0.872
Sea-Port 27.27 0.802 27.55 0.822 27.67 0.825

Table 2. Ablation of appearance feature dimensionality f . Met-
rics show that higher feature dimensions results in better perfor-
mance thereby justifying the need for our SOMSI technique that
can effectively represent higher-dimensional appearance features
with occlusion layers instead of a full set of MSI layers.

View Dependent Effects. For the two scenes in Coffee
Area that has specular objects, we experiment with learning
reflectance coefficients in SO-Appearance as described at
the end of Section 4.1. Table 4 shows the PSNR and SSIM
metrics on the two Coffe Area scenes with different num-
ber of reflectance coefficients. Results clearly show that the
view synthesis quality improves with more reflectance co-
efficients. Eventhough this is not a surprising result, this
further demonstrates the use of learning higher dimensional

features in MSI (either appearance features or reflectance
coefficients or both) compared to only RGB color values.

Limitations. One of the limitations of our technique is
that the scene representation network is optimized indepen-
dently for different scenes. This assumes a sufficient num-
ber of training views for each scene which may not be avail-
able for some scenes in practice. A more practical approach
would be to learn a network prior that works across different
scenes. A main challenge in learning such as dataset prior is
that there exists no large scale spherical image dataset with
diverse scenes to learn meaningful priors.

Societal Impact. Given the advent of low-cost spheri-
cal imaging and VR devices, we envision that our SNVS
technique would be useful for several real-world applica-
tions such as virtual tourism. Since we train our network
per scene, our approach would be less prone to dataset
bias compared to networks that are learned on large-scale
datasets.

k = 2 k = 3 k = 5

Scene PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Sea-Port 27.30 0.809 27.32 0.813 27.44 0.814
Replica 36.51 0.977 37.13 0.979 36.78 0.981

Table 3. Ablation of occlusion levels k. Metrics show that 3
occlusion levels are good enough to represent the scene and to
obtain high-quality view synthesis results. Due to limited compute
resources, here we used only the first 3 scenes from Replica.

e = 1 e = 4 e = 6

Scene PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

CoffeArea-3 33.66 0.891 33.70 0.892 35.86 0.902
CoffeArea-4 30.49 0.865 30.53 0.867 30.61 0.869

Table 4. The effect of number of reflectance coefficients e for
view dependent effects. Metrics demonstrate the use of higher
number of refectance coefficients further emphasizing the need for
modelling higher dimensional features in MSI representation.

6. Conclusion
In this work, we propose a novel multi-sphere repre-

sentation called SOMSI that can effectively model high-
dimensional appearance features in MSI representation that
are commonly used for spherical novel view synthesis. The
key is to represent features in occlusion layers instead of full
set of MSI spheres. We presented a novel SOMSI render-
ing scheme that retains the fast rendering of standard MSI
representation while producing high quality view synthesis.
SOMSI also produces on-par results with NeRF technique,
while being 2 orders of magnitude faster.
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