
Connecting the Complementary-view Videos:
Joint Camera Identification and Subject Association

Ruize Han1, Yiyang Gan1, Jiacheng Li1, Feifan Wang1, Wei Feng1†, Song Wang2†

1 College of Intelligence and Computing, Tianjin University, Tianjin, China
2 Department of Computer Science and Engineering, University of South Carolina, USA
{han ruize, realgump, threeswords, wff, wfeng}@tju.edu.cn, songwang@cec.sc.edu

Abstract

We attempt to connect the data from complementary
views, i.e., top view from drone-mounted cameras in the air,
and side view from wearable cameras on the ground. Col-
laborative analysis of such complementary-view data can
facilitate to build the air-ground cooperative visual system
for various kinds of applications. This is a very challeng-
ing problem due to the large view difference between top
and side views. In this paper, we develop a new approach
that can simultaneously handle three tasks: i) localizing the
side-view camera in the top view; ii) estimating the view
direction of the side-view camera; iii) detecting and asso-
ciating the same subjects on the ground across the com-
plementary views. Our main idea is to explore the spatial
position layout of the subjects in two views. In particular,
we propose a spatial-aware position representation method
to embed the spatial-position distribution of the subjects in
different views. We further design a cross-view video col-
laboration framework composed of a camera identification
module and a subject association module to simultaneously
perform the above three tasks. We collect a new synthetic
dataset consisting of top-view and side-view video sequence
pairs for performance evaluation and the experimental re-
sults show the effectiveness of the proposed method.

1. Introduction
With the advancement of mobile-camera technologies,

human group events such as surprise parties, group games
and sports events, are increasingly recorded by various mo-
bile cameras. Wearable cameras, such as GoPro or mobile
phone camera, worn by one of the persons (referred to as
subjects in this paper) on the ground can provide side views
of the human group [7, 24, 33]. Unmanned aerial vehicles
(UAVs), such as drones in the air, can provide top views
of the same human group [10]. The video analysis tasks
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in such two views are both well studied [17, 39, 40]. How-
ever, the collaborative analysis of these two views is rarely
studied. We can see from Figure 1 that the data collected
from these two views well complement each other – the top-
view video contains no mutual occlusions and well exhibits
a global picture and the spatial distribution of the subjects,
while the side-view video can capture the detailed appear-
ance, behavior, and activity of subjects of interest in a much
closer distance. We believe that their collaborative analysis
can help build the air-ground cooperative visual system for
comprehensive scene understanding, activity analysis, etc.

To achieve this goal, the first challenging problem is to
effectively connect these two complementary views. For
this we propose to study the following three tasks as shown
in Figure 1. Task I: Camera location identification – to lo-
calize the side-view camera in the top-view video; Task II:
View direction estimation – to infer the view direction of the
side-view camera (in the top view); Task III: Cross-view
multiple human detection and association – to detect every
subject present in each view and identify the same person
across the two views.

This is a very challenging problem and different from
existing works. The biggest challenge lies in that the large
(approximately orthogonal) view difference in our setting,
which makes the classical features, e.g., appearance and
motion, no longer useful for connecting the two views.
Specifically, Tasks I & II are different from prior works on
identifying the first-person camera in a third-person cam-
era [6,35], where the third-person cameras usually adopt the
egocentric or surveillance cameras, and their altitudes and
angles are similar with the first-person cameras. In this pa-
per, the third-person camera is mounted on a drone, leading
to very limited field-of-view (FOV) overlap with the first-
person view. This makes prior approaches [6, 35] on mod-
eling the cross-view correspondence fail in our tasks. Task
III looks like a specific person re-identification (re-id) prob-
lem – for each subject in one view, re-identifying him/her in
the other view. However, this is a very challenging person
re-id problem because the same subject may show totally
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Figure 1. An illustration of the top-view (a) and side-view (b) images. The former is taken by a camera mounted to a drone in the air and
the latter is taken by a GoPro worn by a wearer who walks on the ground. To connect such two views, we attempt to answer the following
three questions: Q1: Who takes the picture (b) in (a)? Q2: Where does he/she look at in (a)? Q3: Who are the same person across (a) and
(b)? True answers of these three questions are shown in (c): the blue box indicates the side-view camera (Q1), the two blue arrows indicate
view direction of the side-view camera (Q2) and identical-color boxes across (b) and (c) indicate the same persons (Q3).

different appearance in top and side views, not to mention
that the top view of subjects contains very limited features
by only showing the top of heads and shoulders, as shown
in Figure 1.

In this paper, we develop a new approach to explore
and leverage the mutual dependence among the above three
tasks to solve them simultaneously. Our main idea is to
explore the spatial position layout of the subjects in two
views. Specifically, we apply a human detection module to
detect all the humans in the top and side views, respectively.
Based on the detection results, we use a spatial-aware po-
sition representation to embed the spatial-position distribu-
tion of the subjects in different views. To bridge the view
gap across the top and side views, we apply the polar trans-
form to the top-view representation for rendering the 360-
degree subject distribution appearing in the FOV of the side-
view camera. Based on such spatial-aware position repre-
sentation, we design a camera identification module and a
subject association module to simultaneously infer the side-
view camera location and its view direction in the top view,
and also match the subjects across the two views. In the
experiments, we collect a new large-scale synthetic dataset
consisting of rich annotations for model training and per-
formance evaluation. Experimental results verify that the
proposed method can effectively handle the proposed three
tasks.

The main contributions of this paper are: ❶ This is the
first deep model to jointly handle the above three funda-
mental tasks for complementary-view crowded-scene anal-
ysis, including the side-view camera localization (Task I),
view direction estimation (Task II), and cross-view multi-
human detection and association (Task III); ❷ We de-
velop a new spatial-aware deep framework including the
spatial-aware position representation and complementary-
view collaboration network to model and associate the sub-
jects’ spatial layout across the complementary views; ❸ We
collect a new large-scale rich-annotation dataset of top-
view and side-view videos for training and evaluating the
proposed method. The dataset is released to the public
at https://github.com/RuizeHan/DMHA.

2. Related Work

Our Tasks I and II can be regarded as a problem of
identifying the camera holder in third-person cameras,
which has been studied in several works. For example, Fan
et al. [6] identify a first-person camera wearer in a third-
person video by incorporating spatial and temporal infor-
mation from the videos of both cameras. Similarly, in [35],
subjects are jointly segmented and associated between the
synchronized videos captured by the first- and third-person
cameras. Differently, in this paper the third-person camera
is mounted on a drone and produces top-view images, mak-
ing cross-view appearance matching very difficult.

As mentioned above, cross-view subject association
(Task III) can be treated as a person re-identification (re-
id) problem [38], which has been widely studied in recent
years. Most existing re-id methods can be grouped into
two categories: similarity learning and representation learn-
ing. The former focuses on learning the similarity metric,
e.g., the invariant feature learning-based models [19,27,37],
classical metric learning models [16, 20, 23], and deep met-
ric learning models [8,21,32]. The latter focuses on feature
learning, including low-level visual features such as color,
shape, and texture [9,22], and more recent CNN (Convolu-
tional Neural Network) deep features [4, 25, 31, 41]. These
methods assume that all the data are taken from side views,
with similar or different view angles, and almost all of these
methods are based on appearance matching. In this paper,
we attempt to re-identify subjects across top and side views,
where appearance matching is not an appropriate choice.

More related to our work is a series of recent works [2,
3, 10, 14, 28] on collaborative analysis between the top-
view and other cameras. A couple of works [28, 29] pro-
pose to determine the location of ground-level images from
a large set of top-view aerial images covering the same geo-
graphic region, which focus on the large-field localization
but not the humans. Some works [10, 13, 14] try to ob-
tain the cross-view human association and tracking by ex-
ploring the spatial-aware reasoning. Such works need the
predetermined human detection results and an exhaustive
search over a very large parameter space. In another se-
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ries of works [1, 3], by jointly handling a set of egocen-
tric (first-person) side-view videos and a top-view video, a
graph-matching-based algorithm is developed to locate all
the side-view camera wearers in the top-view video. In [2],
the problem is extended to locate not only the camera wear-
ers, but also other side-view subjects in the top-view video.
However, this series of methods are based on two assump-
tions: 1) the top-view camera bears certain slope angle to
enable the partial visibility of human body and the use of
appearance matching for cross-view association, and 2) the
looking-at direction of the side-view camera is the same as
the moving direction of the camera wearer. In this paper,
we remove these two assumptions that may not be satisfied
in real world.

3. Proposed Method
3.1. Overview

We give an overview of the proposed method that mainly
contains three stages, as shown in Figure 2. First, we ap-
ply a human detection module by applying a CenterNet [5]
alike network to get location (heatmaps) of all humans in
the top and side views, respectively. Second, we propose
to use the human location heatmap to represent the spatial-
position distribution of the subjects. To bridge the view gap
across the top and side views, we apply the polar transform
to the top-view heatmap for rendering the 360-degree sub-
ject distribution from the side-view camera (Section 3.2).
Based on such spatial-aware subject representation, we de-
sign an identification network to simultaneously locate the
side-view camera and infer its view direction in the top view
(Section 3.3). Finally, we design a cross-view subject asso-
ciation network for matching the subjects across the two
views (Section 3.4).

3.2. Spatial-aware Position Representation

Given a pair of images from the top and side views, we
first input them into the human detection module, as shown
in Figure 2. We use the CNN architecture based on the Cen-
terNet [5] with three heads, i.e., a heatmap head, a box size
head and a center offset head. The heatmap head is used
for estimating the center positions of the subjects. We can
see that the spatial-position layouts of the subjects in the
two views are totally different. To bridge this gap, we apply
the polar transformation to the top-view heatmap for subject
representation.

Top-view subject representation. By examining the
complementary-view image pair in Figure 2, we can see that
starting from the side-view camera location in the top-view
image, the content lying on the same azimuth direction in
the top-view image exactly corresponds to a vertical line
of the side-view image. This inspires us to apply the polar
transformation on the top-view image to build the spatial-

aware correspondence between such two views. Specifi-
cally, we take the side-view camera location in the top-view
image as the origin of polar coordinate and an arbitrary di-
rection, e.g., the south direction, as the 0-degree angle in the
polar transform. As shown in Figure 2, the polar transfor-
mation between the points (x′, y′) on the original top-view
heatmap Ft and the target points (x, y) on the expanded
heatmap F̃t is defined as

F̃t(x, y) = Ft(x′, y′),

s.t. x′ = cx − r
y

H
sin(2π

x

W
),

y′ = cy − r
y

H
cos(2π

x

W
),

(1)

where (cx, cy) locates the origin of polar coordinate on Ft,
r is a parameter, W and H denote the width and height of
F̃t, which are predefined.

Side-view subject representation. Correspondingly,
the side-view heatmap can be directly used as the spatial-
aware position representation Fs. Given the (appropriately)
orthogonal view direction between the top and side views,
the vertical lines in the side-view heatmap Fs correspond
to radial lines in the original top-view heatmap Ft, i.e., the
vertical lines in the expanded heatmap F̃t. Similarly, the
transverse lines in Fs approximately correspond to the con-
centric circles centered at the polar origin in Ft, i.e., the
transverse lines in F̃t. With the FOV angle θ of the side-
view camera (a fixed camera internal reference, e.g., 90◦),
the side-view heatmap can be regarded as a part of expanded
top-view heatmap. For example, as shown in Figure 2, as-
suming θ is 90◦, the side-view heatmap is a quarter of the
top-view heatmap along the width. Here the spatial distri-
butions of the subject position on the side view and the cor-
responding subregion in top view can be roughly matched.

3.3. Camera Wearer Identification Module

Based on the above subject representations, we propose
a two-stage complementary-view collaboration framework
to simultaneously address the camera wearer identification
and the human detection and association tasks.

View direction searching. First, we discuss the view
direction searching of the side-view camera in the top view,
that is to match the side-view heatmap Fs ∈ Rh×w with
the expanded top-view heatmap F̃t ∈ RH×W . As shown
in Figure 2, we compress the heatmaps along the y-axis by
value accumulation and get f s ∈ R1×w and f̃ t ∈ R1×W .
Then we compute the correlation score between them as

rs = f s ∗ f̃ ts ∈ R, (2)

where * denotes the convolution operation, f̃ ts denotes the
cropped map from f̃ t using a sliding window with the width
of w, s ∈ {1, 2, ...,W} denotes the left boundary of the slid-
ing window. Note that, when s > W −w, we circularly pad
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Figure 2. Framework of the proposed method. To zoom in for best view.

the right boundary of f̃ t with its left region. Therefore we
can get the correlation scores r = {rs|s ∈ {1, 2, ...,W}} ∈
R1×W corresponding to all view direction candidates.

Camera localization. As discussed above, we take the
side-view camera location O in the top-view image as the
origin for polar transformation. Actually, we do not know
the location O priorly. Therefore, we sample O from the lo-
cations of all the subjects P = {P 1, P 2, ..., PM} in the top
view and assume O ∈ P . In the training process, we take
the camera localization as a classification problem. Specifi-
cally, if the sampled location is O, it will be taken as a pos-
itive sample, while the other sampled locations are taken
as the negative ones. In the testing stage, we try all the
possible locations from P and select the predicted camera
location with the highest confidence.

Identification network. Based on the above settings, the
framework of the camera location and view direction iden-
tification network is shown in Figure 2 (middle). We next
present the supervisions for training the proposed network.
First, for the view direction searching, we use the following
direction loss function

LD = ∥r− rgt∥, (3)

where r denotes the view-direction score predicted by
Eq. (2) and rgt denotes the ground-truth result, i.e., a Gaus-
sian distribution curve as shown in Figure 2. Next, for the
camera localization, we use the triplet loss for the camera
location prediction

LL = log(1 + eτ(∥f
s−fo(o)∥−∥f s−fo(o′)∥)), (4)

where τ is a pre-set parameter, f s is the compressed side-
view heatmap in Eq. (2), and fo(o) and fo(o′) are the com-
pressed heatmaps expanded at true original o and false ori-
gin o′, which are taken as the positive/negative samples, re-
spectively.

3.4. Multiple Human Association Module

Subject matching similarity. After the camera local-
ization and view direction searching, we then consider the
individual-level subject matching. For that, we first obtain

the human bounding box in each view generated by the hu-
man detection module in our framework, which are then
mapped into the expanded top-view heatmap and side-view
heatmap and denoted as P i for i ∈ {1, 2, ...,M} and Qj for
j ∈ {1, 2, ..., N}, respectively. We then measure the sim-
ilarity between the subjects appearing in top view and side
view by their spatial-position layouts.
1) For the x-axis distribution (from left to right in the side-
view FOV), we calculate the distance of the x-axis coordi-
nate between each pair of subjects across two views

di,jx = D(P i
x, Q

j
x), (5)

where P i
x, Q

i
x denotes the normalized x-axis coordinate of

subject P i, Qi, D is a distance measurement function. We
then get the similarity matrix Sx = 1 − [di,jx ]i,j ∈ RM×N

between all the subjects across two views.
2) For the y-axis distribution (from near to far in the side-
view FOV), we leverage each subject’s distance to the cam-
era. Specifically, in the top view, according to the polar
transformation discussed above, the y-axis coordinate value
directly reflects the distance. In the side view, according to
the principle of photography, the distance from the camera
can be reflected by the depth of each subject. We calculate
the similarity of each pair of subjects along the y-axis

di,jy = D(P i
y,d(Q

j)), (6)

where P i
y denotes the y-axis coordinate of subject P i, and

d(Qj
y) denotes the depth of subject Qi to the camera. We

then get the similarity matrix Sy similar with that of x-axis.
How to estimate the subject depth in side view? We try
three different ways including ① estimating the depth of
each subject by the image depth estimation algorithm; ②
using the distance from the bottom of each subject to the
bottom of the image; ③ taking the inverse of the human
bounding box height. In the experiments, we will compare
the results generated in different ways.

Association network. We use bi-directional RNN ar-
chitecture to construct the association subnetwork inspired
by [12, 36]. Given the input similarity matrix Sx (or Sy),
we first reshape it to a vector by following the row-wise or-
der and feed to the first BiRNN, the output of which is then
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reshaped to a vector by following the column-wise order
and then feed it to the second BiRNN. Later, three fully-
connected (FC) layers are applied, followed by a sigmoid
function to achieve the final matching matrix Mx (or My).
We apply the supervised matching loss

LM = Lcro(Mx,Mgt) + Lcro(My,Mgt), (7)

in the subject association network, where Mx(My) and Mgt

are the predicted matching matrix and the ground truth, re-
spectively. We apply the matrix cross-entropy loss function
Lcro to measure the consistency between two matrices.

4. Implementation Details
Network training. The total loss function of the whole

framework is defined as the summation of the detection loss
LDet, direction loss LD, localization loss LL and matching
loss LM as defined above, i.e., L = LDet+LD+LL+LM.
In some cases, the annotations of the location and (espe-
cially) the view direction of the camera are hard to require.
For this situation, the proposed method can also implement
without LD or LL or both of them, which shows the gener-
ality of the proposed method and the corresponding results
are discussed in Section 5.3. In the detection module, we
apply the network architecture used in CenterNet [5] as the
backbone. In the experiments, we resize both the width and
height of Ft, denoted as w and h, as 128. In Eq. (1), we take
r = w

2 . We set H = h, W = λw as the the width and height
of F̃t, and set λ = 4, since the FOV angle θ of the side-view
camera is 90◦. We set τ in Eq. (4) as 102. We use Pytorch
backend for implementing the proposed network and run on
a computer with RTX 3090 GPU.

Network inference. We then elaborate on the inference
stage of the proposed method. First, we use the convolu-
tion to achieve view direction searching. Specifically, we
apply the convolution operation on f s and f̃ t as Eq. (2)
to get r ∈ RW as the response score. We take the peak
value on the response score to get the view direction. For
camera localization, we try all the possible locations P =
{P 1, P 2, ..., PM} as the origin of polar transformation and
calculate the corresponding localization errors ∥f s−fo(P )∥
as defined in Eq. (4) to select the predicted camera location
with the minimum error. For the subject matching task, we
merge the predicted Mx and My by averaging them and get
M, we then apply the Hungarian algorithm [15] on the pre-
dicted soft matching matrix M to transform the output into
a hard (binary) assignment matrix A as the final subject as-
sociation result.

5. Experiments
5.1. Dataset

Synthetic dataset. We do not find available datasets
containing complementary top- and side-view videos with

the full annotations of side-view camera location, view di-
rection and cross-view subject association. Especially for
the side-view camera view direction, no matter using the
auxiliary hardware instruments or manual post-annotation,
it is very hard to be accurately obtained in real-world data
collection. Thus, we consider building a synthetic dataset.

• Controllable data collection. We leverage a 3D mod-
eling engine Unity [26] to render the background. We fur-
ther apply an open-source toolkit PersonX [30] to model the
humans appearing in the synthetic videos. We generate the
complementary-view video pair by using a top-view camera
from a high altitude, and a side-view camera that is mounted
on the head of a subject in the scene. Benefiting from the
virtual environment, we can control a series of setups.
• Diverse settings. We apply five common outdoor surveil-
lance scenes like the city street, campus, and stadium, where
we select 10 different sites for video collection. We also in-
clude day and night scenes with various illuminations. The
number of subjects in each video is set in the range of 5 – 25,
which are randomly selected from 1,000 3D human mod-
els. All the subjects are controlled to walk/stand freely in
the scene without specific requirements. The altitude of the
top-view camera is set as 15 – 20 meters, which looks nearly
vertically down to the ground that can cover all/most sub-
jects in the scene. The side-view camera is still or moving
with the movement of the camera wearer, which includes
random walking, and head rotating/pitching. We do not re-
quire all the subjects to be visible in the side-view camera,
but we make the FOV of side-view camera to cover most of
the subjects. This is also common in the surveillance sce-
narios. The field-of-view angle of the side-view camera is
set as 90◦ following many real-world mobile cameras.
• Large scale. We generate 108 videos (54 video pairs) with
the length varying from 500 to 1,500 frames, which, in to-
tal, includes 84,800 frames with over one million subject
bounding boxes. We split the dataset into training and test-
ing sets by 2 : 1, i.e., 36 and 18 videos, respectively.
• Rich and accurate annotations. All the necessary anno-
tations used in this problem including the side-view cam-
era location, view direction (in top-view video), and human
bounding boxes with temporal and cross-view ID numbers,
can be accurately obtained in our setting.

Real-world dataset. We also include a real-world
dataset [11] in the experiments. Specifically, this dataset is
collected by GoPro camera (mounted over wearer’s head) to
take side-view videos and a UAV to take top-view videos.
The dataset includes 15 video pairs with the length varying
from 600 to 1,200 frames, which are taken at five differ-
ent sites with various backgrounds. The number of sub-
jects in each video varies from 3 to 14. We split the dataset
into training and testing datasets, with 8 and 7 video pairs,
respectively. The subjects are manually annotated in the
forms of bounding boxes with ID numbers: the same sub-
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ject across the two views is annotated with the same ID
number. Note that, this manual labeling is very labor-
intensive given the difficulty to identify subjects in the top-
view videos. The dataset only provides the annotations for
camera wear localization and cross-view subject association
but not the view direction, which, actually, is almost impos-
sible to be accurately annotated in the real-world dataset.

5.2. Setup

Evaluation metrics. To comprehensively evaluate the
proposed method, we define the following metrics.
Metric-I: We first evaluate the accuracy of side-view cam-
era localization. For each frame, given the predicted and
ground-truth camera wearer Op and Og (in terms of human
bounding box), respectively, we take the localization result
to be true if the Intersection over Union (IoU) of Op and Og

is larger than 1
2 . We then rank all the detected subjects in

the top view based on its prediction score to be the camera
wearer generated by the algorithms and evaluate the top-κ
accuracy, which denotes the true camera location is among
the top κ-proportion of the ranked detected subjects.
Metric-II: We also evaluate the side-view-camera view di-
rection estimation. Given the predicted and ground-truth
view direction V p and V g (in terms of angle within [0, 2π)),
respectively, we first calculate the view direction error as
γ = |V p − V g|. We define the accuracy δα as the percent-
age of predicted view directions satisfying that γ ≤ α.
Metric-III: We finally evaluate cross-view multiple human
association results. Specifically, we use the precision and
recall scores for the cross-view subject association eval-
uation, which are calculated by the number of correctly
matched subjects over all the predicted or ground-truth
ones, respectively. We also compute the F1 score as the
metric. We further use the multi-human association accu-
racy MHAA = 1 −

(∑
t fnt+fpt+2mmet∑

t gt

)
, where fnt, fpt,

and mmet are the numbers of false negatives, false posi-
tives, and mismatch pairs of cross-view subject matchings
at time t, respectively, and gt is the total number of subjects
in both the top and side views at time t [10]. Note that,
Metric-III is a comprehensive metric evaluating the perfor-
mance of both the human detection and association. We
do not separately evaluate the single-view human detection
precision because it is not the main purpose of this work.

Comparison methods. We did not find available meth-
ods with code that can directly handle our problem, espe-
cially for the proposed Task I and Task II. Specifically, pre-
vious works [6, 35] all use the congeneric first-person and
third-person cameras with common height and FOV. Dif-
ferently, in this paper the top view makes the cross-view
appearance and motion, the most important features in pre-
vious works [6,35], very difficult to match for camera iden-
tification. Moreover, given the unreachable annotations for
the view direction, there is no previous works to estimate

and evaluate the view direction of a first-person-view cam-
era from a third-person view. Task III is also different from
most existing works that focus on matching the subjects
with similar appearance/motion features. Even so, we still
try to include more related approaches with some modifica-
tions for the comparison of subject association.
• MOT : We first use a top-rank appearance-motion-based
multiple object tracking (MOT) algorithm TraDes [34] for
comparison. Specifically, we manually associate the sub-
jects between top and side views only on the frames when
each subject first appears in the video. We then track all the
subjects in each video by TraDes, respectively, and finally
using the tracking results to propagate the subject associa-
tion to later frames.
• Re-id: The cross-view subject association task is sim-
ilar to the appearance-matching-based person re-id meth-
ods. So, we choose a state-of-the-art person re-id ap-
proach [4, 25] for the cross-view subject association. We
apply the re-id network to extract the feature of each sub-
ject and calculate the similarities among the subjects in two
views, and then choose the matched subject pairs between
different views with the maximum similarity.
• MHA : The most similar work to our task is the one
in [10, 13] for cross-view multi-human association, which
constructs a cost function to measure the similarity across
two views with large view difference.
Note that, the above three methods need the human detec-
tion as input. For a fair comparison, in the experiments,
they all use the detection results generated by our method.
• Hungarian + S: We directly apply the Hungarian algo-
rithm [15] on the similarity matrix S (average of Sx and Sy)
to get the assignment matrix A without using the proposed
association network to predict M.

5.3. Camera Identification Results

We first evaluate the performance of the camera wearer
localization (Task I) and the view direction estimation (Task
II). To provide more comprehensive comparisons for them,
we apply two baseline approaches used for the task III, i.e.,
Re-id and MHA, to handle Tasks I and II. To be specific,
with the human detection and the subject association re-
sults (Task III), we localize the side-view camera in the top
view by searching each subject to identify its localization
and view direction that covers most the (associated) sub-
jects except the camera wearer.

Ablation study. We consider the following variations of
our method to verify some key components.
• w/o LD / LL: Remove the direction or localization loss
in camera wearer identification. Note that, the real-world
dataset does not have the direction annotations thus we do
not use LD in our method.
• w/o compress: Do not compress the heatmap into a vector
before applying the correlation operation in Eq. (2).
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Figure 3. Comparative results of different variations of our method for Tasks I (a,b) and Task II (c).

Table 1. AUC scores of different variations of our method. (%)
Method Location (Syn.) Location (Real) Direction

Re-id [4, 25] 61.86 60.61 56.00
MHA [10] 69.95 52.58 57.90

w/o LD 73.72 - 64.17
w/o LL 72.69 69.21 62.09
w/o LD & LL 71.49 - 59.65
w/o compress 71.51 71.02 60.29

Ours 80.50 79.26 68.34

For Task I, following the Metric-I as discussed above, we
rank all the detected subjects in the top view based on their
predicted possibility to be the camera wearer. We then draw
the accuracy CMC (Cumulative Matching Characteristics)
curves to evaluate the camera-wearer’s detection accuracy
in the top view. Figure 3a and Figure 3b show the accu-
racy CMC curves generated by the different variations of
our method on the synthetic dataset and real-world dataset,
respectively. We can see that our method outperforms the
comparative methods in Tasks I and II. For Task I, we can
also see that the proposed losses, including LD and LL, and
the compress strategy are useful for the camera localiza-
tion task. For quantitative evaluation, we calculate the AUC
(Area Under The Curve) score of the CMC curve as shown
in the first two columns of Table 1. For Task II, following
the Metric-II, we draw the accuracy curve of δα along dif-
ferent settings of the threshold α on the synthetic dataset as
shown in Figure 3c. The last column in Table 1 shows the
AUC scores of the δα curves. We can see similar results
as for Task I that the proposed components are effective.
For in-depth analysis, the proposed method can generate the
acceptable camera localization and view direction predic-
tion results without the corresponding supervisions, which
demonstrates the robustness of the proposed framework that
it can achieve these two tasks in an unsupervised manner.

5.4. Subject Association Results

Comparative results. We then evaluate the subject as-
sociation results (Task III). In order to better evaluate the
association task, we compute the performance of the pro-
posed method given the ground-truth camera location (but
not the view direction) as in [2,10], which is relatively easy
to be obtained in the real-world application. As shown in
Table 2, we can see that although we give matching labels

at the initial frame, the state-of-the-art MOT method TraDes
still produces a poor performance in our task. The reason
might be that, tracking error of a subject in one frame may
cause the association error of this subject in all the frame
after. Similarly, the performance generated by the human
re-id method is also not good. This is because the exist-
ing re-id method relies heavily on the appearance feature,
which, however, is not consistent across the top and side
views. The method MHA provides an acceptable result,
particularly in its self-proposed real-world dataset. Com-
pared with them, the proposed method produces better re-
sults on both the synthetic and real-world datasets. Besides,
we can see that the comparative method using the similarity
matrix S and the Hungarian [15] algorithm also performs
worse than ours with the assignment network. This veri-
fies the effectiveness of the proposed assignment network,
which can handle the similarity measurement errors in S.

Ablation study. We also consider several variations of
the proposed method.
• w/o x (y) : We remove the matching similarity provided
by the x coordinate (y coordinate), respectively.
• w depth / bottom: We use the ① estimated depth of each
subject by [18] or ② the distance from the bottom of each
subject to the bottom of the image, for the y-axis distribu-
tion in Eq. (6).

As shown at the bottom of Table 2, we can see that the
subject matching similarity with only the x-axis distribu-
tion can provide an acceptable performance. In contrast, the
method with only the y-axis distribution performs not very
well. This is because the subjects’ distributions along x-axis
in two views are aligned, given the predicted view direction
of the side-view camera. But the scale of the y-axis distri-
butions reflected in the top and side views are non-uniform.
Anyway, the final version of our method integrating both
of them provides better performance than using any one of
them. This demonstrates that the x-axis and y-axis distri-
butions can complement each other in our method. We can
also see that the human depth generated by a depth estima-
tion method [18] and calculated by the bottom distance per-
forms not well as the usage of human bounding box height
in our method. The reason might be the human depth esti-
mation using [18] is not accurate enough for this problem
and the using of bottom distance is easily to be influenced
by the rolling of the side-view camera.
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Table 2. Comparative results of different methods and different variations of our method. (%)

Method
Synthetic dataset Real-world dataset

Precision Recall F1 score MHAA Precision Recall F1 score MHAA

TraDes [34] 15.34 3.79 6.07 19.03 18.68 6.72 9.89 28.51
Re-id [4, 25] 35.28 20.50 25.93 30.89 26.37 15.33 19.39 33.21
MHA [10] 49.99 41.06 45.09 45.42 73.14 69.04 71.03 67.70
Hungarian [15] 57.44 59.64 58.28 52.07 67.17 75.77 70.76 73.21

w x (w/o y) 58.33 60.71 59.24 57.11 69.54 80.36 74.04 79.43
w y (w/o x ) 39.94 41.97 40.73 34.13 40.67 48.33 43.80 47.97
w depth [18] 59.63 61.81 60.46 57.40 70.41 81.11 74.90 79.76
w bottom 63.23 66.05 64.32 60.58 70.47 80.85 74.82 79.16

Ours 67.06 69.91 68.16 66.07 72.05 83.50 76.81 80.80

Cross-domain testing. Clearly, the view direction anno-
tation for the real-world data is quite hard. Even using the
gyroscopes integrated in the smart phones and cameras, it
cannot solve this problem either, e.g., external disturbances
produces random drift error all the time. This way, we test
and evaluate the results on the real-world data using the
model trained on the synthetic data, to evaluate the gen-
eralization ability of our method. As discussed above, the
view direction on real-world videos can not be acquired.
Therefore, we evaluate cross-view subject association per-
formance as shown in Table 3. We can see that, although
with some accuracy drop, the cross-domain testing still pro-
vides acceptable performance. Note that, we directly apply
the saved model trained on the synthetic training dataset for
real-world data testing without any extra modification. We
believe the performance can be better by integrating some
techniques for the cross-domain adaption or synthetic data
generation. From this point, this paper provides a new in-
sight that using synthetic data may help detect the (unmea-
surable) first-person view direction in real-world scene.

Table 3. Cross-domain evaluation of our method. (%)

Method
Real-world dataset

Precision Recall F1 score MHAA

Ours (Cross-domain) 52.76 65.88 57.85 70.62

6. Discussion
Limitation. 1) We assume the side-view camera always

locates in the FOV of the top-view camera, which may not
be always satisfied in practice. 2) We do not use the tem-
poral information in the video. While it has the advantage
to be applicable to single image pairs, videos can provide
more information, e.g., the temporal consistency, for per-
formance improvement. We also show some special cases
to discuss the limitation in the supplementary material.

Application. Actually, this work handles a new problem
setting of air-ground cooperative camera system. Note that,
in an outdoor scenario without pre-installed cameras, it may
be unpractical to quickly setup the traditional fixed cameras
for surveillance. This way, the proposed camera system can

be applied: cameras on a drone (top view) and worn by sev-
eral law enforcement officials on the ground (side views)
can be deployed, with the proposed association, for collab-
orative localization, tracking, and human activity recogni-
tion, etc. The complementary-view camera configuration
can provide outdoor surveillance with much better coverage
and flexibility since the top and side views well complement
each other, where the top view provides a global picture of
the whole scene but lacks details, while the side views pro-
vide local details of subjects with frequent occlusions. With
the advancement of mobile-camera technologies, the ben-
efit of the collaborative analysis of such cameras will also
increase, with many potential applications in video surveil-
lance, e.g., human group activity recognition [39], impor-
tant person detection [14], and sport scene understanding,
e.g., player positioning analysis in football games.

7. Conclusion

In this paper, we have studied a new problem for
complementary-view video collaborative analysis. For that,
we developed a new approach that can simultaneously han-
dle three tasks – camera wearer location, view direction
estimation and cross-complementary-view multiple human
detection and association. Specifically, we have proposed
a spatial-aware position representation method to embed
the spatial distribution of the subjects and designed a cam-
era identification and subject matching network to simul-
taneously perform the above three tasks. We also built a
new synthetic dataset with rich annotations for the proposed
problem. Experimental results on both the synthetic dataset
and a real-world dataset are very promising. In the future,
we plan to integrate the temporal information of the videos
into our framework for further improving the performance.
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