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Abstract

Integration of heterogeneous and high-dimensional data
(e.g., multiomics) is becoming increasingly important. Ex-
isting multimodal classification algorithms mainly focus
on improving performance by exploiting the complemen-
tarity from different modalities. However, conventional
approaches are basically weak in providing trustworthy
multimodal fusion, especially for safety-critical applica-
tions (e.g., medical diagnosis). For this issue, we pro-
pose a novel trustworthy multimodal classification algo-
rithm termed Multimodal Dynamics, which dynamically
evaluates both the feature-level and modality-level infor-
mativeness for different samples and thus trustworthily in-
tegrates multiple modalities. Specifically, a sparse gat-
ing is introduced to capture the information variation of
each within-modality feature and the true class probability
is employed to assess the classification confidence of each
modality. Then a transparent fusion algorithm based on the
dynamical informativeness estimation strategy is induced.
To the best of our knowledge, this is the first work to jointly
model both feature and modality variation for different sam-
ples to provide trustworthy fusion in multi-modal classifica-
tion. Extensive experiments are conducted on multimodal
medical classification datasets. In these experiments, supe-
rior performance and trustworthiness of our algorithm are
clearly validated compared to the state-of-the-art methods.

1. Introduction
Multimodal learning has achieved impressive success in

a wide spectrum of applications (e.g., medical-diagnosis
[16, 52]), which improves the performance by exploring
the complementary information from different modalities.
Representative multimodal methods typically integrate dif-
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ferent modalities into a unified representation with power-
ful neural networks [29, 34, 45, 61, 63, 64, 71, 72, 74]. De-
spite encouraging progress, traditional multimodal models
are still unreliable due to the limitation of existing fusion
strategies. As a result, existing multimodal learning also
challenges itself in deployment for safety-critical applica-
tions (e.g., computer-aided diagnosis). This inspires us to
utilize multimodal information in a more elegant way to
produce trustworthy multimodal fusion.

For multimodal learning, traditional methods mainly fo-
cus on obtaining a common or joint representation by ex-
ploring the correlated and complementary information be-
tween different modalities with powerful neural networks
[8, 65]. Some existing multimodal methods obtain a joint
representation by simply concatenating the features ob-
tained from different modalities [26,32]. Then a neural net-
work is employed to explore the joint representation. Be-
sides, joint representations can be obtained through care-
fully designed objective functions [3, 4, 27, 63] and neural
network architectures [6, 38, 62]. Although effective, these
methods are weak in dynamically perceiving the informa-
tiveness of each feature and modality for different samples,
which could enhance the trustworthiness (including stabil-
ity and explainablity) in multimodal classification. In multi-
modal medical data, as shown in Fig. 1, uninformative fea-
tures and modalities widely exist due to the unsatisfactory
data collection (e.g., inherent noise in multiomics data [7],
uneven quality of histopathological images for different pa-
tients [68] and tabular data with complex missing patterns
and feature noise [70]). This motivates us to evaluate the in-
formativeness of each feature and each modality of different
samples, and conduct a dynamical multimodal fusion.

In this work, we propose a novel algorithm termed Multi-
modal Dynamics for trustworthy multimodal classification,
which models the feature and modality informativeness to
promote the fusion stability and explainablity. Specifically,
we introduce a sparse gating strategy to dynamically ob-
tain the informative features for different samples, and the
modality confidence is introduced to dynamically evalu-
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Figure 1. (a) Illustration of feature and modality dynamics in multimodal data. For one modality, the informativeness of different features
may vary with the samples. Meanwhile, the informativeness of different modalities may also change for different samples. (b) To capture
the dynamics, multimodal dynamics paradigm is proposed, where feature and modality informativeness is dynamically evaluated to pro-
mote multimodal fusion.

ate the informativeness of different modalities for different
samples. Accordingly, a unified multimodal fusion frame-
work is introduced to dynamically fuse informative features
and modalities, and to reduce the influence from noisy fea-
tures and modalities, endowing the model with robustness
for dynamic variation of quality for features and modalities,
and trustworthiness for final decision. For clarification, the
contributions of our method could be summarized as fol-
lows: (i) We propose a dynamical multimodal fusion strat-
egy, which models both the feature-level and modality-level
dynamicities to provide a trustworthy multimodal fusion.
To the best of our knowledge, the proposed method is the
first work to exploit the feature-level and modality-level dy-
namicities for trustworthy multimodal fusion. (ii) We intro-
duce effective mechanisms, i.e., sparse gating and true class
probability approximation to dynamically estimate the dy-
namicity of each feature and modality, which are coopera-
tive for the optimal prediction. (iii) We conduct experiments
on four multimodal medical classification datasets and the
experimental results demonstrate significant improvement
against state-of-the-art methods. Qualitative experiments
also validate the trustworthiness and interpretability in mod-
eling the multimodal dynamicity. 1

2. Related Work

Multimodal learning. To integrate multiple types of
data for decision making, multimodal learning has been
widely explored recently [8, 48, 65]. Existing multi-
modal methods are typically divided into early [47], in-
termediate [6, 26, 29, 30, 32, 33, 37, 38, 58, 66] and deci-
sion [23,43,53,55,62] fusion according to the fusion strate-
gies [8, 48]. Early fusion based methods directly integrate
multiple modalities at the data level, typically concatenat-
ing multimodal data [47], which may fail to handle high-

1Code is available at github.com/TencentAILabHealthcare/mmdynamics.

dimensional or heterogeneous data. Intermediate fusion
strategy is widely adopted in multimodal learning, which
allows multiple modalities to be fused at any layer through
a well-designed network [6,26,29,30,32,33,37,38,58,66].
For some methods, the intermediate representations from
different modalities are concatenated to obtain a joint rep-
resentation [26, 32]. Gated multimodal fusion [6] aims to
find an intermediate multimodal representation based on the
combination of features from different modalities. Besides,
decision fusion can perform multimodal fusion based on
the uncertainty of prediction [23, 39, 55, 56]. There have
been methods that focus on the dynamics between different
modalities [46, 57]. Note that, none of the above methods
pay attention to the dynamics of the features and modalities
simultaneously for trustworthy classification.

Uncertainty learning. Although deep learning has
achieved great success in many applications, it is hard to
provide reliable predictive uncertainty or confidence [2, 19,
21], which is crucial for trustworthy models. Bayesian
methods [9,44,67] provide the predictive uncertainty by re-
placing the deterministic parameters with the distribution.
However, the computationally intensive nature of Bayesian
methods limits the applicability in deep neural networks.
MC-dropout [20] applies dropout at both training and test
stages to avoid the computational cost. Ensemble-based
methods [5, 24, 36] train and integrate multiple determin-
istic neural networks to calculate the predictive uncertainty.
Different from the uncertainty estimation algorithms, con-
fidence calibration methods [11, 22, 51] aim to obtain con-
fidence by calibrating the classification results directly. In
this paper, we employ a confidence based model to assess
the informativeness of different modalities for each sample.

3. Proposed Method
In this section we elaborate the proposed multimodal

classification algorithm. Given N i.i.d. multimodal ob-
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Figure 2. Framework of multimodal dynamics. We use a two-modality case for better illustration. The proposed method is mainly
composed of the following steps. (i) For modality m, the sparse feature informativeness is obtained with encoder Em. (ii) A gating
strategy is employed to preserve the informative features, where the dotted line with arrow indicates the move of original data. (iii) A
confidence regression network gm is used to approximate TCP , which is the predictive probability of modality-specific classifier fm

corresponding to the real label. The obtained T̂CP reflects the informativeness of different modalities. (iv) A gated network is introduced
at modality-level to dynamically fuse multiple modalities based on the informativeness.

servations with M modalities and the corresponding la-
bels {{xm

n }Mm=1,yn}Nn=1, the goal of multimodal classifi-
cation is to construct a mapping between multimodal data
{xm

n ∈ Rdm}Mm=1 and the class label yn ∈ RK , where
dm and K are the dimensionality of feature space for the
m modalities and the number of classes, respectively. For-
mally, to integrate multimodal information and learn the
underlying mapping between the multimodal observations
and the class labels, a neural network f : {xm}Mm=1 → y
is trained in conventional multimodal classification algo-
rithms. To achieve a more trustworthy integration, unlike
the previous algorithms, the proposed multimodal classifi-
cation algorithm models both the feature-level (elaborated
in detail in Section 3.1) and modality-level dynamics (elab-
orated in detail in Section 3.2). Then a dynamical multi-
modal fusion algorithm is proposed in Section 3.3.

3.1. Feature-level Dynamics

Given a high-dimensional feature vector xm ∈ Rdm ,
there is usually a subset of features relevant to the class la-
bel, reflecting the informativeness of different features in
classification [15, 17]. Accordingly, sparsity induced mod-
els are popular in handling high-dimensional data. Differ-
ently, we argue that the informativeness of different features
are different and more importantly, the informativeness for
one feature is dynamically changed for different samples,
which should be considered during the multimodal fusion.
By modeling the dynamic, our algorithm is endowed with
the following merits: (i) retaining important features and

removing redundant and noisy ones, thereby promoting the
multimodal fusion; (ii) enhancing the explanation ability of
the multimodal fusion. To this end, we introduce a dynami-
cal feature informativeness coding network to retain the in-
formative features and suppress the uninformative features
in different modalities, which stabilizes and promotes the
within-modality representation.

Feature-informativeness encoder. To identify the
feature-level informativeness, we train an encoder network
Em : xm → wm, where wm ∈ Rdm refers the feature
informativeness vector. Besides, to obtain a more intuitive
informativeness vector, sigmoid activation is used, which
could allow the output of the Em to be scaled:

wm = σ(Em(xm)) = [wm
1 , · · · , wm

dm
], (1)

where σ refers to the sigmoid activation function. Accord-
ingly, the dynamics of features for different samples are
modeled. For high-dimensional data, we incorporate the
sparsity prior which seeks a small subset of relevant fea-
tures. Specifically, to promote the sparsity, ℓ0 regularization
is employed:

Ls
ℓ0 =

M∑
m=1

dm∑
d=1

smd , with smd =

{
1 if wm

d ̸= 0

0 otherwise
. (2)

Since ℓ0-norm is hard to optimize in practice, ℓ1-norm is
adopted for approximation:Ls

ℓ1
=

∑M
m=1 ∥wm∥1, where

∥w∥1 represents the ℓ1-norm of w. Intrinsically, we intro-
duce a dynamic sparsity strategy in our algorithm.
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3.2. Modality-level Dynamics

For multimodal data, the informativeness of a modality
is basically not fixed for different samples [28, 49]. There-
fore, it is crucial for multimodal classification to be aware of
the informativeness variation with respect to different sam-
ples, which is related to whether the model can adapt to the
quality variation of modalities. Based on the above motiva-
tion, we employ the True-Class-Probability [11] to quantify
the classification confidence of different modalities, which
is closely related to the modality informativeness for clas-
sification. When the confidence of a modality classification
is low, it means that the classification is uncertain, and the
informativeness of the corresponding modality is low and
vice versa.

Maximum class probability. To obtain the classifica-
tion confidence of different modalities, M classifiers fm :
xm
n → yn are constructed. For modality m, a classification

neural network fm can be regarded as a probabilistic model,
which converts an observation xm to a predictive distri-
bution pm(y | xm) = [pm1 , · · · , pmK ] based on the Soft-
max output. The classifier can be trained with a maximum
likelihood estimation framework to minimize the Kullback-
Leibler divergence between the predictive distribution and
the true distribution:

Lcls = −
M∑

m=1

K∑
k=1

yk log p
m
k , (3)

where yik is the k-th element of the class label yi. Eq. 3 is
also known as cross-entropy loss function. Then the max-
imum class probability can be inferred with MCPm =
max{pm1 , · · · , pmK}, which can be considered as the con-
fidence of the classifier for the prediction.

Multimodal confidence. Although effective in classi-
fication, MCP usually leads to over-confidence especially
for erroneous prediction [41,59]. Therefore, the true-class-
probability (TCP ) is employed to obtain more reliable clas-
sification confidence. Different from MCP , which uses the
largest Softmax outputs as confidence, TCP uses the Soft-
max output probability corresponding to the real label as
the confidence. Formally, for modality m, given the pre-
diction distribution pm(y | xm) = [pm1 , · · · , pmK ] and the
corresponding label y, TCPm can be written as

TCPm = y · pm(y | xm) =

K∑
k=1

ykp
m
k , (4)

where (·) defines the inner product. It is easy to under-
stand that for correctly classified samples, TCP is equiv-
alent to MCP . At this time, TCP and MCP are both
the largest Softmax outputs, which could promisingly re-
flect the classification confidence. However, when misclas-
sified, TCP can better reflect the classification than MCP

because TCP would be more likely to be close to a low
value, reflecting the fact that the model tends to make an
erroneous prediction.

Although TCP can obtain more reliable confidence, it
cannot be used in the test stage directly due to the need
of label information. Therefore, for modality m, a confi-
dence neural network gm : xm → TCPm is introduced
to approximate TCPm. Since the TCP ∈ (0, 1), sigmoid
activate function is employed in the last layer of the neural
network and ℓ2 loss is used to train the confidence neural
networks:

Lconf =

M∑
m=1

(T̂CP
m
− TCPm)2 + Lcls, (5)

where T̂CP
m

= gm(xm). Then the TCP can be approx-
imated with the modality-specific classifier and confidence
regression network.

3.3. Dynamical Multimodal Fusion

According to Section 3.1 and Section 3.2, feature-level
informativeness {wm}Mm=1 and modality-level informative-
ness {T̂CP

m
}Mm=1 can be obtained respectively. In this

section, we elaborate how to conduct dynamical multimodal
fusion based on the feature and modality informativeness.
To achieve this goal, a nested fusion structure is considered.
The framework of the model can be referred to Fig. 2.

Firstly, we consider the feature informativeness in clas-
sification. Given a feature vector xm ∈ Rdm , the feature
informativeness vector wm can be obtained with wm =
σ(Em(xm)). Then a gating strategy is used to incorporate
the informativeness information of features, which could al-
low the informative features to be retained and enforce the
uninformative features to be suppressed: x̃m = xm ⊙wm,
where ⊙ represents the element-wise multiplication.

Secondly, we consider the modality informativeness in
classification. According to Section 3.2, modality specific
classifier fm and confidence regression network gm are
trained to estimate the classification confidence. To make
use of the information of each modality-specific classifier
fm, we use fm

1 to extract the information of each modal-
ity where fm

1 is fm with the last fully connected layer re-
moved. Formally, we can obtain the late representation of
each modality with hm = fm

1 (x̃m). Meanwhile, the modal-
ity confidence can be estimated with T̂CP

m
= gm(hm).

A modality-level gating strategy is employed to incorporate
the modality informativeness:

h = [T̂CP
1
h1, · · · , T̂CP

M
hM ], (6)

where [·, ·] is the concatenation operator and h is the
multimodal representation. An additional classifier f :
h → y is trained with cross-entropy loss Lf to obtain
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the final multimodal classification results p, where Lf =
−
∑K

k=1 yk log pk. The overall loss function can be written
as

L =

N∑
i=1

(Lf + λ1Ls
ℓ1 + λ2Lconf ), (7)

where λ1 and λ2 are hyperparameters used to balance dif-
ferent losses. The model can be obtained by optimizing the
loss L.

4. Experiments
In the experiment, we compare the proposed method

with current state-of-the-art classification algorithms on
four real-world datasets. The extensive experimental results
clearly illustrate the superiority of the proposed method. In
addition, we also conduct ablation study which indicates
that the proposed dynamical fusion indeed promotes mul-
timodal classification.

4.1. Experimental Setup

Datasets. We conduct extensive experiments on four
real-world multimodal medical datasets. BRCA for breast
invasive carcinoma PAM50 subtype classification contains
875 samples of 5 different classes. LGG for grade clas-
sification in glioma contains 510 samples of 2 classes.
ROSMAP for Alzheimer’s Disease diagnosis is composed
of ROS [1] and MAP [14], which contains 351 samples of 2
classes. KIPAN for kidney cancer type classification con-
tains 658 samples of 3 classes. The above datasets are asso-
ciated with three different modalities including mRNA ex-
pression data, DNA methylation data, and miRNA expres-
sion data. BCRA, LGG, and KIPAN can be acquired from
The Cancer Genome Atlas program (TCGA)2.

Compared methods. To investigate the improvement
of the multimodal fusion strategy, we compare our method
with 5 single-modal classification methods trained with the
simple concatenation of the multimodal data (early fusion),
including K-Nearest Neighbors (KNN) [18], Support Vec-
tor Machine (SVM) [12], Linear Regression (LR) trained
with ℓ1 regularization, Random Forest classifier (RF) [25],
and fully connected neural networks (NN). We also com-
pare our method with currently 7 state-of-the-art multi-
modal classification models. Group-regularized (logistic)
ridge regression (GRidge) [60] makes structural use of mul-
timodal data through group-specific penalties. Block par-
tial least squares discriminant analysis (BPLSDA) [54] ex-
plores multimodal data in latent space through discrimi-
nant analysis. Block sparse partial least squares discrim-
inant analysis (BSPLSDA) [54] selects the most relevant
features by adding sparse constraints to BPLSDA. Mul-
tiomics graph convolutional networks (MOGONET) [62]

2https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga

constructs a graph for every modalities and explores multi-
modal correlation via correlation discovery network. Con-
catenation of final multimodal representations (CF) [26,32]
integrates multiple modalities by concatenating late stage
multimodal representations. Gated multimodal units for
information fusion (GMU) [6] establishes an intermediate
multimodal representation based on a combination of data.
Trusted multiview classification (TMC) [23] conducts deci-
sion fusion based on the confidence of different modalities.

Evaluation metrics and experimental details. We em-
ploy three metrics, i.e., accuracy (ACC), F1 score (F1),
and area under the receiver operating characteristic curve
(AUC), to evaluate the performance of different methods for
binary classification tasks. For the multi-class classification
tasks, we report the experiment results in terms of accu-
racy (ACC), average F1 score, average F1 score weighted
by support (WeightedF1), and macro-averaged F1 score
(MacroF1). We employ the same experimental settings as
in [62]. We run experiments 20 times to report the mean and
standard deviation. The Adam optimizer [35] with learning
rate decay is employed to train the model.

4.2. Quantitative Analysis

Multi-class classification. Firstly, we compare the pro-
posed methods with state-of-the-art single modal and multi-
modal classification methods on multi-classification tasks.
The detailed experimental results on BRCA and KIPAN are
shown in Table 1. The following conclusions can be drawn
from the experimental results. (i) The proposed method
outperforms other methods on most datasets. Taking the
results on BRCA for example, the ACC of the proposed
method is 87.7% while the second best methods (TMC) is
84.2%. (ii) Benefiting from exploring the multimodal in-
formation, the proposed method is consistently better than
the single modal algorithms on all datasets. For example,
on the BRCA dataset, our proposed method achieves sig-
nificant improvement around 12.3%, 14% and 17.7% over
the most competitive method in terms of ACC, WeightedF1
and MacroF1, respectively. (iii) Compared with other mul-
timodal algorithms, the proposed method has a significant
performance improvement on most datasets. Intuitively, the
possible reason is that the proposed method reduces the ir-
relevant information through dynamical fusion.

Binary classification. We further conduct compari-
son experiments on the binary classification task. Ta-
ble 2 demonstrates the classification results on LGG and
ROSMAP in terms of ACC, F1, and AUC respectively.
The proposed method achieves the best performance com-
pared with the other methods in terms of ACC and F1. The
proposed algorithm achieves 1.7% and 2.3% improvements
over the second performer TMC in terms of ACC and F1.
Our multimodal dynamics outperforms the single-modal
classification methods thanks to the flexible and effective

20711



BRCA KIPAN

Method Fusion strategy ACC WeightedF1 MacroF1 ACC WeightedF1 MacroF1

KNN early 74.2±2.4 73.0±2.5 68.2±2.5 96.7±1.1 96.7±1.1 96.0±1.4
SVM early 72.9±1.8 70.2±1.7 64.0±1.7 99.5±0.3 99.5±0.3 99.4±0.4
LR early 73.2±1.2 69.8±2.6 64.2±2.6 97.4±0.2 97.4±0.2 97.2±0.4
RF early 75.4±0.9 73.3±1.3 64.9±1.3 98.1±0.6 98.1±0.6 97.5±1.1
NN early 75.4±2.8 74.0±4.7 66.8±4.7 99.1±0.5 99.1±0.5 99.1±0.5

GRridge intermediate 74.5±1.6 72.6±2.5 65.6±2.5 99.4±0.4 99.4±0.4 99.3±0.4
BPLSDA intermediate 64.2±0.9 53.4±1.7 36.9±1.7 93.3±1.3 93.3±1.3 91.9±2.1

BSPLSDA intermediate 63.9±0.8 52.2±2.2 35.1±2.2 91.9±1.2 91.8±1.3 89.5±1.4
MOGONET decision 82.9±1.8 82.5±1.7 77.4±1.7 99.9±0.2 99.9±0.2 99.9±0.2

TMC decision 84.2±0.5 84.4±0.9 80.6±0.9 99.7±0.3 99.7±0.3 99.4±0.5
CF intermediate 81.5±0.8 81.5±0.9 77.1±0.9 99.2±0.5 99.2±0.5 98.8±0.9

GMU intermediate 80.0±3.9 79.8±5.8 74.6±5.8 97.7±1.6 97.6±1.7 95.8±3.2

Ours dynamical 87.7±0.3 88.0±0.5 84.5±0.5 99.9±0.2 99.9±0.2 99.9±0.3

Table 1. Comparison with state-of-the-art methods on the BRCA and KIPAN datasets, where the best results are in bold.

LGG ROSMAP

Method Fusion strategy ACC F1 AUC ACC F1 AUC

KNN early 72.9±3.4 73.8±3.8 79.9±3.8 65.7±3.6 67.1±4.5 70.9±4.5
SVM early 75.4±4.6 75.7±4.6 75.4±4.6 77.0±2.4 77.8±2.6 77.0±2.6
LR early 76.1±1.8 76.7±2.7 82.3±2.7 69.4±3.7 73.0±3.5 77.0±3.5
RF early 74.8±1.2 74.2±1.0 82.3±1.0 72.6±2.9 73.4±1.9 81.1±1.9
NN early 73.7±2.3 74.8±3.7 81.0±3.7 75.5±2.1 76.4±2.5 82.7±2.5

GRridge intermediate 74.6±3.8 75.6±4.4 82.6±4.4 76.0±3.4 76.9±2.3 84.1±2.3
BPLSDA intermediate 75.9±2.5 73.8±2.3 82.5±2.3 74.2±2.4 75.5±2.5 83.0±2.5

BSPLSDA intermediate 68.5±2.7 66.2±2.6 73.0±2.6 75.3±3.3 76.4±2.1 83.8±2.1
MOGONET decision 81.6±1.6 81.4±2.7 84.0±2.7 81.5±2.3 82.1±1.2 87.4±1.2

TMC decision 81.9±0.8 81.5±0.4 87.1±0.4 82.5±0.9 82.3±0.6 88.5±0.6
CF intermediate 81.1±1.2 82.2±0.4 88.1±0.4 78.4±1.1 78.8±0.5 88.0±0.5

GMU intermediate 80.3±1.5 80.8±1.2 88.6±1.2 77.6±2.5 78.4±1.6 86.9±1.6

Ours dynamical 83.3±1.0 83.7±0.4 88.5±0.4 84.2±1.3 84.6±0.7 91.2±0.7

Table 2. Comparison with state-of-the-art methods on the LGG and ROSMAP datasets, where the best results are in bold.

multimodal fusion. For example, there are at least 7.2%,
6.8%, and 8.5% improvements over the best single-modal
classification methods in terms of ACC, F1, and AUC re-
spectively.

Ablation study. We further perform ablation study on
these four datasets. Specifically, we compare the proposed
methods with concatenation of final multimodal representa-
tions (CF), sparse feature informativeness induced integra-
tion (FI), and modality informativeness induced integration
(MI). Table 3 provides the results of the ablation study. Ac-
cording to the results, we have the following observations.
(i) Both the FI and MI outperform the simple concatenation
of final multimodal representations. The possible reason is
that the obtained informativeness could dynamically guide
the multimodal fusion. (ii) Benefiting from the more com-
prehensive informativeness information during fusion, the
dynamical multimodal fusion produces more promising re-
sults on most datasets. For example, our method achieves at
least 0.8% improvement in terms of ACC on BRCA dataset

(87.7% vs 86.9, p-value of t-test: 0.00055).
Performance of the proposed method under different

modalities data types. To demonstrate the necessity of in-
tegrating multiple modalities data, we compare the differ-
ent settings with different combinations of the three avail-
able modalities including mRNA+meth, mRNA+miRNA,
and meth+miRNA on BRCA and LGG datasets, where
mRNA, meth, and miRNA refer to the mRNA expression,
DNA methylation and miRNA expression data respectively.
The experimental results are shown in Fig. 3. Benefiting
from the integration of more comprehensive information,
the method using three different modalities achieves the
best performance.

4.3. Qualitative Analysis

We further conduct qualitative analysis to intuitively in-
vestigate the superiority and effectiveness of the introduced
feature informativeness and modality informativeness mod-
ules. Specifically, the following experiments are conducted:
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(a) BRCA (b) LGG

Figure 3. Performance comparison of different modalities classification via the proposed methods on BRCA and LGG datasets.

Dataset Method ACC WeightedF1 MacroF1

BRCA

CF 81.5±0.8 81.5±0.8 77.1±0.9
FI 84.9±0.6 85.1±0.6 81.9±0.7
MI 86.9±0.9 87.2±0.9 83.2±0.9

Proposed 87.7±0.3 88.0±0.3 84.5±0.5

KIPAN

CF 99.2±0.5 99.2±0.5 98.8±0.9
FI 99.8±0.2 99.8±0.2 99.9±0.3
MI 99.5±0.3 99.5±0.3 99.4±0.5

Proposed 99.9±0.2 99.9±0.2 99.9±0.3

Dataset Method ACC F1 AUC

LGG

CF 81.1±1.2 82.2±1.0 88.1±0.4
FI 82.4±1.4 82.6±1.4 88.3±0.6
MI 82.9±0.8 83.1±0.7 90.2±0.2

Proposed 83.3±1.0 83.7±0.9 88.5±0.4

ROSMAP

CF 78.4±1.1 78.8±0.9 88.0±0.5
FI 80.4±1.9 81.3±1.7 88.4±1.3
MI 83.8±1.3 84.2±1.2 90.7±0.9

Proposed 84.2±1.3 84.6±1.2 91.2±0.7

Table 3. Ablation study on the BRCA, KIPAN, LGG and
ROSMAP datasets, where the best results are in bold. For clarity,
LF, FI and MI in the table indicate the simple late fusion, sparse
feature informativeness induced fusion and modality informative-
ness induced fusion respectively.

(a) mRNA expression (b) DNA methylation (c) miRNA expression

Figure 4. The top 5 informative biomarkers from different modal-
ities on BRCA dataset identified by our algorithm.

(i) biomarkers identification via the obtained feature infor-
mativeness; (ii) density estimation of the obtained feature
informativeness to illustrate the effect of the employed ℓ1
loss; (iii) density estimation of the obtained modality infor-
mativeness to illustrate the effect of the employed modality
informativeness strategy; (iv) visualization of the obtained
feature and modality informativeness with heatmap.

Biomarkers identification. The representative and im-
portant application of multiomics analysis is to identify
biomarkers for early diagnosis and prognosis, and to dis-
cover drug targets for treatments. To this end, we investigate
biomarker identification and drug target discovery by inter-
preting the feature informativeness of the multiomics data
in our Multimodal Dynamics. Specifically, due to the ran-
domness involved, we run experiments 5 times to obtain the
mean of the feature informativeness of all samples on the
test samples. Note that although the results shown are the
mean of all samples for ease of explanation, our algorithm
could provide the feature informativeness for each sample.

Taking the BRCA data set as an example, the top 5 im-
portant features of the three modalities are shown in Fig. 4
and their participation in breast cancer progression and in-
dication effects can be verified through reviewing previous
biological and medical studies. Here we briefly introduce
some representative researches. KLK8 is downregulated
in breast cancer and has been verified as an independent
indicator of the prognosis of breast cancer patients [40].
The change of PTPRZ1’s expression is reported to promote
tumor proliferation and inhibit apoptosis in breast cancer
cells [31]. Elevated levels of MIA protein are detected in
the serum of patients with advanced-stage breast cancers
[10]. PTX3 shows significantly higher expression in breast-
infiltrating carcinomas [50]. ABCC11 is highly expressed
in aggressive breast cancer subtypes, and tumor ABCC11
expression is associated with poor prognosis [69]. ZNF671
plays a tumor suppressor role in breast cancer [73]. The
miR-190b regulates cell progression and acts as potential
biomarkers for breast cancer [13] and the miR-187 is an in-
dependent prognostic factor in breast cancer [42].

Density of feature informativeness. To visualize the
obtained feature informativeness, a kernel density estimate
(KDE) plot is employed to show the density of feature in-
formativeness. Specifically, we run experiments 5 times
and visualize all the feature informativeness from different
modalities on the test datasets. From the experimental re-
sults in Fig. 5a, it is observed that the informativeness of
most of the features is relatively low (e.g., close to 0), and
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(a) Density of feature informative-
ness.

(b) Density of modality informative-
ness.

Figure 5. Density of the obtained feature and modality informa-
tiveness on BRCA dataset.

(a) Heatmap of feature informativeness.

(b) Heatmap of modality informativeness.

Figure 6. Heatmap of the obtained feature and modality informa-
tiveness on BRCA dataset.

only a small part of features are of greater informativeness
(e.g., larger than 0.5). The reason for this is that the em-
ployed ℓ1 loss could enforce the model to retain the most
important features and eliminate the influence of unimpor-
tant features.

Density of modality informativeness. We further plot
the density of the obtained modality informativeness with
KDE to investigate the impact of the informativeness of

modalities. For randomness issue, we run each experiment
5 times and show the obtained modality informativeness of
different samples on the test dataset. The experimental re-
sults are shown in Fig. 5b. These different modalities of
each sample have different informativeness. For example,
mRNA expression of most samples are of high informative-
ness in decision-making, but there are also some samples
whose mRNA expression modality informativeness are rel-
atively low, which qualitatively illustrates the necessity of
dynamically modeling the informativeness of modality in
our method.

Heatmap of feature and modality informativeness.
We further visualize the obtained feature and modality in-
formativeness on BRCA dataset with heatmaps in Fig. 6a
and Fig. 6b, respectively. We can observe that the pro-
posed methods could perceive the dynamics of feature and
modality for different samples. Specifically, in Fig. 6a, we
have the following observations: (i) part of features are
consistently uninformative on the different samples (close
to 0); (ii) few features are important on all samples; (iii)
the obtained informativeness of most features is constantly
changed over different samples. Meanwhile, in Fig. 6b,
the informativeness of different modalities is also changed
dynamically over different samples due to factors such as
noise and missing data during data collection.

5. Conclusion

In this paper, we propose a novel method termed Multi-
modal Dynamics for trustworthy multimodal classification.
It can dynamically utilize informative features and modali-
ties for each sample. To assess the informativeness of each
feature, a sparse gating is introduced. Meanwhile the true
class probability is employed to capture the informativeness
dynamic in modality level. Then a dynamical fusion strat-
egy is induced, which could provide a transparent fusion
based on the informativeness of each feature and modality.
Extensive experiments are performed on four multimodal
medical classification datasets, where our method achieves
superior classification performance and enhances trustwor-
thiness and explainability.
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Hernández-Lobato. Depth uncertainty in neural networks. In
Advances in Neural Information Processing Systems, 2020.
2

[6] John Arevalo, Thamar Solorio, Manuel Montes-y Gómez,
and Fabio A González. Gated multimodal units for infor-
mation fusion. In ICLR workshop, 2017. 1, 2, 5

[7] Ricardo Argelaguet. Statistical methods for the integrative
analysis of single-cell multi-omics data. PhD thesis, Univer-
sity of Cambridge, 2020. 1
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