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Abstract

Auxiliary loss is additional loss besides the main branch
loss to help optimize the learning process of neural net-
works. In order to calculate the auxiliary loss between the
feature maps of intermediate layers and the ground truth
in the field of semantic segmentation, the size of each fea-
ture map must match the ground truth. In all studies us-
ing the auxiliary losses with the segmentation models, from
what we have investigated, they either use a down-sampling
function to reduce the size of the ground truth or use an up-
sampling function to increase the size of the feature map
in order to match the resolution between the feature map
and the ground truth. However, in the process of select-
ing representative values through down-sampling and up-
sampling, information loss is inevitable. In this paper, we
introduce Class Probability Preserving (CPP) pooling to al-
leviate information loss in down-sampling the ground truth
in semantic segmentation tasks. We demonstrated the supe-
riority of the proposed method on Cityscapes, Pascal VOC,
Pascal Context, and NYU-Depth-v2 datasets by using CPP
pooling with auxiliary losses based on seven popular seg-
mentation models. In addition, we propose See-Through
Network (SeeThroughNet) that adopts an improved multi-
scale attention-coupled decoder structure to maximize the
effect of CPP pooling. SeeThroughNet shows cutting-edge
results in the field of semantic understanding of urban street
scenes, which ranked #1 on the Cityscapes benchmark.

1. Introduction
Increasing the depth of the convolutional neural network

can introduce optimization difficulties as shown in [6, 24].
To solve this vanishing gradient problem in the field of im-
age classification, directly connected auxiliary classifiers
were used to provide extra gradients into some intermediate
layers. The auxiliary classifiers have been widely used in
the variations of the Inception architecture of GoogLeNet
∗Indicates equal contribution
†Corresponding author

Figure 1. Visualizations of the effect of Class Probability Preserv-
ing (CPP) pooling. The images are from Cityscapes. For the oc-
cluded train (in the red box), the occluded building (the bus stop in
the orange box), and the poles in the distance (in the yellow box),
the DeepLabV3+ [5] model w/ CPP shows finer and stronger acti-
vation in the Grad-CAM [34] visualization (the left column) than
the DeepLabV3+ original model. In the inference results (the right
column), the w/ CPP model shows correct and fine segmentation.
The enlarged views are provided (the yellow box).

[38] and ResNet [18], where the motivation was to pro-
vide useful gradients directly to intermediate layers as extra
supervision during training to resist the vanishing gradient
problem in very deep networks.

Similar attempts have been made in the field of semantic
segmentation. For example, [53, 55, 56] used ResNet-101
as a backbone and adopted an auxiliary head in the inter-
mediate layer as specified in [53]. Since the feature map
of the auxiliary head connected layer and ground truth are
used to calculate the auxiliary loss, their resolutions should
be the same. The auxiliary head is responsible for re-sizing
the resolution of the intermediate feature map to that of the
ground truth through a re-sizing operation.
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Figure 2. Visualization of the effects of the conventional pooling (i.e. nearest neighbor [NN] pooling) and CPP pooling. NN pooling has
been widely used for down-sampling ground truth for segmentation task since the ground truth ids are integer. A semantic ground truth
from the Cityscapes dataset is used. As the scale factor of the pooling increases, more information is lost. Especially, in NN pooling, far
object and boundary information are lost a lot, while they still remain as a probability in CPP pooling.

However, designing the auxiliary loss with the re-sizing
operations has an inevitable flaw. Each layer in deep neu-
ral networks learns different data-driven features. For ex-
ample, closer layers to the input image learn simpler low-
dimensional features. As one moves away from the input
layer, higher-order complex features are learned. If we re-
size the ground truth resulting in one-dimensional pixel-
wise class information to get the auxiliary loss for the inter-
mediate layers, it would not be enough to guide the various-
order features of each layer. For this reason, researchers
in this field decorate these re-sizing guided losses with the
word auxiliary and use them as auxiliary solutions rather
than complete solutions. For the same reason, the majority
of scene segmentation papers [5,14,17,29,46,48] that have
been published recently do not aggressively use auxiliary
loss (mostly using no or one auxiliary head).

Motivated by this limitation, we introduce Class Proba-
bility Preserving (CPP) pooling to provide well-designed
auxiliary guides, which help optimize the training process
of the networks. CPP pooling keeps the class information
within a receptive field as a probability preventing the
information loss (Figure 3). Through the comprehensive
experiments with seven popular semantic segmentation
models on various datasets such as Cityscapes [9], Pascal
VOC [11], Pascal Context [26] and NYU-Depth-v2 [28],
we demonstrated that the proposed method is a model
agnostic method that is simply applicable to any model but
effective. In addition, we introduce See-Through Network
(SeeThroughNet) with an improved multi-scale attention-
coupled decoder structure to maximize the effect of CPP
pooling. SeeThroughNet shows state-of-the-art results
in the field of semantic understanding of high-resolution
urban street scenes. The results of ablation and transfer
learning experiments are also provided.

The main contributions of this paper are:

• We introduce Class Probability Preserving (CPP) pool-
ing to alleviate information loss, where it keeps the
class information within a receptive field as a proba-
bility.

• We demonstrated seven popular semantic segmenta-
tion models with CPP pooling on Cityscapes, Pascal
VOC, Pascal Context, and NYU-Depth-v2 datasets to
show the effect of the proposed method.

• We propose SeeThroughNet with multi-scale
attention-coupled decoder maximizing the effect
of CPP pooling, and achieved the first place on the
Cityscapes leaderboard.

2. Related Work
Pooling Methods. Variants of pooling methods have

been proposed with convolutional neural networks, which
can be categorized into four groups following [1]. Value-
based pooling methods [10,21,30,37,47] pick a single rep-
resentative value based on the significance of the values in
the region for down-sampling. Max and average pooling are
widely used ones in this category. Patch or multi-sampling
approach has been proposed to complement the informa-
tion loss of the value-based pooling methods, where val-
ues in patches or in multi-scale sub-maps are processed.
Probability-based pooling methods [16, 22, 43, 45, 51] eval-
uate the probability for the representative values in the
region, which helps to prevent overfitting. Various ap-
proaches based on probability have been proposed, includ-
ing stochastic, dropout max, failure density, hybrid, and
mixed gated pooling methods. In rank-based pooling meth-
ods [19, 20, 35], weights are learned during training, which

4464



are used as a weighted sum in the pooling region. Multi-
partite, ordinal, and global weighted rank approaches have
been demonstrated, in which the multipartite feature rank-
ing in pooling layers, different weights to all feature acti-
vations, and estimated scores associated with a class were
used, respectively. For transformed domain pooling meth-
ods, [44] discarded the first-level and only used the second-
level wavelet decomposition to reduce the feature dimen-
sions, which resulted in fewer artifacts. [32] truncated the
lower frequencies in power spectrum to reduce the dimen-
sions that preserved more information per parameter than
other pooling methods.

These pooling methods used various approaches to de-
cide representative values in the corresponding receptive
fields for down-sampling. However, to the best of our
knowledge, none of the pooling methods used an approach
preserving class information as a probability.

Label Smoothing. CPP pooling could be seen as a vari-
ation of the label smoothing proposed in [39]. Compared to
the label smoothing, our method uses it for down-sampling
process and follows the class distribution of the pixels in
the receptive field, instead of using a predefined distribution
such as the uniform distribution used in [39]. Therefore,
CPP pooling is an improved version in that the class proba-
bility distribution for each pixel follows data adaptively.

Semantic Segmentation Architectures. Fully Convo-
lutional Networks (FCNs) [25] have demonstrated signifi-
cant improvement adopting deep convolutional neural net-
works (CNNs) in semantic segmentation, by replacing fully
connected layers (FCs) with convolutional layers at the end
of CNN architectures. Based on this improvement, other
advanced techniques such as skip-connections in encoder-
decoder architecture [2, 5, 33], a pyramid pooling module
[53], and an atrous convolution with atrous spatial pyramid
pooling (ASPP) [4] have shown remarkable improvements.

Recent works have focused on relational context to im-
prove performance, not multi-scale context. [12,49,52] con-
sidered the similarity between pixels using a self-attention
method and performs a similarity-weighted aggregation.
Boundary-aware methods also have been applied to im-
prove semantic segmentation performance. For example,
Gated-SCNN [40] used the shape stream network that takes
image gradients and features to produce semantic bound-
aries as output. It used a pixel-based loss to train the shape
stream network. InverseForm [3] employed the inverse-
transformation network to model the spatial distance-based
metric into the loss function. [41, 48, 53] used the auxil-
iary losses with the up-sampled logits instead of the con-
ventional pooling methods to mitigate the information loss.

In this work, we show that when using auxiliary losses,
the performance is further improved by using the proposed
CPP pooling instead of using the conventional up-sampling
or down-sampling methods.

Figure 3. Illustration of Class Probability Preserving (CPP) pool-
ing. It shows 1/4 pooling where the 4x4 grids information is down-
sampled to one grid. The number of channels of the output equals
to the total number of classes (e.g. 20 classes for Cityscapes in-
cluding the ignore class), where each channel represents the class
probability of the corresponding grid.

3. Method
3.1. Class Probability Preserving Pooling

Conventional pooling methods (e.g, max-pooling,
average-pooling, nearest neighbor pooling, etc.) have been
commonly used to down-sample features and ground truth.
However, this potentially degrade performance for semantic
segmentation task due to the information loss when select-
ing the representative values from the corresponding recep-
tive regions. The top row of Figure 2 shows an example of
information loss from down-sampling, where as the scale
factor of the pooling increases, more information loss is ob-
served to down-sample the semantic ground truth.

We propose Class Probability Preserving (CPP) pooling,
a novel pooling method preserving class information mini-
mizing information loss (Figure 3). Instead of deciding one
representative value from the corresponding receptive re-
gion in the input map, CPP pooling counts the number of
grids (or pixels) that match each class in the region, then
use the number as a probability for each class. For exam-
ple, Figure 3 shows 1/4 CPP pooling where 4x4 grids are
down-sampled to one grid. In the input map, the number of
class 0 (road) in the 4x4 region is counted, which becomes
the probability value of the corresponding grid of the out-
put channel of the class 0 (road). The same calculations
are processed for the other classes (i.e. total 20 classes for
Cityscapes including the ignore class). As shown, each lo-
cation in the output grid keeps a certain class probability.

In more details, in CPP pooling, a grid of the output
Y

′

k(l,m)
of a class k is computed as:

Y
′

k(l,m)
=

1

s2

∑
(i,j)

µi,j , with µi,j =

{
1 if Y(i,j) = k

0 otherwise

(1)
, where Y(i,j) is the grids (or pixels) of the input feature
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Figure 4. SeeThroughNet Architecture. The architecture consists of CPP pooling with 3 auxiliary heads combined with multi-scale
attention. To make better use of CPP pooling, See-Through Decoder was designed to include the multi-scale attention that allows CPP
pooling to be used for each scale. See Section 3.2 for detail.

map, k ∈ K is the object class, Y is the input feature map,
and Y

′
is the output of the CPP pooling. Y

′

k(l,m)
is the grid

(l,m) of the class k channel map in the output Y
′
. Given a

scale factor 1/s, the range of Y(i,j) are s×l ≤ i < s×(l+1)
and s ×m ≤ j < s × (m + 1) for the corresponding area
of the input feature map. Finally, to compute the output
grid value Y

′

k(l,m)
, we compute each class k probability by

counting the matching class at target grids (or pixels), then
normalize it by s2. After down-sampling semantic segmen-
tation labels by CPP pooling, we get two probability distri-
butions (i.e. CPP pooling result from the ground truth and
the semantic prediction output from the layer). To measure
the difference between two probability distributions, we use
Kullback-Leibler (KL) divergence [13], written as DKL in
Equation 2. Let pi(x) and qi(x) are the semantic predic-
tion output of the layer and the CPP pooling result from the
semantic ground truth, respectively, the loss function is:

Lcpp =
1

H ×W
∑

h,w∈H,W

DKL(p(x)||q(x)) (2)

, where the KL divergence result is normalized by all
element H ×W ; H for the height of pi(x) and W for the
width of pi(x).

3.2. SeeThroughNet

To adopt the benefit of CPP pooling for semantic seg-
mentation task, we propose our state-of-the-art semantic
segmentation network called SeeThroughNet (Figure 4).
We dubbed Seethrough Network since the class probability
information is seen through the CPP output channels (Fig-
ure 3), while only a representative class is shown with the
hard labels of the existing down-sampling methods.

Backbone. We use HRNetV2-W48 [36] as a backbone,
where the outputs of the final stage with four different scale
features are used for the SeeThrough decoder.

SeeThrough Decoder. The coarse semantic predictions
X

′

S (the pink boxes in Figure 4) are created from each of
four different scales S = [s32, s16, s8, s4]. The coarse se-
mantic segmentation head consists of (3x3 conv) → (BN)

→ (ReLU) → (1x1 conv). We use three auxiliary losses,
which take the label Y

′
generated by CPP pooling. Thanks

to the class probability preserved labels, the decoder learns
potentially existing information from the larger scale image
that disappears when down-sampling is used instead.

To create larger and fine semantic segmentation predic-
tion, we sequentially combine from the smaller scale se-
mantic map to the larger scale semantic map. When com-
bining the two semantic segmentation predictions with dif-
ferent scales, we use the trainable relative attention mask
αd
s in the decoder between the adjacent scale semantic seg-

mentation maps, and the bilinear up-sampling operation µ
on the smaller map to match resolution (Multi-Scale At-
tention Module [the blue boxes] in Figure 4). [41] intro-
duced the related attention mask, which was originally used
to combine multi-scale predictions at training and inference
phase but not in the decoder. To generate the attention mask
for each scale in the SeeThrough decoder, we use the same
scale of the backbone features and coarse segmentation map
(Multi-Scale Attention Mask in Figure 4). The multi-scale
coarse segmentations X

′

S with S = [s32, s16, s8, s4] are ag-
gregated sequentially as in Equation 3 to get the fine seg-
mentation feature X

′
.

X
′
=

∑
s∈S

(µ(αd
s ∗X

′

s) + ((1− µ(αd
s)) ∗X

′

s+1)) (3)

, where ∗ and + are pixel-wise multiplication and addition.
OCR Head. We adopt OCR Head [48] to predict

the final semantic segmentation output X . It takes the
multi-scale aggregated segmentation prediction X

′
from

the SeeThrough decoder and the concatenated features of
the backbone’s final stage outputs.

Two-resolution training. For training, a given input im-
age is resized by factor r, where r=0.5 means down-sampled
by factor 2. As introduced in [41], we follow the scale fac-
tor r as r=0.5 and r=1.0 for the two-resolution training. For
each scale factor, the output of the SeeThrough decoder are
combined as follows. To get the final aggregated seman-
tic segmentation prediction Xagg from the results of the
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Table 1. The results of the CPP pooling experiments with the seven segmentation models on the various validation datasets such as
Cityscapes (trained with fine annotation only), Pascal VOC 2012, Pascal Context, and NYU-V2. All models with CPP pooling (w/ CPP)
show performance improvement over the Baseline models.

Model Cityscapes (mIoU %) PASCAL VOC (mIoU %) PASCAL Context (mIoU %) NYU-V2 (mIoU %)
Baseline w/ CPP Gain Baseline w/ CPP Gain Baseline w/ CPP Gain Baseline w/ CPP Gain

OCRNet [48] 81.17 81.79 +0.62 77.43 78.43 +1.00 45.96 46.72 +0.76 58.09 58.59 +0.50
DeepLabV3+ [5] 79.77 81.07 +1.30 78.35 79.89 +1.54 45.69 48.23 +2.54 54.66 55.71 +1.05
UPerNet [46] 79.13 79.59 +0.46 76.32 78.95 +2.63 44.13 46.89 +2.76 53.60 55.22 +1.62
DMNet [14] 78.15 79.69 +1.54 78.19 78.94 +0.75 45.36 47.95 +2.59 54.08 55.07 +0.99
CCNet [17] 77.47 79.64 +2.17 76.90 79.51 +2.61 43.76 46.24 +2.48 53.63 54.10 +0.47
PSPNet [53] 78.34 79.85 +1.51 77.44 79.56 +2.12 45.11 47.77 +2.66 54.51 55.14 +0.63
ANN [56] 78.31 78.93 +0.62 77.45 78.59 +1.14 44.42 47.19 +2.77 54.50 55.44 +0.94

SeeThrough decoder from the two resolutions, we merge
X0.5 and X1.0 with the trainable attention mask αm

0.5 as
written in Equation 4.

Xagg = µ(αm
0.5 ∗X0.5) + ((1− µ(αm

0.5)) ∗X1.0) (4)

Overall objective function. To compute the loss of the
final semantic segmentation prediction X and the label Y ,
we use RMI loss Lrmi following [54] as Equation 5. Lce is
the cross entropy loss. I represents the mutual information,
b is the batch size, and c is the class. For λ, we use 0.5 as
in [54]. Lrmi(X,Y ) = λLce+

(1− λ) 1
B

B∑
b

C∑
c

(−Ib,cl (X : Y ))
(5)

Additionally, we compute the auxiliary loss (Aux. w/ CPP
in Figure 4) in the SeeThrough decoder with the three dif-
ferent scales (X

′

s16 , X
′

s8 , andX
′

s4 ), which are sequentially
aggregated to get X

′
. We use KL divergence (Equation 2)

to get the auxiliary loss Ldecoder in Equation 6.

Ldecoder(X,Y ) =
∑
s∈S

Lcpp(Xs, Y
′

s ) (6)

, where S = [s16, s8, s4]. Finally, the overall objective
function used of SeeThroughNet is:

Loverall = Lrmi(X,Y ) +

R∑
r

S∑
s

Ldecoder(Xr,s, Y )

+γLce(X1.0, Y ) + γLce(µ(X0.5), Y )

(7)

, where R = [r0.5, r1.0], S = [s16, s8, s4], and γ is the
constant (0.05) as in [41].

4. Experimental Results
In this section, we present experimental results to vali-

date the proposed CPP pooling and SeeThroughNet. To see
the effect of the CPP pooling, we experimented with seven
popular semantic segmentation models on Cityscapes, Pas-
cal VOC, Pascal Context, and NYU-Depth-v2 datasets. We
evaluated SeeThroughNet on the Cityscapes dataset. Imple-
mentation details can be found in the Appendix.

(a) Aux. losses with up-sampling (b) Aux. losses with CPP pooling

Figure 5. The results of the ablation experiments with different
numbers of the auxiliary losses (w/ up-sampling and w/ CPP) on
the Pascal VOC 2012 val set. The number of auxiliary losses are
0, 1, 2, 3, 4 for both conditions. (Enlarged view is recommended.)

4.1. Effect of CPP pooling

Auxiliary heads. To apply CPP pooling on the seven
conventional semantic segmentation models, we employed
auxiliary heads on the backbone. For the HRNetV2 back-
bone of OCRNet, we added four auxiliary heads to the four
different scales of the final outputs. For the ResNet101
backbone of the other six models, we added four auxiliary
heads to the final outputs of each stage. The auxiliary head
consists of (3x3 conv)→ (BN)→ (ReLU)→ (1x1 conv).

CPP pooling performance for various models. Ta-
ble 1 shows the results of the CPP pooling experiments
with the conventional segmentation models on Cityscapes,
Pascal VOC, Pascal Context, and NYU-Depth-v2 datasets.
We used the models from MMSegmentation [8] and trained
them from scratch. The models have the ResNet101 back-
bone except OCRNet. For Baseline models, we applied
four auxiliary heads in the backbone with up-sampled logit
with Cross Entropy (CE) loss as implemented in [8]. For
w/ CPP models, we applied four auxiliary heads with CPP
pooling with the KL loss (Equation 2). For all the models
and datasets in Table 1, the models w/ CPP pooling outper-
form the baseline models. These results indicate that CPP
pooling can be applied to various segmentation models to
enhance performance.

Ablation experiment of CPP pooling. We conducted
the ablation experiment of CPP pooling, where the number
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Table 2. Class-wise comparison between the baseline models and the w/ CPP models on the Cityscapes validation set. The seven popular
semantic segmentation models are compared. More improvement are observed with the instance classes (i.e. person, rider, car, truck, bus,
train, motorcycle, and bicycle) than with the non-instance classes.

Method
Class IoU (%)

Non-Instance Instance
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c
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OCRNet [48]

Base 98.3 85.7 93.6 58.1 65.5 71.7 76.3 83.4 93.2 63.8 95.6 85.1 67.5 95.8 79.5 91.2 86.3 70.9 80.7
CPP 98.5 87.2 93.7 59.4 65.3 72.4 76.8 83.6 93.2 64.3 95.6 84.7 66.5 96.1 86.2 92.5 87.1 70.2 80.8
Diff. 0.2 1.5 0.1 1.3 -0.2 0.7 0.5 0.2 0.0 0.5 0.0 -0.4 -1.0 0.3 6.7 1.3 0.8 -0.7 0.1

Diff. Avg. 0.44 0.89

DeepLabV3+ [5]

Base 98.4 86.5 93.1 53.2 62.0 70.0 75.3 81.9 92.9 63.4 95.2 84.4 67.4 95.4 79.8 90.2 77.2 69.1 80.1
CPP 98.4 86.3 93.2 51.4 63.3 70.0 75.6 82.0 93.0 64.0 95.4 84.8 67.6 96.1 87.0 92.6 87.1 72.0 80.7
Diff. 0.0 -0.2 0.1 -1.8 1.3 0.0 0.3 0.1 0.1 0.6 0.2 0.4 0.2 0.7 7.2 2.4 9.9 2.9 0.6

Diff. Avg. 0.06 3.04

PSPNet [53]

Base 98.2 85.2 92.9 54.4 61.7 67.1 73.5 80.2 92.6 62.7 95.0 82.9 65.6 95.2 74.7 88.3 74.5 64.6 79.2
CPP 98.2 85.6 93.0 54.2 61.3 66.9 73.8 80.7 92.8 65.3 95.1 83.3 65.2 95.7 84.7 90.4 83.4 68.1 79.7
Diff. 0.0 0.4 0.1 -0.2 -0.4 -0.2 0.3 0.5 0.2 2.6 0.1 0.4 -0.4 0.5 10.0 2.1 8.9 3.5 0.5

Diff. Avg. 0.31 3.19

UPerNet [46]

Base 98.3 85.9 92.8 50.9 60.8 68.7 74.5 80.3 92.7 61.9 95.2 83.6 64.6 95.6 79.2 90.1 81.7 67.3 79.5
CPP 98.3 86.3 92.8 51.3 59.8 68.1 73.7 80.7 92.8 63.0 94.9 83.4 65.0 95.6 83.7 90.7 81.3 71.3 79.6
Diff. 0.0 0.4 0.0 0.4 -1.0 -0.6 -0.8 0.4 0.1 1.1 -0.3 -0.2 0.4 0.0 4.5 0.6 -0.4 4.0 0.1

Diff. Avg. -0.03 1.13

CCNet [17]

Base 98.3 85.9 92.6 51.1 57.9 66.8 72.2 80.1 92.4 63.2 95.0 82.9 66.5 95.0 70.4 86.2 70.6 66.3 78.6
CPP 98.3 86.6 92.9 52.1 60.3 66.8 73.8 80.2 92.6 63.6 95.1 83.9 67.2 95.8 83.7 91.9 81.4 67.5 79.4
Diff. 0.0 0.7 0.3 1.0 2.4 0.0 1.6 0.1 0.2 0.4 0.1 1.0 0.7 0.8 13.3 5.7 10.8 1.2 0.8

Diff. Avg. 0.62 4.29

DMNet [14]

Base 98.3 85.8 92.9 51.1 59.3 67.1 73.8 80.6 92.6 63.0 94.9 83.3 65.1 95.6 75.5 87.0 72.3 67.7 79.4
CPP 98.3 85.8 92.9 52.6 60.3 66.8 73.7 80.9 92.7 64.0 94.9 83.6 64.5 95.9 85.2 91.5 83.6 67.3 79.7
Diff. 0.0 0.0 0.0 1.5 1.0 -0.3 -0.1 0.3 0.1 1.0 0.0 0.3 -0.6 0.3 9.7 4.5 11.3 -0.4 0.3

Diff. Avg. 0.32 3.18

ANN [56]

Base 98.1 84.9 92.7 53.3 60.1 66.8 72.9 80.0 92.5 62.4 95.1 82.9 63.8 95.6 80.3 87.2 72.3 68.2 79.0
CPP 98.2 85.1 92.8 53.4 59.2 67.2 73.4 81.3 92.5 62.3 94.8 83.3 64.4 95.6 81.8 90.6 77.8 66.9 79.3
Diff. 0.1 0.2 0.1 0.1 -0.9 0.4 0.5 1.3 0.0 -0.1 -0.3 0.4 0.6 0.0 1.5 3.4 5.5 -1.3 0.3

Diff. Avg. 0.13 1.30

Table 3. The distribution of the classes in the Cityscapes fine training dataset (2975 images). The table lists the number of images containing
each class object in the training set. The images with the truck, bus, and train classes are significantly lacking compared to the other classes.
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Counts 2934 2811 2934 970 1296 2949 1658 2808 2891 1654 2686 2343 1023 2832 359 274 142 513 1646

of auxiliary heads for the models are varies from 0 to 4 with
up-sampling (i.e. bilinear up-sampling) and with CPP pool-
ing. As in Figure 5, the results show that adding the aux-
iliary heads with up-sampling does not help to improve the
performance, and sometimes even degrade the performance
compared to the model without the auxiliary head (0 Aux).
On the other hand, adding auxiliary heads with CPP pooling
improves performance over the models without the auxil-
iary head (0 Aux) and the auxiliary heads with up-sampling.
Note that we believe that adding auxiliary heads with down-
sampling degrades the performance further because more
information loss occurs with down-sampling with the con-
ventional methods than up-sampling.

This implicates why the recently proposed semantic seg-
mentation architectures did not aggressively use auxiliary
heads (mostly using one auxiliary head). Adding more aux-

iliary heads with the conventional down-sampling and up-
sampling methods does not help the performance improve-
ment because of the information loss.

Performance with the class distribution. We compared
the class-wise results of the seven semantic segmentation
models between the baseline and the w/ CPP models. As
shown in Table 2, the instance classes, such as the person,
rider, car, truck, bus, train, motorcycle, and bicycle classes,
generally show more improvement than the non-instance
classes. We speculate that CPP pooling makes the model
more robust for occluded and long-distance objects that of-
ten appear with instance classes. The Grad-CAM [34] visu-
alizations of the distant and occluded objects are in Figure
6 for qualitative analysis.

In addition, we observed that the truck, bus, and train
classes show especially more improvement than the other
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Figure 6. Grad-CAM [34] visualizations of the train (top) and
person (bottom) class. The occluded and distant objects (in the
orange boxes) show stronger activation with CPP pooling than the
baseline (without CPP pooling).

classes for all results from the seven semantic segmentation
models. This follows the class distribution in the Cityscapes
fine training dataset. We counted the images containing
each class object from the fine training dataset (2975 im-
ages), and list them in Table 3. The images with the truck,
bus, and train classes are markedly lacking compared to the
other classes. This implicates that CPP pooling also could
address the class imbalance problem. The potential reason
for dealing with the class imbalance problem is that such
soft labels prevent the network from over-confidence by
providing noise distribution [27]. Thus the soft labels gen-
erated by CPP pooling encourage higher probability predic-
tions for minority classes. This performance improvement
for the scarce classes was also observed in the SeeThrough-
Net experiment. After adding the Mapillary dataset, the
SeeThroughNet model showed 4% improvement in the train
class, even if the Mapillary dataset had no train class label.

4.2. SeeThroughNet Results on Cityscapes

SeeThroughNet ablation study. To see the effect of
CPP pooling on SeeThroughNet, we conducted the abla-
tion experiments with the SeeThrough Decoder. In Table
4, both w/ CPP pooling and w/ multi-scale (MS) attention
show improvement over the baseline, where w/ CPP pool-

Table 4. SeeThroughNet ablation study. Trained and evaluated on
the Cityscapes fine and validation set. CPP pooling is our proposed
method. MS attention indicates multi-scale attention mask used to
combine semantic map in the Seethrough decoder.

CPP pooling MS Attention IOU (%) Gain

84.06
X 84.69 0.63

X 84.37 0.31
X X 85.29 1.23

Table 5. SeeThroughNet feature transfer learning for object de-
tection task. The SeeThroughNet encoder (HRNetV2-48) trained
on Cityscapes were transferred to the detection models. The three
detection models loaded the encoder weight and trained on the de-
tection data with and without freezing the encoder. The detection
data labels were parsed from the Cityscapes instance dataset to uti-
lize the SeeThroughNet encoder weight trained on the Cityscapes
semantic segmentation data. Bold - the highest numbers (not in-
cluding the En.frozen results). Highlighted in blue - the highest
for all numbers (including the En.frozen results).

Model Pre-trained AP AP50 APs APm APl

Mask-RCNN [15]

ImageNet 41.0 65.8 18.7 39.9 60.6
(En.frozen) (36.6) (65.6) (16.8) (37.1) (53.8)

SeeTh. w/o CPP 44.6 69.1 20.2 42.7 64.3
(En.frozen) (42.1) (69.7) (21.9) (40.9) (59.0)

SeeTh. w/ CPP 45.9 71.3 22.3 43.9 65.3
(En.frozen) (46.1) (75.1) (32.3) (47.0) (61.8)

FCOS [42]

ImageNet 37.7 62.4 15.2 35.2 55.9
(En.frozen) (32.4) (59.6) (13.8) (31.1) (49.8)

SeeTh. w/o CPP 42.3 67.7 19.7 41.8 59.8
(En.frozen) (39.2) (66.1) (19.8) (38.2) (53.9)

SeeTh. w/ CPP 44.2 70.7 20.7 43.4 61.8
(En.frozen) (43.8) (72.3) (22.0) (44.2) (58.1)

Faster-RCNN [31]

ImageNet 39.4 64.7 17.5 39.3 58.1
(En.frozen) (34.0) (62.1) (16.5) (34.5) (49.6)

SeeTh. w/o CPP 43.4 68.4 20.3 41.2 63.0
(En.frozen) (39.7) (69.0) (20.1) (39.4) (55.3)

SeeTh. w/ CPP 44.7 71.6 22.4 43.4 61.7
(En.frozen) (44.8) (75.7) (31.5) (45.9) (58.4)

ing enhanced more. A synergistic effect was observed when
CPP pooling and MS attention were used together. The
qualitative results are shown in the Appendix.

Cityscapes benchmark. SeeThroughNet achieved
state-of-the-art results (mIoU 86.12%) on the Cityscapes
benchmark. For the inference, we used the scales={0.5,
1.0, 2.0} and the input image flipping. Table 6 shows the
comparison between the SeeThroughNet and other seman-
tic segmentation models on the Cityscapes test set. In Fig-
ure 7, SeeThroughNet shows finer and more accurate re-
sults for the occluded and distant objects than another state-
of-the-art model InverseForm [3]. For example, the Grad-
CAM visualizations show stronger and finer activation for
the corresponding classes resulting in better inference re-
sults. In addition, in row 2 in Figure 7, the SeeThroughNet
is able to segment the occluded rider in the distance.
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Table 6. Comparison between SeeThroughNet and other methods on the Cityscapes leaderboard (test set). The Map. column indicates
whether Mapillary Vista was used for pretraining.

Method Map. roa
d

sw
alk

bu
ild

wall fen
ce

po
le

tlig
ht

tsi
gn

ve
g

ter
rai

n
sk

y
pe

rso
n

rid
er

ca
r

tru
ck

bu
s

tra
in

mcy
c

bic
yc

mIoU (%)
PSPNet [53] No 98.68 86.92 93.46 58.38 63.67 67.67 76.12 80.47 93.63 72.20 95.29 86.83 71.91 96.21 77.69 91.51 83.64 70.80 77.53 81.19

DeepLabv3+ [5] No 98.69 87.04 93.91 59.47 63.73 71.39 78.16 82.15 93.96 73.03 95.84 87.95 73.26 96.40 78.02 90.91 83.90 73.83 78.87 82.13
OCRNet [48] Yes 98.82 88.29 94.26 66.88 66.69 73.28 80.21 83.04 94.20 74.10 95.97 88.50 75.78 96.51 78.51 91.78 90.12 73.40 79.31 83.67

DecoupleSegNet [23] Yes 98.79 87.78 94.37 66.07 64.77 72.32 78.79 82.61 94.20 73.97 96.12 88.67 75.88 96.58 80.19 93.78 91.55 74.32 79.53 83.70
SegFix [50] Yes 98.88 88.33 94.39 67.97 67.82 73.59 80.60 83.92 94.35 74.45 96.06 89.21 75.85 96.83 83.62 94.17 91.28 74.02 80.09 84.50

Panoptic Deeplab [7] Yes 98.84 88.40 94.44 64.31 68.34 75.32 81.04 84.19 94.19 73.73 96.09 89.69 78.64 96.73 82.19 93.69 90.16 76.40 79.80 84.54
HMSA [41] Yes 98.97 89.38 94.90 71.83 68.38 75.85 82.18 85.27 94.49 74.97 96.30 90.14 79.71 96.96 82.58 94.60 87.80 77.15 81.70 85.43

InverseForm [3] Yes 98.60 89.45 94.61 71.80 69.24 75.84 82.38 85.53 94.32 75.00 95.83 90.17 79.78 96.92 84.45 95.58 88.65 76.68 81.76 85.61
SeeThroughNet (Ours) Yes 98.94 89.09 95.04 73.76 71.35 76.10 82.41 85.13 94.52 75.26 96.25 90.06 79.63 97.04 84.25 95.07 92.68 77.85 81.76 86.12

Figure 7. SeeThroughNet qualitative results on the Cityscapes test set. The inference results and Grad-CAM [34] visualizations of the
SeeThroughNet and another state-of-the-art model InverseForm [3] are compared. The SeeThroughNet shows finer and more accurate
results for the occluded and distant objects. The Grad-CAM classes are marked in the right-bottom corner of the Grad-CAM images. The
enlarged views are provided. More examples are in the Appendix.

SeeThroughNet feature transfer learning for object
detection task. We transferred the encoder (HRNetV2-48)
of the trained SeeThroughNet on Cityscapes to the detec-
tion task to see how the learned features with CPP from
SeeThroughNet could affect the detection task. The detec-
tion labels were parsed with the Cityscapes instance dataset
to utilize the SeeThroughNet encoder weight trained on the
Cityscapes semantic segmentation data. As in Table 5, the
detection models trained with the pre-trained SeeThrough-
Net w/ CPP encoder shows better accuracy than the other
two conditions. Also, for comparing the encoder frozen and
not-frozen models, the results of the freeze models for the
SeeThroughNet w/ CPP encoder show similar or higher ac-
curacy than the not-freeze models, while the other two con-
ditions show more improvement with the not-frozen mod-
els. These results indicate that the auxiliary loss with CPP
pooling help to learn feature representations for another task
such as object detection even without further training. In
addition, the encoder frozen scores with SeeThroughNet w/
CPP show more improvements in APs than the others im-
plying the effectiveness of CPP pooling for handling distant
(small) and occluded objects.

5. Conclusion
In this paper, we propose a novel model-agnostic pooling

methods called Class Probability Preserving (CPP) pool-
ing to minimize information loss. To show the effect of
the CPP pooling, we experimented with seven popular seg-
mentation models on Cityscapes, Pascal VOC, Pascal Con-
text, and NYU-Depth-v2 datasets, where our proposed CPP
pooling consistently improved the models by simply ap-
plying it with auxiliary losses. The ablation experiments
and class-wise analysis are demonstrated as well. In addi-
tion, we introduce the SeeThroughNet utilizing CPP pool-
ing with auxiliary heads combined with multi-scale atten-
tion. The results of the ablation experiments and feature
transfer learning experiments with the SeeThroughNet en-
coder are provided. This shows the possibility that the pro-
posed method could also be effective for object detection
tasks. The SeeThroughNet shows state-of-the-art results
on the Cityscapes benchmarks. We expect our proposed
method to potentially boost the auxiliary loss use to any
segmentation models enhancing the performance.
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