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Abstract

Most methods for conditional video synthesis use a sin-
gle modality as the condition. This comes with major lim-
itations. For example, it is problematic for a model con-
ditioned on an image to generate a specific motion trajec-
tory desired by the user since there is no means to provide
motion information. Conversely, language information can
describe the desired motion, while not precisely defining
the content of the video. This work presents a multimodal
video generation framework that benefits from text and im-
ages provided jointly or separately. We leverage the recent
progress in quantized representations for videos and apply
a bidirectional transformer with multiple modalities as in-
puts to predict a discrete video representation. To improve
video quality and consistency, we propose a new video token
trained with self-learning and an improved mask-prediction
algorithm for sampling video tokens. We introduce text aug-
mentation to improve the robustness of the textual represen-
tation and diversity of generated videos. Our framework
can incorporate various visual modalities, such as segmen-
tation masks, drawings, and partially occluded images. It
can generate much longer sequences than the one used for
training. In addition, our model can extract visual infor-
mation as suggested by the text prompt, e.g., “an object in
image one is moving northeast”, and generate correspond-
ing videos. We run evaluations on three public datasets
and a newly collected dataset labeled with facial attributes,
achieving state-of-the-art generation results on all four1.

1. Introduction

Generic video synthesis methods generate videos by
sampling from a random distribution [56, 57]. To get more
control over the generated content, conditional video syn-
thesis works utilize input signals, such as images [9, 19],
text or language [7, 30], and action classes [62]. This en-
ables synthesized videos containing the desired objects as

*Work done during an internship at Snap Inc.
1Code: https://github.com/snap-research/MMVID and Webpage.

specified by visual information or desired actions as speci-
fied by textual information.

Existing works on conditional video generation use only
one of the possible control signals as inputs [8, 30]. This
limits the flexibility and quality of the generative process.
For example, given a screenplay we could potentially gen-
erate several movies, depending on the decisions of the di-
rector, set designer, and visual effect artist. In a similar way,
a video generation model conditioned with a text prompt
should be primed with different visual inputs. Addition-
ally, a generative video model conditioned on a given im-
age should be able to learn to generate various plausible
videos, which can be defined from various natural language
instructions. For example, to generate object-centric videos
with objects moving [70], the motion can be easily defined
through a text prompt, e.g., “moving in a zig-zag way,”
while the objects can be defined by visual inputs. Thus, an
interesting yet challenging question arises: Can we learn a
video generation model that can support such behavior?

We tackle the question in this work and propose a new
video synthesis model supporting diverse, multimodal con-
ditioning signals. Our method consists of two phases. The
first phase obtains discrete representations from images. We
employ an autoencoder with a quantized bottleneck, in-
spired by the recent success of two-stage image generation
using quantized feature representations [21,38,47,76]. The
second phase learns to generate video representations that
are conditioned on the input modalities, which can then be
decoded into videos using the decoder from the first stage.
We leverage a bidirectional transformer, i.e., BERT [17],
trained with a masked sequence modeling task, that uses to-
kens from multimodal samples and predicts the latent rep-
resentation for videos. Building such a framework requires
solving several challenging problems. First, video consis-
tency is a common problem among video generation meth-
ods. Second, it is necessary to ensure that the correct textual
information is learned. Third, training a transformer for im-
age synthesis is computationally demanding [12], an issue
that is even more severe in the time domain, as a longer se-
quence of tokens needs to be learned. To solve these chal-
lenges, we propose the following contributions:
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• We introduce a bidirectional transformer with several
new techniques to improve video generation: For train-
ing, we propose the video token VID, which is trained
via self-learning and video attention, to model temporal
consistency; For inference, we improve mask-predict to
generate videos with improved quality.

• We introduce text augmentation, including text dropout
and pretrained language models for extracting textual
embeddings, to generate diverse videos that are corre-
lated with the provided text.

• We explore long sequence synthesis with the trans-
former model to generate sequences with lengths that
are much longer than the one used for training (Fig. 5).

We name our framework MMVID and show that a
MultiModal VIDeo generator can enable various applica-
tions. The user can show what to generate using visual
modalities and tell how to generate with language. We ex-
plore two settings for multimodal video generation. The
first involves independent multimodalities, such that there is
no relationship between textual and visual controls (Fig. 3a
and Fig. 4). The second one targets dependent multimodal
generation, where we use text to obtain certain attributes
from given visual controls (Fig. 3b and Fig. 4). The lat-
ter case allows for more potential applications, in which
language is not able to accurately describe certain image
content that the user seeks to generate, but images can ef-
ficiently define such content. We also show our model
can use diverse visual information, including segmentation
masks, drawings, and partially observed images (Fig. 4).

To validate our approach extensively, we conduct exper-
iments on four datasets. In addition to three public datasets,
we collect a new dataset, named Multimodal VoxCeleb, that
includes 19, 522 videos from VoxCeleb [37] with 36 manu-
ally labeled facial attributes.

2. Related Works
Video Generation. For simplicity, previous works on video
generation can be categorized into unconditional and condi-
tional generation, where most of them apply similar training
strategies: adversarial training with image and video dis-
criminators [14, 24, 50]. Research on unconditional video
generation studies how to synthesize diverse videos with in-
put latent content or motion noise [1, 28, 49, 57, 62, 66, 75].
Recent efforts in this direction have achieved high reso-
lution and high quality generation results for images and
videos [14, 29, 56]. On the other hand, conditional video
generation utilizes given visual or textual information for
video synthesis [9, 19, 39, 48, 54, 64, 67]. For example, the
task of video prediction uses the provided first image or a
few images to generate a sequence of frames [3–6, 11, 15,
16, 26, 60, 61, 63]. Similarly, text-to-video generation ap-
plies the conditional signal from text, captions, or natural

language descriptions [31, 36, 40]. TFGAN [7] proposes a
multi-scale text-filter conditioning scheme for discrimina-
tors. TiVGAN [30] proposes to generate a single image
from text and synthesizes consecutive frames through fur-
ther stages. In this work, we study conditional video synthe-
sis. However, we differ from existing methods since we ad-
dress a more challenging problem: multimodal video gen-
eration. Instead of using a single modality, such as textual
guidance, we show how multiple modalities can be input
within a single framework for video generation. With mul-
timodal controls, i.e., textual and visual inputs, we further
enhance two settings for video generation: independent and
dependent multimodal inputs, in which various applications
can be developed.
Transformers for Video Generation. Transformer-based
networks have shown promising and often superior perfor-
mance not only in natural languages processing tasks [10,
43, 59], but also in computer vision related efforts [12, 20,
27, 41, 42]. Recent works prvoide promising results on
conditional image generation [13, 21], text-to-image gen-
eration [18, 45], video generation [44, 68, 70, 72], and text-
to-video synthesis [69] using transformers. Unlike existing
transformer-based video generation works that focus on au-
toregressive training, we apply a non-autoregressive genera-
tion pipeline with a bidirectional transformer [22,23,25,35,
65]. Our work is inspired by M6-UFC [76], which utilizes
the non-autoregressive training for multimodal image gen-
eration and produces more diverse image generation with
higher quality. Building upon M6-UFC, we further intro-
duce training techniques for multimodal video synthesis.

3. Methods
Our framework for multimodal video generation is a

two-stage image generation method. It uses discrete fea-
ture representations [21, 38, 47, 76]. During the first stage
we train an autoencoder (with encoder E and decoder D)
that has the same architecture as the one from VQGAN [21]
to obtain a quantized representation for images. Given a
real video clip defined as v = {x1,x2, · · · ,xT } with xt ∈
RH×W×3, we get a quantized representation of the video
defined as z = {z1, z2, · · · , zT }, where zt = q(E(xt)) ∈
Nh×w

1 . q(·) denotes the quantization operation and N1 indi-
cates a set of positive integers.

During the second stage we learn a bidirectional trans-
former for modeling the correlation between multimodal
controls and the learned vector quantization representation
of a video. Specifically, we concatenate the tokens from
the multimodal inputs and the target video as a sequence
to train the transformer. Tensors obtained from an im-
age and video must be vectorized for concatenation. We
do so using the reshape operation (Reshape). Therefore,
we have a video tensor z reshaped into a single-index ten-
sor as Reshape(z) = [z(1), · · · , z(hwT )]. For simplicity
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Figure 1. Pipeline for training and inference. (a) Data quantization. (b) Model training. Within the BERT module, the green and blue
triangles indicate the attention scopes of [REL] and [VID] , respectively. (c) Video extrapolation. For simplicity, each step represents
a full mask-predict process instead of a single forward pass of the transformer. (d) Video interpolation.

of notation, we define z ≡ Reshape(z). To train the
non-autogressive transformer (BERT) on video tokens, we
employ three tasks: Masked Sequence Modeling (MSM),
RELevance estimation (REL), and VIDeo consistency esti-
mation (VID). During inference, samples are generated via
an iterative algorithm based on mask-predict [23], which is
simulated by the MSM task during training. The REL and
VID tasks regularize the model to synthesize videos that are
relevant to the multimodal signals and are temporally con-
sistent. In the following two sections we present each task.

3.1. Masked Sequence Modeling with Relevance

Masked Sequence Modeling. The MSM task is similar to
a conditional masked language model [23]. It is essential
for the non-autoregressive model to learn bidirectional rep-
resentations and enables parallel generation (mask-predict).
Inspired by M6-UFC [76] and VIMPAC [55], we consider
five masking strategies: (I) i.i.d. masking, i.e., randomly
masking video tokens according to a Bernoulli distribution;
(II) masking all tokens; (III) block masking [55], which
masks continuous tokens inside spatio-temporal blocks;
(IV) the negation of block masking, which preserves the
spatio-temporal block and masks the rest of the tokens; (V)
randomly keeping some frames (optional). Strategies I and
II are designed to simulate mask-predict sampling (the strat-
egy chosen most of the time). Strategy II helps the model
learn to generate from a fully masked sequence in the first
step of mask-predict. Strategies III - V can be used as
Preservation Control (PC) for preservation tasks, which en-
able the use of partial images as input (Figs. 3a, 4) and per-

forming long sequence generation (Fig. 5). The MSM task
minimizes the softmax cross-entropy loss LMSM as follows:

LMSM = − 1

|M|
∑
i∈M

logP (z(i)|zm, c), (1)

where M is the masking indices, zm is the masked se-
quence, and c denotes the control sequence.
Relevance Estimation. To encourage the transformer to
learn the correlation between multimodal inputs and target
videos, we prepend a special token REL that is similar to
the one used in M6-UFC [76] to the whole sequence, and
learn a binary classifier to classify positive and negative se-
quences. The positive sequence is the same as the sequence
used in the MSM task so that we can reuse the same trans-
former in the forward pass. The negative sequence is con-
structed by swapping the condition signals along the batch
dimension. This swapping does not guarantee constructing
strictly negative samples. Nevertheless, we still find it is
good enough to make the model learn relevance in practice.
The loss function LREL for the relevance task is given by:

LREL = − logP (1|zm, c)− logP (0|zm, c̄), (2)

where c̄ denotes the swapped control sequence.

3.2. Video Consistency Estimation

To further regularize the model to generate temporally
consistent videos, we introduce the video consistency esti-
mation task. Similar to REL, we use a special token VID to
classify positive and negative sequences.
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Video Attention. The VID task focuses on video token se-
quences. Thus, we place the VID token between the control
and target sequences. We apply a mask to BERT to blind the
scope of the VID token from the control signals so it only
calculates attention from the tokens of the target videos.
The positive sequence is the same one used in MSM and
REL tasks. The negative sequence is obtained by perform-
ing negative augmentation on videos to construct samples
that do not have temporally consistent motion or content.
Negative Video Augmentation. We employ four strategies
to augment negative video sequences: (I) frame swapping –
a random frame is replaced by using a frame from another
video; (II) frame shuffling – frames within a sequence are
shuffled; (III) color jittering – randomly changing the color
of one frame; (IV) affine transform – randomly applying
an affine transformation on one frame. All augmentations
are performed in image space. With z̄ denoting the video
sequence after augmentation, the loss LVID for the VID task
is:

LVID = − logP (1|zm, c)− logP (0|z̄m, c). (3)

Overall, the full objective is L = λMSMLMSM+λRELLREL+
λVIDLVID, where λs balances the losses.

3.3. Improved Mask-Predict for Video Generation

We employ mask-predict [23] during inference, which it-
eratively remasks and repredicts low-confidence tokens by
starting from a fully-masked sequence. We chose it be-
cause it can be used with our bidirectional transformer, as
the length of the target sequence is fixed. In addition, mask
predict provides several benefits. First, it allows efficient
parallel sampling of tokens in a sequence. Second, the un-
rolling iterations from mask-predict enable direct optimiza-
tion on synthesized samples, which can reduce exposure
bias [46]. Third, information comes from both directions,
which makes the generated videos more consistent.

We build our sampling algorithm based on the origi-
nal mask-predict [23] with two improvements: (I) noise-
annealing multinomial sampling, i.e., adding noise during
remasking; (II) a new scheme for mask annealing, i.e., us-
ing a piecewise linear annealing scheme to prevent the gen-
erated motion from being washed out after too many steps
of mask-predict. We also apply a beam search from M6-
UFC [76]. In Alg. 1, the transformer (BERT) takes input
tokens zin and outputs score s and the logits p̃ for all tar-
get tokens. At each mask-predict iteration, we sample to-
kens with SampleToken that returns a predicted token
zout and a vector y containing its probabilities (unnormal-
ized). SampleToken also accepts a scalar σ that indi-
cates the noise level to be added during the token sam-
pling process. SampleMask(y,m, N − n) remasks n to-
kens from a total of N tokens according to the multinomial
defined by the normalized y, while ensuring tokens with
m = 1 are always preserved. zϕ denotes the fully-masked

sequence. The functions SampleToken, SampleMask
and the schedules of n(i) and σ(i) are shown in Appendix.

Algorithm 1 Improved Mask-Predict for Video Generation

Require: Initial PC mask mPC and initial token zin.
1: p̃, s← BERT(zin)
2: zout,y← SampleToken(p̃, σ(1))
3: zout ←mPC ⊙ zin + (1−mPC)⊙ zout ▷ PC
4: for i ∈ {2, ..., L} do ▷ main loop
5: for b ∈ {1, ..., B} do ▷ beam search
6: mb ← SampleMask(y,mPC, N − n(i))
7: zbin ←mb ⊙ zout + (1−mb)⊙ zϕ ▷ remask
8: p̃b, sb ← BERT(zbin) ▷ repredict
9: end for

10: b∗ ← argmaxb(s
b)

11: zout,y← SampleToken(p̃b∗ , σ(i))
12: end for
13: return zout

3.4. Text Augmentation

We study two augmentation methods. First, we ran-
domly drop sentences from the input text to avoid mem-
orizing certain word combinations. Second, we apply a
fixed pretrained language model, i.e., RoBERTa [33], rather
than learning text token embeddings in a lookup table from
scratch, to let the model be more robust for input textual
information. The features of text tokens are obtained from
an additional multilayer perceptron (MLP) appended after
the language model that matches the vector dimension with
BERT. The features are converted to a weighted sum to get
the final embedding of the input text. With the language
model, the video generation framework is more robust for
out-of-distribution text prompts. When using the tokenizer
from an existing work [42], we observed that it might not
properly handle synonyms without a common root (Fig. 6).

3.5. Long Sequence Generation

Due to the inherent preservation control mechanism dur-
ing training (strategy V in the MSM task), we can generate
sequences with many more frames than the model is trained
with via interpolation or extrapolation. Interpolation is
conducted by generating the intermediate frames between
given frames. As illustrated by Fig. 1 (d), we place z1 and
z2 at the positions of frames 1 and 3 to serve as preservation
controls, i.e., they are kept the same during mask-predict it-
erations, and we can interpolate a frame between them. Ex-
trapolation is similar to interpolation, except we condition
the model on previous frames to generate the next frames.
As illustrated in Fig. 1 (c), this process can be iterated a
number of times to generate longer videos.
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4. Experiments
Datasets. We show experiments on the following datasets.

• Shapes is proposed by TFGAN [8] for text-to-video gen-
eration. Each video shows one object (a geometric shape
with specified color and size) displayed in a textured
moving background. The motion of an object is de-
scribed by a text and the background is moving in a ran-
dom way. There are 30K videos with size 64× 64.

• MUG [2] contains 52 actors performing 6 different fa-
cial expressions. We also provide gender labels for the
actors. For a fair comparison, we obtain text descriptions
by following TiVGAN [30]. We run experiments on 1039
videos with resolution 128× 128.

• iPER [32] consists of 206 videos of 30 subjects wear-
ing different clothes performing an A-pose and random
actions. Experiments are conducted with size 128× 128.

• Multimodal VoxCeleb is a new dataset for multimodal
video generation. We first obtain 19, 522 videos from
VoxCeleb [37] after performing pre-processing [53].
Second, we manually label 36 facial attributes described
in CelebA [34] for each video. Third, we use a prob-
abilistic context-free grammar to generate language de-
scriptions [71]. Finally, we run APDrawingGAN [73] to
get artistic portrait drawings and utilize face-parsing [74]
to produce segmentation masks.

Baseline Methods. We run TFGAN [8] on Shapes, MUG,
and Multimodal VoxCeleb datases for comparison of text-
to-video synthesis. We also compare our approach with
TiVGAN [30] on MUG. Additionally, we unify the autore-
gressive transformer of DALL-E [45] and the autoencoder
from VQGAN (the same one used in our method) in a mul-
timodal video generative model. We name the strong base-
line as AutoRegressive Transformer for Video generation
(ART-V) and compare it with our bidirectional transformer
for predicting video tokens. We train ART-V with the next-
token-prediction objective on concatenated token sequences
obtained from input controls and target videos.
Evaluation Metrics. We follow the metrics from exist-
ing works on Shapes and MUG to get a fair comparison.
Specifically, we compute classification accuracy on Shapes
and MUG and Inception Score (IS) [52] on MUG. On Mul-
timodal VoxCeleb and iPER datasets, we report Fréchet
Video Distances (FVD) [58] that is computed from 2048
samples, and Precision-Recall Distribution (PRD) (F8 and
F1/8) for diversity [51]. We further perform human evalu-
ation using Amazon Mechanical Turk to verify the quality
and diversity of synthesized videos.

4.1. Text-to-Video Generation

Shapes. We report the classification accuracy in Tab. 1 (top
four rows) for the Shapes dataset. ART-V and MMVID are

A woman is making a surprise face.
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(a) Samples on MUG. ART-V and our method can generate sharp and
temporally consistent videos while frames produced by TFGAN are blurry.

A female is wearing lipstick. This person has wavy hair and blond hair. She has high
cheekbones, arched eyebrows and rosy cheeks. She has heavy makeup. She is
young.
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(b) Samples on Multimodal VoxCeleb. Frame generated by ART-V at
t = 1 is sharp and clear, but are blurry at later steps such as t = 5 and 8.

Figure 2. Text-to-video generation results for different methods.
Sample frames are shown at several time steps (t). Conditioned
text is provided at the top with light blue background.

Table 1. Classification accuracy (%) on the Shapes dataset for
video generation. Our method achieves the best performance.

Condition Methods Shape Color Size Motion Dir Avg

Text Only
TFGAN [8] 80.22 100.00 84.33 99.90 99.95 92.88
ART-V 95.07 98.68 97.71 92.72 96.04 96.04
MMVID (Ours) 95.56 99.71 97.95 97.80 99.61 98.12

Multimodal ART-V 92.82 97.17 97.31 89.55 93.99 94.17
MMVID (Ours) 98.19 99.76 98.83 99.46 99.95 99.24

trained for 100K iterations. Compared with TFGAN [8],
our model achieves significantly higher classification accu-
racy for Shape, Size, and Average (Avg) categories. Com-
pared with ART-V, we perform better in all the categories.
Note that our method has slightly lower accuracy on Color,
Motion, and Direction (Dir) than TFGAN. The reason
might be the VQGAN introduces errors in reconstruction,
since the background is diverse and moving, and it needs to
encode these small translations by only 4 × 4 codes. Note
that to have a fair comparison, we do not apply text aug-
mentation when performing comparison with other works.
MUG. We follow the experimental setup in TiVGAN [30]
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Table 2. Inception Score (IS) and classification accuracy (%) on
MUG for video generation. We mark ‘*’ to IS values reported in
TiVGAN. Our model achieves highest accuracy and IS.

Condition Methods Gender (%) ↑ Expression (%) ↑ IS ↑

Text Only

TGAN [49] - - *4.63
MoCoGAN [57] - - *4.92
TGANs-C [40] - - *4.65
TiVGAN [30] - - *5.34
TFGAN [8] 99.22 100.00 5.53
ART-V 93.46 99.12 5.72
MMVID (Ours) 99.90 100.00 5.94

Multimodal ART-V 89.16 98.54 5.59
MMVID (Ours) 98.14 100.00 5.85

Table 3. Evaluation metrics for text-to-video generation on iPER
and Multimodal VoxCeleb datasets.

Dataset Methods Human (%) ↑ FVD ↓ F8 ↑ F1/8 ↑

iPER ART-V - 277.604 0.936 0.806
MMVID (Ours) - 209.127 0.944 0.924

Multimodal ART-V 46.0 70.952 0.946 0.940
VoxCeleb MMVID (Ours) 54.0 59.464 0.965 0.961

for experiments on the MUG expression dataset. We train
models with a temporal step size of 8 due to the memory
limit of GPU. Note TiVGAN is trained with a step size of
4 and generates 16-frame videos, while our model gener-
ates 8-frame videos in a single forward. We also train a 3D
ConvNet as described in TiVGAN to evaluate the Inception
Score and perform classification on Gender and Expression.
Results are shown in Fig. 2a and Tab. 2 (top 8 rows). Our
model achieves the best performance.
iPER. We show the results of the dataset in Tab. 3 (top 3
rows), demonstrating the advantages of our method. Long
sequence generation results are shown in Fig. 5.
Multimodal VoxCeleb. We train ART-V and our model at
a spatial resolution of 128 × 128 and a temporal step of 4
to generate 8 frames. Our method shows better results than
ART-V on all the metrics, as shown in Tab. 3 (bottom two
rows). We notice ART-V can also generate video samples
with good visual quality and are aligned well with the text
descriptions. However, ART-V often produces samples that
are not temporally consistent. For example, as shown in
Fig. 2b, the frame generated by ART-V at t = 1 is sharp
and clear, but frames at t = 5 or t = 8 are blurry. The
reason might be the exposure bias in autoregressive mod-
els becomes more obvious as the sequence length is long,
i.e., an 8-frame video at resolution 128 × 128 has 512 to-
kens. Thanks to bidirectional information during training
and inference, our MMVID is able to produce temporally
consistent videos.

4.2. Multimodal Video Generation

Multimodal conditions can evolved in two cases: indepen-
dent and dependent, and we show experiments on both.

A large green square is moving in a diagonal path in the northeast direction.

O
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t = 1 t = 5 t = 13t = 9t = 3 t = 7 t = 11 t = 15

(a) Independent multimodal control. The text description specifies the
size, color, and shape of the object, and its motion. The visual control is
a partially observed image with its center masked out (shown as white),
which provides control for the background. ART-V can generate correct
object and motion, but suffers from incorporating consistent visual inputs
such that the background is not temporal consistent.

An object with color in image one, shape in image two, background in image three is
moving in a diagonal path in the southwest direction.

t = 1 t = 5 t = 13t = 9Image Controls

(b) Dependent multimodal controls. The text description specifies from
which image to extract color, shape, and background.

Figure 3. Multimodal generation results on Shapes with textual
(at top) and visual (first column(s)) modalities. Sample frames are
shown at several time step (t).

Independent Multimodal Controls. This setting is simi-
lar to conventional conditional video generation, except the
condition is changed to multimodal controls. We conduct
experiments on Shapes and MUG datasets with the input
condition as the combination of text and image. The bottom
two rows in Tab. 1 and Tab. 2 demonstrate the advantages
of our method over ART-V on all metrics. Additionally,
we provide generated samples in Fig. 3a, where only a par-
tial image is given as the visual condition. As can be seen,
ART-V cannot satisfy the visual constraint well and the gen-
erated video is not consistent. The quality degradation for
multimodal video synthesis of ART-V can also be verified
in Tab. 1 as it shows lower classification accuracy than text-
only generation, while our method is able to generate high
quality videos for different condition signals.

We also conduct extensive experiments of video genera-
tion under various combinations of textual and image con-
trols on Multimodal VoxCeleb, as shown in Fig. 4. We ap-
ply three different image controls, including segmentation
mask (Fig. 4 row (a) - (b)), drawing (Fig. 4 row (c) - (d)),
and partial image (Fig. 4 row (d) - (f)). In Fig. 4 row (b), our
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She has high cheekbones, 
pale skin and arched 
eyebrows. She has big lips, 
straight hair and heavy 
makeup. She has rosy 
cheeks and blond hair. She 
is young. She wears lipstick.

… blond black hair …

He has pointy nose, black 
hair and double chin. He has 
straight hair, arched eye-
brows and big nose. This 
man is chubby.
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Figure 4. Independent and Dependent multimodel video generation on Multimodal VoxCeleb with textual control (TC), image control
(IC), and video control (VC). Row (a) - (b): TC + IC (segmentation mask); Row (c): TC (null) + IC (drawing); Row (d) - (e): dependent
TC + IC; Row (f) - (h): TC + IC (partial image) and the TC of (g) is obtained from the TC of (f) by replacing “blond” with “black”; Row
(i): dependent TC + VC and the VC includes content and motion information.

method can synthesize frames with eyeglasses even though
eyeglasses are not shown in segmentation mask. In Fig. 4
row (f) - (g), we show that using the same image control
while replacing the “blond” with “black” in the text descrip-
tion, we can generate frames with similar content except the
hair color is changed. Such examples demonstrate that our
method has a good understanding of multimodal controls.
Dependent Multimodal Controls. Furthermore, we intro-

duce a novel task for multimodal video generation where
textual and visual controls are dependent, such that the ac-
tual control signals are guided by the textual description.
For example, Fig. 3b illustrates how the text informs from
which image the model should query color, shape, and
background information. More synthesized examples on
Multimodal VoxCeleb are given in Fig. 4. For Fig. 4 row (d)
- (e), our model learns to combine detailed facial features
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(a)

(b)

(c)

t = 1 t = 8t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

t = 1 t = 7 t = 13 t = 19 t = 25 t = 31 t = 37 t = 43 t = 49 t = 55 t = 61 t = 67 t = 73 t = 79 t = 85

Figure 5. Extrapolation and Interpolation. Row (a) - (b): long sequence generation via extrapolation. Row (c): interpolating a real
sequence. Frames in dotted red boxes are fixed as preservation control. Textual controls for each row are: (a) “Person 024 dressed in 2 is
performing random pose, normal speed.”; (b) “Person 024 dressed in 1 is performing A-pose, normal speed.”; and (c) “Person 028 dressed
in 2 is performing A-pose, normal speed.”

from drawing or image and coarse features (i.e., pose) from
mask. For Fig. 4 row (i), our method successfully retargets
the subject with an appearance from the given image con-
trol (IC1) and generates frames with the motion specified
by consecutive images that provide motion control (VC1).

Table 4. Analysis on Shapes for video augmentation strategies.

Video Augmentation Accuracy (%)

Swap Shuffle Color Affine Shape Color Size Motion Dir Avg
✗ ✗ ✗ ✗ 90.43 89.07 95.61 92.48 99.13 93.34
✓ ✗ ✗ ✗ 91.02 89.84 93.75 91.02 98.05 92.73
✗ ✓ ✗ ✗ 88.28 89.45 94.53 88.28 98.44 91.80
✗ ✗ ✓ ✗ 91.80 91.02 94.53 93.36 98.83 93.91
✗ ✗ ✗ ✓ 90.62 90.62 95.31 89.84 98.83 93.05
✓ ✓ ✓ ✓ 93.36 88.28 95.70 93.75 99.61 94.14

4.3. Long Sequence Generation and Ablation

Long Sequence Generation. Our approach enables tempo-
ral extrapolation of videos. We show samples of video ex-
trapolation and interpolation in Fig. 5. Samples from Fig. 5
row (a) - (b) are generated by being iteratively conditioned
on previous 6 frames to generate the following 2 frames.
Fig. 5 row (c) shows an example of synthesizing one frame
by interpolating two consecutive real frames.
Analysis on VID Task. We perform analysis for different
VID strategies on the Shapes dataset. Tab. 4 shows that the
highest average accuracy is achieved when all augmentation
is used (sampled uniformly). Also note that accuracy for
color is the highest when we only apply color augmentation.
Analysis on Language Embedding. Analysis of using a
pretrained language model is shown in Fig. 6. The method
with a language model (w/ RoBERTa) is more robust to var-
ious text inputs than the one without it (w/o RoBERTa).

5. Limitation and Conclusion
This paper targets a new problem, which is video genera-

tion using multimodal inputs. To tackle the problem, we uti-
lize a two-stage video generation framework that includes

A woman
girl.

A person is 
bald has no 
hair.

A person 
wears 
eyeglasses 
spectacles.

A person is 
young
youthful.

w/ RoBERTaw/o RoBERTa

Figure 6. Analysis on language embedding. Samples are gener-
ated with out-of-distribution textual inputs. We reword the original
text (strikethrough) with equivalent descriptions (italic) that do not
exist in the training. We show the first frames from the generated
sequences for each method. Frames generated using the pretrained
language model (w/ RoBERTa) is more correlated with text inputs.

an autoencoder for quantized representation of images and
videos and a non-autoregressive transformer for predicting
video tokens from multimodal input signals. Several tech-
niques are proposed, including the special VID token, tex-
tual embedding, and improved mask prediction, to help gen-
erate temporally consistent videos. On the other hand, the
proposed method also contains some limitations, including
temporal consistency issues for high-resolution videos, gen-
erating diverse motion patterns for longer sequences, and
further improving the diversity of non-autoregressive trans-
formers. More details can be found in the Appendix. Be-
sides improving the limitation, a future direction might be
to leverage more control modalities, such as audio, to gen-
erate videos with a much higher resolution.
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