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Abstract
The objective of this paper is a temporal alignment net-

work that ingests long term video sequences, and associ-
ated text sentences, in order to: (1) determine if a sentence
is alignable with the video; and (2) if it is alignable, then
determine its alignment. The challenge is to train such
networks from large-scale datasets, such as HowTo100M,
where the associated text sentences have significant noise,
and are only weakly aligned when relevant.

Apart from proposing the alignment network, we also
make four contributions: (i) we describe a novel co-
training method that enables to denoise and train on raw
instructional videos without using manual annotation, de-
spite the considerable noise; (ii) to benchmark the align-
ment performance, we manually curate a 10-hour subset of
HowTo100M, totalling 80 videos, with sparse temporal de-
scriptions. Our proposed model, trained on HowTo100M,
outperforms strong baselines (CLIP, MIL-NCE) on this
alignment dataset by a significant margin; (iii) we ap-
ply the trained model in the zero-shot settings to mul-
tiple downstream video understanding tasks and achieve
state-of-the-art results, including text-video retrieval on
YouCook2, and weakly supervised video action segmenta-
tion on Breakfast-Action. (iv) we use the automatically-
aligned HowTo100M annotations for end-to-end finetuning
of the backbone model, and obtain improved performance
on downstream action recognition tasks.

1. Introduction
The recent CLIP and ALIGN papers [30, 53] have

demonstrated that a combination of large scale paired
image-caption data, and a simple noise contrastive learning
loss can be used to learn powerful image-text embeddings
from scratch. The image-caption data can be crawled from
the internet at scale, for example from image alt-text, and
the resulting embeddings demonstrate strong “zero-shot”
generalization abilities. In the video domain, there also
exists large-scale sources of text supervision, e.g. narrated
instructional videos such as the HowTo100M [47] dataset,
where demonstrators explain their actions while perform-
ing a complex task. The narrations are unconstrained and

can be combinatorially complex, including information on
“what”, “where” and “when”, such as the actions, the ob-
jects, human-object interactions, etc.

However, these instructional videos pose additional fun-
damental challenges over the image-caption scenario due to
the temporal alignment problem (illustrated in Figure 1):
(i) the demonstrator often makes statements that are unre-
lated to the visual signal, such as describing food taste or
explaining the consequence of actions. These texts are not
visually alignable. (ii) the demonstrator might explain their
action before or after performing it, and their statements of-
ten do not follow the same order as their actions, resulting in
the text and visual entities being asynchronous. These texts
are not temporally aligned to the visual signal. Addition-
ally, unlike spatial segmentation in images, where objects
boundaries are often formed by a discontinuity between re-
gions with strong gradients, temporal actions in videos are
often continuous, making it difficult to clearly define the
start and end points for the temporal interval. Last but not
the least, there is additional noise coming from the imper-
fect Automatic Speech Recognition (ASR) systems on the
spoken narrations. Note that the image-caption data does
not face these problems since captions are provided by hu-
man annotators for that image; although they may be in-
complete, there is no temporal alignment issue.

The extent of these alignment challenges is signifi-
cant [46, 47]. In 10 hours of instructional videos (sourced
from HowTo100M) that we annotated for this work, only
30% of the narration sentences are visually alignable, and
only 15% are naturally well-aligned. This means that the
demonstrator is describing their action synchronously with
the video only 15% of the time. If the alignment issues are
resolved then the benefits of learning from such narrated in-
struction videos can potentially be substantial: with the ex-
tra time axis alignment, models can be trained to deal with
fine-grained tasks, and predict temporal action localization
and segmentation.

In this paper, we tackle the sentence-to-video tempo-
ral alignment problem, and propose a Temporal Alignment
Network (TAN) that ingests a video sequence and its asso-
ciated narrative sentences, attends to a large temporal con-
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Figure 1: An example of visual-textual mis-alignment in a raw instructional video. The presenter’s narration can be not visually relevant at all, e.g. describ-
ing a flavor; or asynchronous with visual content by a time difference. The ✓ and ✗ indicate visually alignable and non-alignable text, respectively (by human
judgement). The colored bar shows the start-end timestamp of narration. Example from https://www.youtube.com/watch?v=M8OGXmLTTiI?t=30.

text in both, and is able to: (1) determine if a sentence is
alignable with the video; and (2) if it is alignable, then de-
termine its temporal alignment. Given all the challenges
described above, training such a network on raw instruc-
tional videos, e.g., HowTo100M, is clearly a non-trivial
task. To this end, we propose a novel method for denois-
ing, by co-training TAN with an auxiliary dual encoder net-
work. By design, these two networks use complementary
architectures: TAN iteratively attends to temporal context
from both visual and textual modalities, establishing accu-
rate alignment for sentences that are alignable; while the
dual encoder processes visual and textual modalities inde-
pendently, which enables it to spot unalignable sentences
at ease, e.g., sentences that emit low alignment score to all
frames within the video. The output from these two net-
works can be treated as two different views for alignment,
and their mutual agreements are adopted for co-training.

In addition to introducing the model and training
methodology, we make the following contributions: (1)
We manually annotate an 80-video subset of HowTo100M,
named HTM-Align, by assigning the visually related sen-
tences to their corresponding timestamps and annotating vi-
sually unrelated ones. This aligned subset is used to eval-
uate the model’s performance and is released publicly; (2)
We train the model on the HowTo100M dataset, and demon-
strate a significant improvement in alignment over prior
work (MIL-NCE approach of [46] in particular); (3) We ap-
ply the trained model in both the zero-shot and fine-tuned
settings to multiple downstream video tasks and achieve
state of the art results on both settings. This includes text-
video retrieval on YouCook2 [75] and weakly supervised
video action segmentation on Breakfast-Action [34]; (4) We
use the automatically-aligned HowTo100M annotations to
finetune the backbone model, and observe improved perfor-
mance on downstream action classification tasks.

2. Related Work
Joint Visual-Textual Learning has a long history in
computer vision. As examples, early work from Mori et
al. [49] explored the connection between image and words

in paired text documents, and [68] learnt a joint image-text
embedding for the case of class name annotations. Recent
works like CLIP [53] and ALIGN [30] show that large-scale
paired image-caption data combined with a simple noise
contrastive learning loss is able to learn a powerful visual
representation. In video domains, this is also true, as shown
by MIL-NCE [46], ALBEF [41], and VideoClip [71].

Visual-Textual Retrieval learns a joint embedding
space for both vision and language, either using a dual
encoder [2, 19, 23, 24, 30, 33, 47, 51–53], where vi-
sual and textual inputs are independently encoded, or a
joint encoder, constructed with multimodal Transform-
ers [13, 39, 43, 44, 62, 63, 74], where vision and text
inputs are fed into the cross-modal attention to compute the
similarity. Despite being more accurate, the incurred com-
putation of the joint encoder limits its use for large-scale
retrieval systems. In [45], the authors propose to speed up
the process by only using the joint encoder for re-ranking.
In this work, we also use both joint and dual encoders, but
for a different purpose – to exploit their complementary
information for co-training.

Visual-Textual Alignment aims to temporally assign
words or sentences to the corresponding video segments.
A similar task is weakly-supervised action segmentation
that tries to delineate the video segments corresponding
to a given action list [5, 6, 9, 18, 29, 36, 40, 54, 79]. In
transcript alignment [15, 56, 57, 64, 78], where instead
of an action list, scripts describing a series of events in
the video are given, the goal is to assign each of the
script texts to the appropriate segment (shot) of the video.
More closely related to our goal are methods that seek a
global alignment between sequences with soft Dynamic
Time Warping (DTW) [16]. The recent Drop-DTW [20]
proposes to handle outliers in the sequences by allowing
the alignment process to automatically skip certain steps.
This is similar to our aim of identifiying non-alignable
sentences. However, since in HowTo100M the order of the
alignable sentences does not follow the original order of
the subtitles, this rules out the use of DTW-type approaches.
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Co-training and Self-training are common techniques
for unsupervised and weakly supervised learning. Co-
training [4] builds two models to learn the different views
of the data, while using one to expand the training set
for the other. It has recently been used for representation
learning [26, 65]. Self-training refers to the process
of training on pseudo-labels generated from a model’s
own predictions. It has been used for image classifi-
cation [1, 7, 8, 69], object detection [14], and machine
translation [27]. Our work is related to this line of research,
where the TAN and the auxiliary network self-correct
the noisy annotations, such that both networks can grad-
ually improve their performance by training on cleaner data.
Supervised Action Segmentation & Detection have
been extensively studied on numerous video datasets,
e.g. Breakfast-Action [34], YouCook2 [75], Charades [59],
ActivityNet [28], EPIC-Kitchens [17]. For segmentation,
the goal is to densely classify each time point of the video
into one of the pre-defined action categories [3, 5, 12, 21,
22, 34, 37, 38, 55, 60]. Research has focused on designing
effective modules to capture dependencies between differ-
ent video chunks [21, 37, 38, 60]. For detection, the goal is
to localize the sparsely distributed action segments, i.e. an-
notation is non-contiguous. In general, there are two-stage
approaches that consist of a separate action proposal stage
and a classification stage [11, 42, 58, 70, 73], and one-stage
approaches that combine both [50, 72].

3. Method
We start by describing the problem scenario in Sec 3.1,

followed by the architecture for our proposed alignment net-
work in Sec 3.2. In Sec 3.3, we describe a naı̈ve train-
ing procedure on raw instructional video, with the text-
video correspondence provided by YouTube ASR, despite
the considerable noise. In Sec 3.4, we present the co-
training method, that exploits the mutual agreement be-
tween the alignment network and an auxiliary dual encoder,
and is able to simultaneously denoise and learn from the
noisy narrated instructional videos.

3.1. Problem Scenario
Given an untrimmed instructional video X = {I,S},

where I = {I1, I2, . . . , IT } refers to the corresponding
video with T frames, and S = {S1, . . . , SK} denotes the
K given sentences (ordered by time). For each sentence,
we also have their timestamps obtained from YouTube ASR
(e.g. [tstart

k , tend
k ] for the k-th sentence). In this paper, our

goal is to train a temporal alignment network on a video
dataset of instructional videos, which takes the videos and
sentences as inputs, and outputs a textual-visual similarity
matrix (Â), as well as an alignability score for each sen-
tence:

{ŷ, Â} = Φ(X ; Θ), Â ∈ RK×T (1)

where ŷ ∈ RK×2 refers to binary scores for all sentences,
indicating whether the sentence is alignable. Â denotes the
similarity matrix between frames and the given sentences,
where for any alignable sentence it should emit a higher
score with its corresponding video timestamps than others,
and Θ are the parameters of the model.

3.2. Temporal Alignment Network (TAN)

As shown in Figure 2 (left), the alignment network takes
a video sequence and its associated narration / text sen-
tences as input, and attends to the long temporal contexts
in both, in order to: (i) determine if a sentence is alignable
with the video (ŷ), and (ii) output the alignment matrix (Â).
Next, we describe the alignment network, consisting of
a visual-textual backbone, Multimodal Transformer, and
alignability prediction module.

Visual-Textual Backbone. Given a long instructional
video (e.g. 64s) with its associated sentences, we first ex-
tract the visual and textual features with pre-trained net-
works. Specifically, based on MIL-NCE [46], we use their
pre-trained S3D-G backbone to extract video features, and a
2-layer MLP with the word2vec embeddings [48] to extract
sentence features.

v = f(I) ∈ RT×C s = g(S) ∈ RK×C (2)

v, s refer to the computed video and text features respec-
tively, and each is of dimension C, in general, T ≫ K.

Multimodal Transformer. This module jointly processes
the visual-textual features (v, s) with a multi-layer Trans-
former Encoder, which iteratively attends to both modalities
to establish the text-to-video correspondence:

[v̂; ŝ] = ΦMT([v + TE; s]) (3)

where ΦMT refers to the Multimodal Transformer Encoder,
TE denotes the learnable temporal embedding, v̂ ∈ RT×C

and ŝ ∈ RK×C are the output visual and textual embeddings
from the Multimodal Transformer, and the “[; ]” symbol de-
notes concatenation. The alignment matrix Â ∈ RK×T is
computed via cosine similarity:

Â[i,j] =
ŝi · v̂j

∥ŝi∥∥v̂j∥
(4)

Alignability Prediction Module. Apart from estimat-
ing the alignment matrix, another main functionality of the
alignment network is to infer whether a particular sentence
is alignable or not. This is achieved by training a single
linear layer (ϕ(·)) on the textual features, as shown in Fig-
ure 2 (left):

ŷ = ϕalign(ŝ) (5)

where ŷ ∈ RK×2 refers to the binary predictions for all
sentences, deciding if the sentence is alignable or not.
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Figure 2: Left: The Temporal Alignment Network (TAN) takes an untrimmed long video as input, and first extracts the visual and textual features by a
pre-trained 3D ConvNet (f(.)) and a pre-trained text module (g(.)). The visual features and textual features are concatenated and passed into a Multimodal
Transformer Encoder, a.k.a. joint encoder, where the attention can capture the interaction between the visual and textual modalities. A linear head ϕ
classifies the alignability of the output text embedding. Right: To train the TAN on noisy instructional videos, we build an auxiliary dual encoder, which
takes the same visual and textual features as input, but only use a Video Transformer Encoder to process the video data with self-attention. For both TAN
and the dual encoder, similarity matrices Â, Âd are computed between the output text features and the output visual features respectively, which are used at
the co-training stage, as introduced in Section 3.4.

3.3. Training
In this section, we describe a naı̈ve training procedure

for the alignment network with contrastive learning, on the
instructional videos with YouTube ASR timestamps. Note
that, at this stage, all the sentences have their corresponding
video timestamps, and are treated as alignable. Hence, the
alignability prediction module can not be trained here.
Temporal Correspondence. For a video with K sen-
tences, we directly convert its YouTube ASR results into
1D binary masks, with 1’s at the timestamps where the
sentence is being spoken by the demonstrator, i.e., Y =
{m1, . . . ,mK}, where mi ∈ R1×T . The objective is there-
fore to jointly optimize the visual-textual embedding, such
that the similarity score between the sentence and its corre-
sponding visual frames is maximised. The training objec-
tive is constructed as:

LTC = −
K∑

k=1

log

∑
i∈Pk

exp (Â[k,i]/τ)∑
i∈Pk

exp (Â[k,i]/τ) +
∑

j∈Nk
exp (Â[k,j]/τ)

(6)

where Pk ∈ {mk = 1}, Nk ∈ {mk = 0} refer to the sets
consisting of positive and negative pairs, respectively. LTC
resembles a variant of the InfoNCE loss [66].

Discussion. Given the groundtruth annotation for align-
ment, optimizing LTC would be trivial. However, on raw in-
structional videos where the provided YouTube ASR times-
tamps are highly unreliable with an extremely high noise
ratio, naı̈vely optimising LTC leads to sub-optimal results,
as will be demonstrated in Section 5.2.

In general, the noise sources from the raw instructional
videos can be mainly categorised into three types, as shown
in Figure 1: First, the majority of the given sentences are

actually not correlated to the video content (unalignable),
e.g. greeting, chatting; Second, there is an alignment off-
set, in that the temporal interval of the spoken sentence
rarely aligns with the video segments it refers to; Third, the
demonstrator often makes statements that do not follow the
same order as their action, which rules out the use of DTW-
type approaches.

3.4. Co-Training
In this section, we propose a novel co-training method to

both denoise the instructional videos and train the alignment
network. Specifically, we introduce a dual encoder (Sec-
tion 3.4.1), which can be seen as a collaborator to the align-
ment network. This procedure is detailed below.

3.4.1 Dual Encoder
As shown in Figure 2 (right), the dual encoder indepen-
dently processes the visual features with a Transformer En-
coder [67]. It is designed to be complementary to the align-
ment network: for example, the dual encoder is fast and
lightweight, which enables training on a large number of
visual-text pairs, however, it only allows both modalities to
communicate at the end, hence is unable to capture the tex-
tual contexts, and it is more sensitive to detect unaligned
texts; while the proposed TAN, consisting of a Multimodal
Transformer, always has access to both modalities, and can
learn to establish visual-textual correspondence within the
network. Despite being beneficial for the temporal align-
ment task, the TAN is slow and computationally demand-
ing, limiting its ability for contrasting with large-scale and
diverse negative visual-textual pairs. Formally, for the dual
encoder, we have:

v̂d = ΦD(v + TE) ∈ RT×C (7)
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Figure 3: Illustration of denoising by mutual agreement. The video sample is the same as in Figure 1. (a): The alignment matrix A from the TAN after
Stage-1 training. (b): The alignment matrix Ad from the dual encoder after Stage-1 training. (c): The most alignable timestamps are inferred from both
alignment matrices. (d): By filtering the IoU of pseudo-timestamps and filtering the alignable/non-alignable text denoted by ✓ / ✗, the model dynamically
chooses aligned temporal segments to train, and ignores non-alignable ones. For this example, the self-labelling process corrects the timestamps of the 1st
and 3rd sentences, and marks the rest of the sentences as non-alignable. It roughly matches the human judgement of the alignment as shown in Figure 1.
The alignment matrix values shown here are computed from the trained model-A in Table 1.

.

where ΦD refers to the Video Transformer, and TE is the
learnable temporal embedding for supplying the temporal
ordering. A textual-visual cosine similarity matrix Âd ∈
RK×T from the dual encoder is computed as:

Âd[i,j] =
si · v̂dj

∥si∥∥v̂dj ∥
(8)

3.4.2 Denoising by Mutual Agreement

To denoise the YouTube ASR annotations, we generate
pseudo-labels (both the alignability and the timestamps)
by verifying the mutual agreement between the output
alignment matrices from the alignment network and dual
encoder, i.e. Â and Âd. The verification process is executed
in three steps:
(a) Infer Timestamps. During training, for each sen-
tence, we use the two output alignment matrices Â, Âd ∈
RK×T (Figure 3-a,b) to infer the most plausible aligned
timestamps. To avoid outlier points, for the k-th sentence,
we scan its corresponding similarity row by averaging the
scores within a temporal window, this window is of the
same size as its original YouTube timestamp label, i.e sen-
tence by the demonstrator.

Afterwards, we pick the most confident prediction by
taking the argmax. Note that, such operation ends up
with a single temporal window with the same duration as
the YouTube timestamp. That is to say, we only shift the
temporal position of the original YouTube label to its most
confident prediction. At this step, for the k-th sentence,
we obtain two ‘shifted’ timestamps m̂k and m̂d

k, one from
the alignment network, the other from the dual encoder
respectively, as shown in Figure 3-c.
(b) Alignment overlap using IoU. Given the inferred
timestamps for sentence k, we compute an Intersection-
over-Union (IoU) score to measure the agreement between
the shifted timestamps:

IoU-scorek =
m̂k ∩ m̂d

k

m̂k ∪ m̂d
k

(9)

A high IoU score indicates the sentence is very likely to
be aligned with the inferred timestamps. For a batch, we
filter the sentences with a positive IoU score, and update
their timestamps by the union of their inferred timestamps

m̂k ∪ m̂d
k. Empirically, we find this operation roughly up-

dates the timestamps for about 30% of the sentences. For
the sentences with zero IoU score, we keep their YouTube
timestamps unchanged. Such an operation ends up with a
set of updated timestamps {m̂′

1, . . . , m̂
′
K} for all sentences.

In addition, to reflect each sentence’s alignability, we can
compute an average cosine similarity score falling into the
new temporal segment. Formally, for the k-th sentence,

ϵk =
1∑
m̂′

k

∑
m̂′

k · (Â + Âd)[k,:] (10)

where ϵk refers to the alignment score. To put it simply, if a
sentence has positive IoU-score, we compute its align-score
within the union of inferred timestamps; if it has zero
IoU-score, we compute its align-score within its original
YouTube timestamps.
(c) Filter Alignability. To filter the alignability scores,
i.e., {ϵ1, . . . , ϵK}, we introduce a hyper-parameter α ∈
[0, 1], within a sample batch, we treat the sentences with
the top 100α% of align-score as positive, and the bot-
tom 100(1 − α)% sentences as negative. This gives bi-
nary pseudo-labels for alignability, denoted as ypseudo. The
alignability prediction module can thus be trained for bi-
nary classification with a cross-entropy loss (as shown in
Figure 2), i.e., L̂Alignability = CE(ŷ, ypseudo).

Intuitively, this is to say, a sentence is treated as being
alignable if both the alignment network and the dual en-
coder agree the sentence has a high similarity with its cor-
responding time stamps. Also the LTC (Equation 6) is only
trained for the top 100α% of the sentences. In our experi-
ments, we sweep α ∈ {0.25, 0.5, 0.75}.

3.4.3 Training Cycle
To summarize, the training can be divided into two stages.
At the first stage (S1: Initialization), both the alignment
network and dual encoder are trained with LTC using the
given YouTube timestamps as labels. Once warmed up, the
new pseudo-labels will be generated from the mutual agree-
ment between alignment network and dual encoder on the
fly, and starts the second stage training (S2: Co-Training),
with Ltotal = L̂TC + L̂Alignability. Note that it is not nec-
essary to iterate S1 and S2, because in S2 the quality of
pseudo-labels can be improved along the training with an
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EMA mechanism (introduced next). By default in our ex-
periments, we train S1 for 50k iterations, and train S2 for
another 50k iterations. It accounts for 8 epochs on HTM-
370K per stage.

3.4.4 Self-labelling with EMA
Naı̈vely using the mutual agreement between the alignment
network and dual encoder for co-training can lead to triv-
ial solutions, where the alignment network and the dual
encoder learn to “collaborate” with each other and assign
high similarity scores to certain fixed timestamps. We avoid
this ‘collapse problem’ by keeping an Exponential Moving
Average (EMA) of the model similar to BYOL [25]. The
EMA branch is only slowly updated and used to generate
the agreements for denoising as introduced in Section 3.4.2.
The main branch is trained with the updated timestamps and
alignability. We use the same momentum coefficient as that
from BYOL in our experiments (0.99). By default, all eval-
uations use the main branch.

4. Experiments
In this paper, we train the proposed temporal align-

ment network on a subset of the HowTo100M dataset [47].
To start, we first describe the data preparation process,
and present the annotated visual-textual aligned subset of
HowTo100M (named HTM-Align) for evaluation. Then
we describe the implementation details and ablation stud-
ies for the alignment task.

4.1. Data Preparation
HowTo100M is a large-scale instructional video dataset

crawled from YouTube, consisting of around 1.2M videos
and their generated text transcripts from speech (ASR). The
start-end timestamps of each sentence are provided by ASR,
but they are often not semantically aligned with the visual
scene (Figure 1).

4.1.1 HTM-370K (Training)
We mostly use a subset of the original HowTo100M for
training, with 370K videos from the ‘Food & Entertain-
ing’ categories, consisting of 32% of the videos of the entire
HowTo100M dataset. Apart from the mis-alignment issue,
we also find three other issues in the subtitles: incorrect lan-
guage translation, duplicated text, and incomplete sentence
fractions. As dataset pre-processing, we conduct an auto-
matic curation with open-sourced BERT-based model. The
full details of automatic curation can be found in the Ap-
pendix.

After automatically processing and filtering out low-
quality subtitles, we end up with a subset of 370K instruc-
tional videos, thus the name HTM-370K. Note that all the
cleaning steps are automatic, using models trained with
self-supervised learning. We attribute the pre-processing of
HowTo100M as a small contribution, and we will make all
cleaned video IDs and subtitles publicly available.

4.1.2 HTM-Align (Evaluation)

We randomly pick 80 videos from the HTM-370K as a hold-
out testing set for evaluation purpose. These videos range
from 2 to 16 minutes, totalling 10 hours. We manually la-
bel the alignability for each sentence, i.e. binary annotation.
For those alignable ones, we further align them to the video
segments with start-end timestamps. In total, 49K sentences
are manually examined, with 13K of them being manually
aligned. On average each video contains 61 sentences, and
17 of them are visually aligned.

Unlike the existing YouCook2 benchmark, where anno-
tators only rephrase fixed recipe steps as the action descrip-
tion, HTM-Align includes random instructional videos
without a fixed recipe, and are adopted from the demonstra-
tors’ narration with minor modification, hence containing
large diversity on both videos and texts. The details of the
annotation and examples can be found in the Appendix.

4.2. Implementation Details
During training, we adopt a pre-trained S3D (released

by [46]) as the video encoder. Specifically, the S3D
network outputs a single feature vector (1024D) for every
16 frames, when the videos are decoded with 16fps, this
accounts for 1 feature per second without temporal overlap.
For the text encoder, we use Bag-of-word (BoW) based
on Word2Vec embeddings. By default, in each video we
randomly sample a temporal window of 64 seconds (which
is 64 continuous visual features, we also tried 32s and 128s
in ablation study), and the corresponding subtitles within
this window. We train the model with AdamW optimizer
and 10−4 learning rate, with a batch size of 64 videos. Full
implementation details are in the Appendix.

5. Alignment Results
In this section, we report the experimental results for

our proposed temporal visual-textual alignment task on the
HTM-Align dataset. In detail, during inference, given the
video with a sequence of sentences by the demonstrator,
we take the alignment matrix from our alignment network,
Â ∈ RK×T , with K,T indicating the number of sentences
and video timestamps respectively.

5.1. Metrics
We measure two metrics for the alignment task, Re-

call@1 and ROC-AUC value. The Recall@1 metric is a
‘pointing game’ as introduced in [79]. Specifically, for a
considered sentence, if its maximally matched video times-
tamp falls into the groundtruth segment, it is counted as
being successfully recalled. The recall scores are then av-
eraged across all the text segments. The alignability pre-
diction is a binary classification problem as introduced in
section 3.1, we use ROC curve and report the Area-Under-
the-Curve value (ROC-AUC).
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Basic Setting Training Stages Stage2 Settings Aligned-HTM

model dataset length (# sec) # tfm layers S1:Init S2:Self Threshold α R@1↑ ROC-AUC↑

CLIP (ViT-B/32) [53] YFCC-400M – – – – – 16.8 71.7∗

MIL-NCE [46] HTM-Full (uncurated) – – – – – 31.3 73.1∗

A HTM-370K 64 6-6 ✓ ✗ – 45.8 73.0∗

B HTM-370K 64 3-3 ✓ ✗ – 42.3 72.6∗

C HTM-370K 64 6-6 ✓ ✓ 0.25 42.5 79.7
D HTM-370K 64 6-6 ✓ ✓ 0.5 49.4 82.4
E HTM-370K 64 6-6 ✓ ✓ 0.75 48.8 82.2

F HTM-370K 32 6-6 ✓ ✓ 0.5 41.1 77.5
G HTM-370K 128 6-6 ✓ ✓ 0.5 48.4 81.8
H HTM-Full 64 6-6 ✓ ✓ 0.5 49.2 82.6

Table 1: Alignment results on the HTM-Align dataset. ∗: since the model does not have a binary classifier for alignability, for each sentence, we take
its maximum logits over time as the alignability measurement to compute ROC-AUC. For the ‘# tfm layers’ column, we show the number of transformer
encoder layers we use for the TAN and the dual encoder.

5.2. Ablation Study
In this section, we investigate the effects of multiple

design choices and discuss the results.
Comparing with baseline. In Table 1, the first two
rows are the baselines from CLIP (ViT-B/32) [53] and
MIL-NCE [46]. Specifically, we compute the alignment
similarity matrix using their textual and visual encoders,
normalize the score following their pretrained paradigms,
and compute the R@1 on top of the alignment matrix. Note
that for ROC-AUC, since CLIP and MIL-NCE do not have
a specific binary classifier, for each text, we directly use
its maximum similarity score (across the time axis) as an
indicator of alignability. First, CLIP [53] is performing
significantly worse than others on this alignment task.
A possible reason is that CLIP has only been trained on
images, thus lacks video dynamics. MIL-NCE is a strong
baseline which has short-term temporal modelling (up
to 3.2s) and was trained end-to-end on HowTo100M. In
our model-A, we take the pre-extracted visual and textual
feature from MIL-NCE, and train the transformers on the
HTM-370K dataset to learn a longer temporal context (e.g.
64s) for the alignment task. Our result (model-A 45.8
R@1 vs MIL-NCE 31.3 R@1) shows that longer temporal
context is useful for this alignment task.
Effect of Transformer Depth. For both the alignment
network and dual encoder, we use 6-layer transformers by
default, as a balance between performance and training
cost. In model-B we also tried using 3-layer transformer
and found it performs worse than 6-layer transformer
(model-B vs A). Using more than 6 layers takes more
memory and sacrifices batch size.
Effect of Co-Training. In the model-{D,E}, we apply the
Stage-2 training (co-training) based on the model-A. We
observe that co-training brings a clear performance gain
for the alignment task (model-{D,E} vs. model-A, 3-4%
boost on R@1), confirming the effectiveness of the denois-
ing procedure. Note that model-C does not perform well
due to the choice of alignability threshold α, explained next.

Effect of Alignability Thresholds. For the choice of
alignability threshold α (as introduced in Section 3.4),
which reflects a balance of data noise and diversity in the
co-training procedure, our model-{C,D,E} show α = 0.5
and α = 0.75 work similarly well for alignment metrics
and α = 0.5 is slightly better for the R@1 metric. However
α = 0.25 leads to much worse performance. We conjecture
that a low value of α limits the diversity while training LTC
(i.e. LTC learns from only 25% of the sentences).
Effect of Training Data. In model-H, we train the
co-training stage on the automatically curated HTM-Full
dataset, which includes all other non-cooking categories
from HowTo100M comparing with HTM-370K. Com-
paring model-H with D on the alignment task, adding
out-of-domain videos does not harm the alignment perfor-
mance on our curated subset.
Effect of Input Video Length. In Table 1, we vary the
length of the input video to show if our alignment net-
work benefits from the longer video context. Indeed, the
alignment network gets better performance when increas-
ing the input video length from 32 to 64 seconds (model-
D vs model-F). We conjecture that sampling longer input
video introduces more alignable sentences, helps to reduce
the temporal ambiguity for other sentences. However, fur-
ther increasing the input video length to 128 seconds gives a
similar alignment performance (model-G vs model-D), we
conjecture this is due the reduced batch size in training, and
the far-away visual context (i.e. 2 minutes or further) is less
relevant for aligning the sentence.

6. Downstream Tasks
Apart from evaluating the alignment task on HTM-

Align, we also test our alignment network on other
downstream tasks. Specifically, we evaluate on tempo-
ral action alignment (using the alignment network) and
text-based video retrieval (using the dual encoder due to
speed considerations [45]). We also evaluate linear action
classification on the backbone feature to show the effect of
auto-aligned dataset. See the Appendix for full details.
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Method Trained on BF F-Acc↑ IoU↑ IoD↑
MIL-NCE [46] ✗ (ZS) 59.3 46.8 65.1
Ours (S1+S2) ✗ (ZS) 65.1 50.6 68.6

D3TW [9] ✓ 57.0 - 56.3
CDFL [40] ✓ 63.0 45.8 63.9

DP-DTW [10] ✓ 67.7 50.8 66.5
Ours (S1+S2) ✓ 68.3 51.7 69.3

Table 2: Temporal alignment on the Breakfast-Action (BF) dataset.
We split the previous methods into two groups. For the upper group,
the model has not seen any samples in Breakfast-Action dataset since
Breakfast-Action videos are not download-able from YouTube. For the
lower group, the model is trained with weak supervision on the Breakfast-
Action training set.

Method Trained on YC2 R@1↑ R@5↑ R@10↑ Median R↓
ActBERT [77] ✗ (ZS) 9.6 26.7 38.0 19
MIL-NCE [46] ✗ (ZS) 15.1 38.0 51.2 10
MIL-NCE [46]† ✗ (ZS) 13.9 36.3 48.9 11

TaCo [31] ✗ (ZS) 19.9 43.2 55.7 8.0
Ours (S1) ✗ (ZS) 16.8 41.3 54.8 8.0

Ours (S1 + S2) ✗ (ZS) 20.1 45.5 59.5 7.0

Table 3: Text-based video retrieval on the YouCook2 (YC2) dataset. ZS
refers to “zero-shot”, where the alignment network is only trained on HTM-
180K, and directly evaluated on YouCook2. †: reproduced in [76]. For our
results, S1 denotes only training Stage-1 (initialization), which is the model-A
from Table 1. S1+S2 denotes training with two stages (initialization followed
by co-training), which is the model-E from Table 1.

Datasets. To evaluate the alignment network, we use
Breakfast-Action [34] and YouCook2 [75] for downstream
tasks. To evaluate the end-to-end representation learning,
we use UCF101 [61], HMDB51 [35] and K400 [32].
Temporal Alignment on Breakfast-Action. Given a
video with multiple actions and the corresponding action
descriptions, the model needs to densely label each video
timestamp with one given text description, often defined
as weakly-supervised action segmentation by the commu-
nity. Following previous work [9, 10, 18, 40], we re-
port three metrics: frame-wise accuracy (F-Acc), segment-
wise Intersection-over-Union (IoU) and Intersection-over-
Detection (IoD). Please refer to Appendix for more details.

We evaluate our method with both the zero-shot and fine-
tune settings. In the former case, our alignment network
was only trained on HTM-370K, and directly evaluated on
Breakfast; while in the latter, we finetune our alignment net-
work on Breakfast with a soft-DTW loss [16] stacked on top
of the output alignment matrix for 50 epochs. During infer-
ence, the alignment network takes as input a single video
and the given list of action labels, i.e. ‘crack egg’, ‘fry egg’,
etc, and outputs the alignment matrix A, which is passed
through a DTW, ending up with the action boundaries.

As shown in Table 2, in the zero-shot setting, our
proposed alignment network surpasses the strong base-
line (MIL-NCE) by a large margin on all metrics (> 3%),
and even achieves comparable results to those supervised
approaches. After finetuning, we see a further performance
boost, obtaining state-of-the-art results.

Text-based Video Retrieval on YouCook2. We evaluate
the model for text-based video retrieval on the YouCook2
dataset. For this task, we pass each pre-cropped video seg-
ment through the dual encoder, and take the visual fea-
tures (venc) from the Video Transformer Encoder. Also we
pass the task description phrases into the dual encoder and
take the word2vec features. For each query text, we rank
the video segments based on cosine similarity among 3.5k
candidates. Following previous works [46, 47], we report
retrieval Recall @{1,5,10} and Median Rank.

As shown in Table 3, under the zero-shot setting, where
the proposed alignment network was only trained on HTM-
370K, our model surpasses previous works by a clear mar-

gin, especially on R@5, R@10 and Median R. Importantly,
the results show that the co-training stage substantially im-
proves the performance of the dual encoder (R@1 20.1 vs
16.8), also our method surpasses the baseline method MIL-
NCE by a large margin (R@1 20.1 vs 15.1).
End-to-end Representation Learning. The output of the
Temporal Alignment Network can be used to clean-up (au-
tomatically align) long-video datasets. We use model-H to
automatically align the HTM dataset, and finetune the S3D-
word2vec backbone end-to-end with an Info-NCE loss on
the auto-aligned text-video pairs for only 10 epochs. We
evaluate the visual representation by linear probing on ac-
tion classification, and find the auto-aligned HTM times-
tamps benefits the end-to-end video representation. We re-
fer the readers for more details in the Appendix.

Settings Backbone UCF101 HMDB51 K400
reported by [46] S3D 82.7 53.1 -
reproduce of [46] S3D 82.1 55.2 55.7

finetuned with TAN S3D 83.2 56.7 56.2

Table 4: Linear-probing action classification performance. We evalu-
ate the end-to-end trained visual representations on UCF101, HMDB51
and K400 by linear probing (LP). We show the reported LP results
from [46] (1st row), our reproduction of LP results of the official S3D
weights (2nd row), and our finetuned S3D performance with auto-aligned
HTM under the exact same setting (3rd row).

7. Conclusion
In summary, we introduce a temporal alignment net-

work, with a co-training method for denoising the instruc-
tional video datasets. To evaluate the alignment accuracy
we introduce a new benchmark dataset with 10 hours of
videos, with the narrations manually aligned to correspond-
ing video timestamp. When evaluating on HTM-Align,
Breakfast-Action, YouCook2, under zero-shot or finetune
settings, our model achieves state of the art results, surpass-
ing multiple strong baselines (MIL-NCE, CLIP). We also
show the proposed method can clean-up (by improving the
alignment) large-scale public datasets and further improve
the visual-textual backbone representations.
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[6] Piotr Bojanowski, Rémi Lajugie, Edouard Grave, Fran-
cis Bach, Ivan Laptev, Jean Ponce, and Cordelia Schmid.
Weakly-supervised alignment of video with text. In Proc.
ICCV, 2015. 2

[7] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Proc. ECCV, 2018. 3

[8] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, 2020. 3

[9] Chien-Yi Chang, De-An Huang, Yanan Sui, Li Fei-Fei, and
Juan Carlos Niebles. D3TW: Discriminative differentiable
dynamic time warping for weakly supervised action align-
ment and segmentation. In Proc. CVPR, 2019. 2, 8

[10] Xiaobin Chang, Frederick Tung, and Greg Mori. Learning
discriminative prototypes with dynamic time warping. In
Proc. CVPR, 2021. 8

[11] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Sey-
bold, David A. Ross, Jia Deng, and Rahul Sukthankar. Re-
thinking the faster r-cnn architecture for temporal action lo-
calization. In Proc. CVPR, 2018. 3

[12] Min-Hung Chen, Baopu Li, Yingze Bao, Ghassan Al-
Regib, and Zsolt Kira. Action segmentation with joint self-
supervised temporal domain adaptation. In Proc. CVPR,
2020. 3

[13] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Yu Cheng Zhe Gan, and Jingjing Liu. Uniter:
Learning universal image-text representations. In Proc.
ECCV, 2020. 2

[14] Ramazan Gokberk Cinbis, Jakob J. Verbeek, and Cordelia
Schmid. Weakly supervised object localization with multi-
fold multiple instance learning. In IEEE PAMI, 2015. 3

[15] Timothee Cour, Chris Jordan, Eleni Miltsakaki, and Ben
Taskar. Movie/script: Alignment and parsing of video and
text transcription. In Proc. ECCV, 2008. 2

[16] Marco Cuturi and Mathieu Blondel. Soft-DTW: a differen-
tiable loss function for time-series. In Proc. ICML, 2017. 2,
8

[17] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,

Antonino Furnari, Jian Ma, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. Rescaling egocentric vision. arXiv preprint
arXiv:2006.13256, 2020. 3

[18] Li Ding and Chenliang Xu. Weakly-supervised action seg-
mentation with iterative soft boundary assignment. In Proc.
CVPR, 2018. 2, 8

[19] Jianfeng Dong, Xirong Li, Chaoxi Xu, Shouling Ji, Yuan He,
Gang Yang, and Xun Wang. Dual encoding for zero-example
video retrieval. In Proc. CVPR, 2019. 2

[20] Nikita Dvornik, Isma Hadji, Konstantinos G. Derpanis, Ani-
mesh Garg, and Allan D. Jepson. Drop-dtw: Aligning com-
mon signal between sequences while dropping outliers. In
NeurIPS, 2021. 2

[21] Yazan Abu Farha and Juergen Gall. Ms-tcn: Multi-stage
temporal convolutional network for action segmentatio. In
Proc. CVPR, 2019. 3

[22] Alireza Fathi and James M. Rehg. Modeling actions through
state changes. In Proc. CVPR, 2013. 3

[23] Yunchao Gong, Qifa Ke, and Michael Isardand Svetlana
Lazebnik. A multi-view embedding space for modeling in-
ternet images, tags, and their semantics. IJCV, 2014. 2

[24] Yunchao Gong, Liwei Wang, Micah Hodosh, Julia Hocken-
maier, and Svetlana Lazebnik. Improving image-sentence
embeddings using large weakly annotated photo collections.
In Proc. ECCV, 2014. 2

[25] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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