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Figure 1. Comparison with other methods. Thanks to the proposed SCS-Co, our method can obtain more explicit distortion knowledge
from dynamically generated negative samples, and further jointly constrain the solution space from two aspects of the foreground self-style
and foreground-background style consistency. Coupled with BAIN, our method produces a more photorealistic harmonized result.

Abstract

Image harmonization aims to achieve visual consistency
in composite images by adapting a foreground to make it
compatible with a background. However, existing methods
always only use the real image as the positive sample to
guide the training, and at most introduce the corresponding
composite image as a single negative sample for an aux-
iliary constraint, which leads to limited distortion knowl-
edge, and further causes a too large solution space, mak-
ing the generated harmonized image distorted. Besides,
none of them jointly constrain from the foreground self-
style and foreground-background style consistency, which
exacerbates this problem. Moreover, recent region-aware
adaptive instance normalization achieves great success
but only considers the global background feature distribu-
tion, making the aligned foreground feature distribution bi-
ased. To address these issues, we propose a self-consistent
style contrastive learning scheme (SCS-Co). By dynam-
ically generating multiple negative samples, our SCS-Co
can learn more distortion knowledge and well regularize
the generated harmonized image in the style representa-
tion space from two aspects of the foreground self-style
and foreground-background style consistency, leading to a

*Equal contribution.
†Corresponding author.

more photorealistic visual result. In addition, we propose
a background-attentional adaptive instance normalization
(BAIN) to achieve an attention-weighted background fea-
ture distribution according to the foreground-background
feature similarity. Experiments demonstrate the superiority
of our method over other state-of-the-art methods in both
quantitative comparison and visual analysis.

1. Introduction

Image composition is widely used in image editing
[6, 45] and data augmentation [7, 46], which targets syn-
thesizing a composite image by extracting the foreground
of one image and pasting it on the background of another
image. However, since the foreground and background ap-
pearance will be distinct due to different capture conditions,
the composite image often looks unrealistic, i.e., suffers
from the inharmony problem. Therefore, image harmoniza-
tion, which aims to adjust the appearance of the foreground
to make it compatible with the background in the composite
image, is significant and challenging.

Numerous deep learning-based methods have been pro-
posed for image harmonization. However, most methods
[6, 14, 15, 35, 39, 48] do not consider this problem from the
perspective of visual style. Hence, they fail to ensure a vi-
sual style consistency between the foreground and the back-
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ground [24]. Methods based on domain translation [4, 5]
implicitly consider this problem from the perspective of
domain-consistency, but do not directly transform the fore-
ground feature in the generator.

Recently, Ling et al. [24] explicitly introduce the con-
cept of visual style and first regard image harmonization
as a background-to-foreground style transfer problem1. In-
spired by AdaIN [18], they propose a region-aware adap-
tive instance normalization (RAIN) for image harmoniza-
tion and achieve great success. However, as shown in Fig-
ure 1(d), the distortion still exists or even is very severe in
some cases.

We argue that two issues lead to the above dilemma: (1)
Just like the problem with AdaIN, RAIN only considers the
global style distribution in the background and aligns the
foreground feature distribution with it. However, as a com-
mon intuition, areas in the background that feature-similar
to the foreground need more attention. For example, in
the first row of Figure 1, the foreground object reappears
twice in the background. The model should pay more atten-
tion to the local style distributions of these two areas. (2)
The second is a general issue, not limited to the style-based
method, and is the core issue we want to solve. Most ex-
isting methods [6, 14, 15, 35, 39, 48] only use real images
to guide the training via an L1 loss, which is too simple
and cannot constrain the solution space well [42]. Toward
this end, DoveNet [5] and RainNet [24] adopt a domain
verification loss. However, it only regards the foreground-
background feature similarity of the real/harmonized image
as positive/negative, and the input composite image is not
used, which contains important distortion knowledge. In
other words, it is just a positive-orient constraint. In ad-
dition, since image harmonization aims to adjust the fore-
ground, why not directly constrain the foreground feature?
Considering the above problems, Cong et al. propose a
triplet loss [4]. However, it directly pulls the foreground
domain code to the background domain code, which is too
strong and will be interfered by content information. One
more important problem is that only using the input com-
posite image as the negative sample, leading to limited ex-
ternal distortion knowledge [41, 42], and the learned fea-
ture distribution easily becomes biased [25, 41]. In sum-
mary, why not dynamically generate multiple negative sam-
ples and jointly constrain from the foreground self-style and
foreground-background style consistency to obtain more
distortion knowledge and reduce the solution space?

Motivated by the observations and analyses above, we
try to address these two issues. For the first issue, inspired
by [26, 29], we propose a Background-attentional Adap-
tive Instance Normalization (BAIN). It can learn the feature
similarity between the foreground and background, and cal-

1In fact, for a similar task, namely painterly harmonization, Luan et
al. [27] introduce the concept of visual style earlier.
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Figure 2. The illustration of our SCS-Co, including SCS-CR and
the dynamic negative samples generation strategy. The detail of
this strategy is shown in Figure 4.

culate an attention-weighted style distribution of the back-
ground according to this feature similarity. Finally, the fore-
ground feature distribution is aligned with this distribution.

For the second issue, we attempt to solve it by consid-
ering the positive and negative relations simultaneously in
the form of contrastive learning. Specifically, we propose
a novel Self-Consistent Style Contrastive Learning Scheme
(SCS-Co) (see Figure 2), including a Self-Consistent Style
Contrastive Regularization (SCS-CR) and a Dynamic Nega-
tive Samples Generation Strategy (see Figure 4). For a com-
posite image Ĩ , we denote its corresponding harmonized
image Î and its ground truth real image I as the anchor and
positive sample, respectively. We also denote this compos-
ite image Ĩ as the first negative sample Ĩ−1 . More nega-
tive samples with the same content but different distortions
are achieved via our dynamic negative samples generation
strategy. Then we try to pull the anchor sample closer to the
positive sample and push the anchor sample away from neg-
ative samples in the style representation space. In detail, for
more powerful constraint, we not only constrain from the
foreground self-style representation, but also use the back-
ground style representation as guidance to constrain from
the foreground-background style consistency.

Our contributions are summarized as three-fold:

• For the first time, we introduce contrastive learning to
image harmonization. Our self-consistent style con-
trastive learning scheme (SCS-Co) can further improve
the performance of existing image harmonization net-
works without any increase in model parameters.

• We develop a background-attentional adaptive in-
stance normalization (BAIN). It learns a foreground-
background feature similarity attention map and prop-
erly normalizes the foreground feature by the per-point
attention-weighted background feature statistics.

• Extensive experiments prove that our method is pow-
erful for image harmonization. Compared with other
state-of-the-art methods, our method obtains superior
results in both quantitative metrics and visual quality.
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Figure 3. The architecture of our method, which consists of (a) image harmonization network, (b) self-consistent style contrastive regular-
ization and (c) dynamic negative samples generation strategy. Please note that the first negative sample Ĩ−1 is the input composite image Ĩ .
(b) and (c) make up our self-consistent style contrastive learning scheme.

2. Related Work
Image Harmonization. Various approaches have been
proposed for image harmonization. Traditional methods fo-
cus on better transferring hand-crafted low-level appearance
statistics, such as color statistics [31,32,45], gradient infor-
mation [19, 30, 37], multi-scale various statistics [36] be-
tween foreground and background regions. However, they
could not address complex cases where the foreground im-
age has a large appearance gap with the background image.
With the advances of deep learning, more deep learning-
based methods were proposed. To learn the differences be-
tween various low-level features in the composite images,
Cun and Pun [6] design an additional spatial-separated at-
tention module. In [39], they present an end-to-end CNN
network for image harmonization and incorporate an auxil-
iary segmentation branch to use semantic information. Guo
et al. [15] first model image harmonization based on intrin-
sic image theory and adopt an autoencoder to disentangle
composite image into reflectance and illumination for sepa-
rate harmonization. In [35], they combine pre-trained se-
mantic segmentation models with encoder-decoder archi-
tectures for image harmonization. With the rise of Trans-
former, Guo et al. [14] design the first harmonization Trans-
former frameworks without and with disentangled represen-
tation. In [20], they propose the first self-supervised har-
monization framework that needs neither human-annotated
masks nor professionally created images for training.

Arbitrary Style Transfer. Arbitrary style transfer is a
technique used to render a photo with a particular visual

style by synthesizing global and local style patterns from
a given style image evenly over a content image while
maintaining its original structure. Originating from non-
realistic rendering [22], earlier image style transfer meth-
ods are closely related to texture synthesis [8–10]. Adopt-
ing the success of deep learning, Gatys et al. first formu-
late style transfer as the matching of multi-level deep fea-
tures extracted from a pre-trained deep neural network and
achieve surprising performance [11]. Huang et al. cre-
ate a novel way for real-time style transfer by matching
the mean-variance statistics between content and style fea-
tures (AdaIN) [18]. Afterwards, many methods are pro-
posed [1, 13, 26, 43, 47]. However, as stressed in [24], these
style transfer methods are not practical for our task because
the style defined in our work is consistent with image real-
ism instead of texture, and our task is region-aware, which
otherwise will introduce new problems of feature shift.

Contrastive Learning. Contrastive learning has demon-
strated its effectiveness in self-supervised representation
learning [3, 16, 17, 28, 33, 38, 44]. Instead of using a pre-
defined and fixed target, contrastive learning aims to pull
positive samples close to the anchor and push negative sam-
ples away in a representation space, increasing mutual in-
formation. However, different from high-level vision tasks
[3, 12, 16, 17], which inherently suit for modeling the con-
trast between positive and negative samples, there are still
few works applying contrastive learning to low-level vision
tasks due to their difficulty in constructing negative sam-
ples and contrastive loss [40–42]. In this paper, specifically
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for image harmonization, we design a self-consistent style
contrastive learning scheme.

3. Our Method
3.1. Problem Formulation

Given a foreground image If and a background image
Ib, the object composition process of the composition image
can be formulated as Ĩ = M · If + (1 −M) · Ib, where ·
is element-wise multiplication, M is the foreground mask,
which indicates the region to be harmonized, and therefore
the background mask is M̄ = 1−M . Our goal is to learn a
harmonization network G, whose output is the harmonized
image as Î = G(Ĩ ,M) and should be close to the ground
truth real image I by Lrec = ‖I − Ĩ‖1.

3.2. Image Harmonization Network

As shown in Figure 3(a), our network G is based on U-
Net with skip links from the encoder to the decoder. Their
details can be found in supplementary. In addition, we
propose a background-attentional adaptive instance normal-
ization (BAIN) inserted between the encoder and decoder,
which will be explained in detail in Section 3.4.

3.3. Self-Consisitent Style Contrastive Learning
Scheme (SCS-Co)

As shown in Figure 2, our SCS-Co contains SCS-CR and
the dynamic negative samples generation strategy. In de-
tail, SCS-CR consists of self-style contrastive regularization
(SS-CR) and consistent style contrastive regularization (CS-
CR). We make it clear that self-style refers to the style of the
foreground, and consistent style refers to the foreground-
background style consistency.

Formulation. For our SCS-Co, we need to resolve two
key issues. One is to construct positive and negative sam-
ples. In our SCS-Co, we choose the harmonized image Î
generated by the image harmonization network G and the
corresponding real image I as the anchor and the positive
sample, respectively. The most important task is to con-
struct negative samples. We can simply use the input com-
posite image Ĩ as the only negative sample. However, as
emphasized in existing contrastive learning methods [3,16],
a large dictionary covering a rich set of negative samples is
critical for good representation learning. Therefore, during
the training process, for each input composite image Ĩ , we
generate K negative samples online. Specifically, we pro-
pose a dynamic negative samples generation strategy. As
shown in Figure 4, given an input composite image Ĩ (Red
box), we use it as the first negative sample Ĩ−1 . Then we
get its corresponding real image I and segment the fore-
ground region Rf according to the foreground mask M .
Afterwards, we sample K − 1 images (other than Ĩ−1 ) from

Mini-batch

Color
Transfer

Randomly
Sample

Corresponding 
Real Image

Negative 
Sample

Figure 4. The illustration of our dynamic negative samples gen-
eration strategy. Red box indicates the input composite image.
Through this strategy, more negative samples with the same con-
tent but different distortions are obtained, which provide much dis-
tortion knowledge.

the same mini-batch and segment their foreground regions.
As suggested in [5,39], we transfer the color information of
these K − 1 foreground regions to Rf respectively, leading
to K − 1 negative samples. Finally, we successfully obtain
K negative samples, i.e., Ĩ−k , k = 1, 2, 3, ...,K.

The other is to find the style representation space of
these samples for contrast. We use a fixed pre-trained style
representation extractor R and introduce the foreground
mask M and the background mask M̄ = 1 − M to ob-
tain style representations for different regions. Specifi-
cally, we input Î , I and Ĩ−k , k = 1, 2, 3, ...,K. Then
we can obtain the anchor foreground style representation
f = R(Î ,M), the positive foreground style representation
f+ = R(I,M), the positive background style representa-
tion b+ = R(I, M̄), and negative foreground style repre-
sentations f−k = R(Ĩ−1 ,M), k = 1, 2, 3, ...,K.

Thus, SS-CR can be formulated as:

Lss−cr =
D (f, f+)

D (f, f+) +
∑K

k=1D
(
f, f−k

) , (1)

whereD(x, y) = ‖x−y‖1 denotes the L1 distance between
x and y. As shown in Figure 2, our SS-CR focuses on the
foreground self-style, pulling f closer to f+ and pushing f
away from {f−k }Kk=1.

However, so far we have not used the background style
representation, which is a powerful guidance for image har-
monization [4]. Therefore, we further make contrastive
constraints from the perspective of foreground-background
style consistency. Specifically, we calculate the style con-
sistency between f and b+ as c = Gram(f, b+), where
Gram(·) means Gram Matrix [11]. Similarly, we can ob-
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tain c+ = Gram(f+, b+), and c−k = Gram(f−k , b
+), k =

1, 2, 3, ...,K.
Thus, CS-CR can be formulated as:

Lcs−cr =
D (c, c+)

D (c, c+) +
∑K

k=1D
(
c, c−k

) , (2)

As shown in Figure 2, our CS-CR focuses on the
foreground-background style consistency, pulling c closer
to c+ and pushing c away from {c−k }Kk=1.

Finally, the total loss function for training is:

Lscs−cr = Lss−cr + Lcs−cr,

L = Lrec + λ · Lscs−cr.
(3)

where λ is a hyperparameter for balancing the reconstruc-
tion loss and SCS-CR.

Difference with the triplet loss. Compared with the
triplet loss [4], as shown in Figure 2, we use a contrastive
learning framework. Our SCS-Co dynamically generates
K negative samples online and pushes the output harmo-
nized image away from them. Through such multiple push
operations, more powerful constraints can be performed in
the representation space. In addition, our SCS-Co does not
simply pull f to b+, but constrains from the perspective
of foreground-background style consistency. More experi-
ments demonstrate our SCS-Co outperforms the triplet loss
for image harmonization (see Section 4.3).

3.4. Background-attentional Adaptive Instance
Normalization (BAIN)

Formulation. We illustrate the structure of BAIN in Fig-
ure 5. Let F ∈ RC×H×W be the feature map produced by
the encoder and M ∈ R1×H×W be the resized foreground
mask, where C, H , W indicate the number of channels,
height, and width of F , respectively.

Specifically, in order to learn the foreground feature and
background feature individually, we first separate the fore-
ground feature map and background feature map with the
corresponding mask:

Fb = F · M̄,

Ff = F ·M,
(4)

where Fb and Ff are the background feature map and fore-
ground feature map. Then, we adopt instance normalization
to normalize Fb and Ff . The normalized foreground feature
map F̄f at site (c, h, w) is computed by:

F̄ c,h,w
f =

F c,h,w
f − µc

f

σc
f

, (5)

where µc
f and σc

f denote the channel-wise mean and stan-
dard variance of the foreground feature map. Similarly, we
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Figure 5. Background-attentional Adaptive Instance Normaliza-
tion (BAIN).

can obtain the normalized background feature map F̄b. Fur-
ther, we transform F̄f , F̄b and Fb into Q (query), K (key)
and V (value) as:

Q = f(F̄f ),K = b(F̄b), V = k(Fb), (6)

where f(·), b(·) and k(·) are 1 × 1 convolutions. Thus, the
attention map A ∈ RHW×HW can be calculated as:

A = Softmax
(
Q> �K

)
, (7)

where � indicates matrix multiplication.
Then we calculate attention-weighted background ex-

pectation and standard variance respectively. The attention-
weighted background expectationE ∈ RC×HW can be cal-
culated as:

E = V �A>, (8)

Since the variance of a variable equals to the expectation
of its square minus the square of its expectation, we can
obtain the attention-weighted background standard variance
S ∈ RC×HW as:

S =
√

(V · V )�A> − E · E, (9)

Finally, we reshape E and S to RC×H×W , and align F̄f

with E and S. The aligned foreground feature map Faf at
site (c, h, w) is computed by:

F c,h,w
af = Sc,h,w · F̄ c,h,w

f + Ec,h,w. (10)

Difference with RAIN. Inspired by AdaIN [18], Ling et
al. propose RAIN [24] for image harmonization and achieve
great success. However, just like the problem with AdaIN,
RAIN only considers the holistic style distribution in the
background and globally aligns the foreground feature dis-
tribution with that of the background feature. Different from
RAIN, inspired by [26, 29], our BAIN can pay more atten-
tion to those areas in the background that feature-similar
to the foreground, and based on this attention map, the
attention-weighted expectation and standard variance of the
background feature are calculated to locally align the fore-
ground feature distribution.
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Table 1. Quantitative comparison across four sub-datasets of iHarmony4 [5]. ↑ means the higher the better, and ↓ means the lower the
better. Red and blue indicate the best and second best performance, respectively.

Dataset Metric Composite DIH [39] S2AM [6] DoveNet [5] BargainNet [4] Guo et al. [15] RainNet [24] iS2AM [35] D-HT [14] Ours

HCOCO
PSNR↑ 33.94 34.69 35.47 35.83 37.03 37.16 37.08 39.16 38.76 39.88
MSE↓ 69.37 51.85 41.07 36.72 24.84 24.92 29.52 16.48 16.89 13.58

fMSE↓ 996.59 798.99 542.06 551.01 397.85 416.38 501.17 266.19 299.30 245.54

HAdobe5K
PSNR↑ 28.16 32.28 33.77 34.34 35.34 35.20 36.22 38.08 36.88 38.29
MSE↓ 345.54 92.65 63.40 52.32 39.94 43.02 43.35 21.88 38.53 21.01

fMSE↓ 2051.61 593.03 404.62 380.39 279.66 284.21 317.55 173.96 265.11 165.48

HFlickr
PSNR↑ 28.32 29.55 30.03 30.21 31.34 31.34 31.64 33.56 33.13 34.22
MSE↓ 264.35 163.38 143.45 133.14 97.32 105.13 110.59 69.67 74.51 55.83

fMSE↓ 1574.37 1099.13 785.65 827.03 698.40 716.6 688.40 443.65 515.45 393.72

Hday2night
PSNR↑ 34.01 34.62 34.50 35.27 35.67 35.96 34.83 37.72 37.10 37.83
MSE↓ 109.65 82.34 76.61 51.95 50.98 55.53 57.40 40.59 53.01 41.75

fMSE↓ 1409.98 1129.40 989.07 1075.71 835.63 797.04 916.48 590.97 704.42 606.80

Average
PSNR 31.63 33.41 34.35 34.76 35.88 35.90 36.12 38.19 37.55 38.75
MSE↓ 172.47 76.77 59.67 52.33 37.82 38.71 40.29 24.44 30.30 21.33

fMSE↓ 1376.42 773.18 594.67 532.62 405.23 400.29 469.60 264.96 320.78 248.86

4. Experiments
4.1. Experimental Settings

Datasets. Following the same setting as previous methods
[5,24], we use the benchmark dataset iHarmony4 [5] to train
and evaluate, which consists of four sub-datasets: HCOCO,
HAdobe5k, HFlickr, and Hday2night. We follow the same
settings of iHarmony4 as DoveNet [5]. We also evaluate our
method on 99 real composite images released by [39].

Evaluation Metrics. Following [4, 5, 24, 35], the harmo-
nized results are evaluated with Peak Signal-to-Noise Ratio
(PSNR), Mean Squared Error (MSE) and foreground MSE
(fMSE) on RGB channels. fMSE is an evaluation metric
that only calculates MSE in the foreground region, measur-
ing how well the foreground is harmonized.

Compared Methods. We compare with numerous SOTA
image harmonization methods: DIH [39], DoveNet [5],
RainNet [24], iS2AM [35], D-HT [14], etc. We do not com-
pare with traditional image harmonization methods since
they have been proven to perform worse than deep learn-
ing methods [4,5,24]. All the results are either provided by
the authors, or produced by their officially released codes.

Implementation Details. Our model is trained by Adam
optimizer with β1 = 0.9, β2 = 0.999, and ε = 10−8. We
train the model for 120 epochs with input images resized
to 256 × 256 and batch size set to 12. The initial learn-
ing rate is set to 10−3 and multiply by 0.1 in the 100th and
110th epoch. We use PyTorch to implement our models
with Nvidia 2080Ti GPUs. Due to the powerful style rep-
resentation ability of the VGG network [21], we choose the
fixed pretrained VGG-16 [34] as the style representation ex-
trector and use the latent feature at layer relu4-3. We set
λ = 0.01 in Eq. (3). For the number of negative samples,
we set K = 5, and will be further explored in Section 4.3.

4.2. Comparison with Existing Methods

Performance on Synthesized iHarmony4 Dataset. Ta-
ble 1 shows the quantitative results of previous state-of-
the-art methods as well as our method. From Table 1, we
can observe that our method outperforms other compared
methods on all datasets, except for MSE and fMSE value
on Hday2night. Moreover, compared with the second best
method, our method achieves a huge average performance
gain of 0.56 dB in PSNR, 3.11 in MSE, and 16.1 in fMSE.

In Figure 6, we further present qualitative comparison
results on iHarmony4. It can be easily observed that our
method obtains a more consistent visual style in the whole
composite image, achieving a more photorealistic output.
For example, as shown in the third row of Figure 6, the vi-
sual style of the foreground and the background are quite
different, resulting in obvious image distortion. The other
three methods cannot adjust the style of the foreground, es-
pecially the overall tone and the contrast of lighting and
shadows. Unlike them, our method produces a more photo-
realistic result and is closer to the ground-truth real image.

Performance on Real Composite Images. Figure 7
presents some results on real composite images released by
DIH [39]. Because there is no ground truth image as a ref-
erence, it is impossible to compare different methods quan-
titatively using PSNR, MSE or fMSE. However, we can still
find that our method achieves the best visual effect. Please
refer to supplementary for more visual comparison.

We further conduct a user study. Following [4,5,15], we
invite 60 volunteers and acquire a total of 29700 pairwise
results for all 99 images, with 30 results for each pair of
different methods on average. Then, we use the Bradley-
Terry model (B-T model) [2, 23] to calculate the global
ranking score for each method. Table 2 demonstrates that
our method achieves the highest B-T score, which proves
its effectiveness in real-world applications.
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Input iS2AM [35] DoveNet [5] RainNet [24] Ours Real (Ground Truth)

Figure 6. Qualitative comparison on samples from the testing dataset of iHarmony4 [5]. Red boxes in composite images mark foreground.

Table 2. B-T scores comparison on 99 real composite images.

Method Composite DIH [39] DoveNet [5] RainNet [24] Ours

B-T score↑ 0.574 0.889 1.075 1.213 1.841

Composite DIH [39] DoveNet [5] RainNet [24] Ours

Figure 7. Example results on real composite images taken from
[39]. Red boxes in composite images mark foreground.

4.3. Ablation Studies

Effects of BAIN and SCS-Co. In Table 3, we find that
when BAIN is added, the PSNR value is improved from
37.55 dB to 37.84 dB. When SCS-Co is used, the PSNR
value is improved from 37.55 dB to 38.42 dB. After adopt-
ing both of them, the PSNR value is further improved to
38.75 dB. A similar phenomenon also appears on other met-
rics. These comparisons demonstrate the effectiveness of
our BAIN and SCS-Co, and they cooperate very well to
further improve the performance. In addition, to further

illustrate the effectiveness of our BAIN and SCS-Co, we
show some output results of ablation experiments in Figure
8. It can be found that compared with the distortion results
produced by the baseline, after adding BAIN, the color and
lighting of the output results are close to the real images,
but there is still a certain degree of deviation. After the in-
troduction of SCS-Co, the deviation is further corrected, the
output results are very close to the real images. More abla-
tion studies on BAIN can be found in supplementary.

SS-CR and CS-CR in SCS-CR. SCS-CR is a key com-
ponent of our SCS-Co and it consists of SS-CR and CS-CR.
Therefore, we investigate SS-CR and CS-CR in SCS-CR.
As shown in Table 4, we find that both SS-CR and CS-CR
significantly improve the performance of our model, and the
best result is achieved by using them all. The combination
of them can strictly regularize the harmonized image in the
style representation space, which significantly facilitates the
generation of photorealistic visual results.

Number of Negative Samples. We further study the ef-
fect of the number of negative samples. As shown in Fig-
ure 9, adding more negative samples achieves better per-
formance, because the more negative samples, the more
powerful constraints can be performed. However, in Fig-
ure 9, we also observe that as the number of negative sam-
ples increases, the gain brought by adding negative samples
decreases. Besides, it takes longer training time when in-
creasing the number of negative samples. Therefore, for the
performance-efficiency trade-off, we finally choose to use
five negative samples, i.e., we set K = 5.
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Table 3. Performance of the baseline with BAIN and/or SCS-Co.
The network with both BAIN and SCS-Co performs best.

BAIN SCS-Co PSNR↑ MSE↓ fMSE↓

% % 37.55 27.81 294.64
! % 37.84 25.23 269.05
% ! 38.42 22.98 249.65
! ! 38.75 21.33 248.86

Composite Real Baseline w/ BAIN Full model

Figure 8. Ablation study on BAIN and SCS-Co. Full model means
baseline with both BAIN and SCS-Co.

Table 4. Ablation Study on SS-CR and CS-CR in SCS-CR.

SS-CR CS-CR PSNR↑ MSE↓ fMSE↓

% % 37.55 27.81 294.64
! % 38.03 24.09 258.64
% ! 37.88 25.06 269.79
! ! 38.42 22.98 249.65
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Figure 9. Performance of using different numbers of negative sam-
ples in SCS-Co. We report PSNR and fMSE.

Comparison of SCS-Co and Triplet Loss. In section
3.3, we discuss the difference between our SCS-Co and the
triplet loss in [4]. To further prove the effectiveness of our
SCS-Co, we add the triplet loss to the baseline network and
compare its result with our SCS-Co. In Table 5, we can find
that compared with using the triplet loss, using our SCS-
Co brings much more performance improvement, increas-
ing 0.48 dB in PSNR. A similar phenomenon also appears
on other metrics. Moreover, we setK = 1, i.e., we only use
the input composite image as the negative sample, which is
consistent with the triplet loss. As shown in Table 5, our
SCS-Co (K = 1) still obtains obvious improvement over
the triplet loss. It proves that the improvement of our SCS-
Co is not only by introducing more dynamically generated

Table 5. Comparison of SCS-Co and the triplet loss [4].

Method Baseline w/ Triplet Loss w/ SCS-Co w/ SCS-Co (K = 1)

PSNR↑ 37.55 37.94 38.42 38.13
MSE↓ 27.81 25.48 22.98 23.32

fMSE↓ 294.64 274.65 249.65 266.43

Table 6. Results of integrating SCS-Co into SOTA methods.

Method RainNet [24] DIH [39] S2AM [6]

PSNR↑ 37.07(↑0.95) 34.09(↑0.68) 35.13(↑0.78)
MSE↓ 34.92(↓5.37) 74.72(↓2.05) 53.86(↓5.81)

fMSE↓ 364.29(↓105.31) 707.16(↓66.02) 538.99(↓55.68)

negative samples, but also by using a contrastive learning
framework and constraining from the foreground self-style
and foreground-background style consistency.
Universality of SCS-Co. To evaluate the universality of
our SCS-Co, we integrate it into three SOTA methods:
RainNet [24], DIH [39] and S2AM [6]. As shown in Ta-
ble 6, after integrating SCS-Co, the performance of each
method is improved. This proves the universality of our
SCS-Co, which can be easily added to different models
without any increase in model parameters.

5. Conclusion
In this paper, we propose a novel self-consistent style

contrastive learning scheme (SCS-Co) with a self-consistent
style contrastive regularization (SCS-CR) and a dynamic
negative samples generation strategy. SCS-Co is built upon
contrastive learning to ensure that the output harmonized
image (anchor sample) is pulled closer to the real image
(positive sample) and pushed away from the composite im-
age (the first negative sample) and other dynamically gen-
erated negative samples in the style representation space.
The constraint is jointly from two aspects of the foreground
self-style and foreground-background style consistency. As
a result, our SCS-Co can learn more distortion knowledge
and reduce the solution space well. Moreover, we pro-
pose a background-attentional adaptive instance normaliza-
tion (BAIN) to pay more attention to those areas in the
background that feature-similar to the foreground, and the
attention-weighted background feature distribution is cal-
culated to locally align the foreground feature distribution.
Experiments demonstrate that our method is superior to
other SOTA methods on both synthetic and real datasets.
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