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Abstract

This paper presents new hierarchically cascaded trans-
formers that can improve data efficiency through attribute
surrogates learning and spectral tokens pooling. Vision
transformers have recently been thought of as a promis-
ing alternative to convolutional neural networks for vi-
sual recognition. But when there is no sufficient data, it
gets stuck in overfitting and shows inferior performance.
To improve data efficiency, we propose hierarchically cas-
caded transformers that exploit intrinsic image structures
through spectral tokens pooling and optimize the learnable
parameters through latent attribute surrogates. The intrin-
sic image structure is utilized to reduce the ambiguity be-
tween foreground content and background noise by spec-
tral tokens pooling. And the attribute surrogate learning
scheme is designed to benefit from the rich visual infor-
mation in image-label pairs instead of simple visual con-
cepts assigned by their labels. Our Hierarchically Cas-
caded Transformers, called HCTransformers, is built upon
a self-supervised learning framework DINO and is tested
on several popular few-shot learning benchmarks.

In the inductive setting, HCTransformers surpass the
DINO baseline by a large margin of 9.7% 5-way 1-
shot accuracy and 9.17% 5-way 5-shot accuracy on
miniImageNet, which demonstrates HCTransformers are
efficient to extract discriminative features. Also, HCTrans-
formers show clear advantages over SOTA few-shot clas-
sification methods in both 5-way 1-shot and 5-way 5-shot
settings on four popular benchmark datasets, including
miniImageNet, tieredImageNet, FC100, and CIFAR-FS.
The trained weights and codes are available at https:
//github.com/StomachCold/HCTransformers.

*Corresponding author:wfge@fudan.edu.cn

1. Introduction
Few-shot learning [16, 33, 53] refers to the problem of

learning from a very small amount of labeled data, which
is expected to reduce the labeling cost, achieve a low-cost
and quick model deployment, and shrink the gap between
human intelligence and machine models. The key prob-
lem of few-shot learning is how to efficiently learn from
the rich information hidden in annotated data. Inspired by
the part-whole hierarchical concepts used in GraphFPN [71]
and GLOM [21], part layout information of objects/scenes
contains various visual information. If it can be embedded
in vision transformers to guide the feature learning, we will
get discriminative feature representations. Meanwhile, to
avoid the concentration of visual information on single con-
cepts, we need to expand the hidden information of image
labels into a much more general semantic representation.
Then how to mine such latent information and generate a
complete description of visual concepts becomes important.

In this paper, we aim to improve the data efficiency in
ViT [13] for few-shot image classification. To be specific,
we design a meta feature extractor composed of three con-
secutively cascaded transformers, each of which models the
dependency of image regions at different semantic levels.
The output tokens of a previous transformer are passed to
a spectral tokens pooling layer to produce the input tokens
for the subsequent. The spectral tokens pooling is partly
based on spectral clustering [38, 64], where features of to-
kens within the same clusters are averaged to generate new
token descriptors for the subsequent transformer. The moti-
vation behind the spectral tokens pooling is to bring the im-
age segmentation hierarchy into transformers. That means
when the transformer performs self-attention, it needs to
consider the image layout not simply through the positional
embedding, but from the semantic relationship of different
image regions. In our implementation, each token can be
thought to represent some specific region within an image.
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We treat every token as a vertex in a graph and the token
similarity matrix describes the edge connectivity. Thus,
the spectral tokens pooling becomes an image segmentation
problem and can be solved efficiently as that in normalized
cut [49].

In practice, we insert two spectral tokens pooling lay-
ers between three transformers. Since they capture the se-
mantic dependencies of tokens in different hierarchies, we
call them Hierarchically Cascaded Transformers (written as
HCTransformers). Besides, we don’t utilize the supervision
information directly as that in other state-of-the-art few-shot
learning methods [11, 12, 18, 58, 73]. Instead, we introduce
a latent attribute surrogates learning scheme to learn robust
representations of visual concepts. We hallucinate some la-
tent semantic surrogates for each class to guide the learning
of deep models. The latent semantic surrogates also have
learnable parameters that can be jointly learned with the
parameters of transformers end-to-end. In fact, it’s a kind
of weakly supervised learning by generalizing image-level
annotation into attribute-level supervision. Based on such
a latent attribute surrogate learning scheme, we avoid di-
rectly mapping an image into a single visual concept from
a predefined set of object categories.

The contributions of this paper are as follows:

• We employ ViT as the meta feature extractor for few-
shot learning and propose Hierarchically Cascaded
Transformers (HCTransformers), which greatly im-
prove the data efficiency through attribute surrogates
learning and spectral tokens pooling.

• We propose a latent supervision propagation scheme
for transformers in a weakly supervised manner. It
converts the image label prediction task into a latent
attribute surrogates learning problem. In this way,
both the class and patch tokens can be supervised effi-
ciently.

• We introduce a novel spectral tokens pooling scheme
to transformers. It models the dependency relationship
of image regions in both the spatial layout and the se-
mantic relationship. Due to such a mechanism, ViT
can learn much more discriminative features at differ-
ent semantic hierarchies.

• Experiments demonstrate that our HCTransformers
surpass its DINO baseline on miniImageNet [53], and
outperform other state-of-the-art algorithms signifi-
cantly on multiple few-shot learning benchmarks, in-
cluding miniImageNet [53], tieredImageNet [46], and
CIFAR-FS [4] and FC-100 [39].

2. Related Work
Meta-/Few-shot Learning. Meta-learning or “learning to
learn” [2,41] refers to improving a learning task by learning

over multiple learning episodes. Meta-learning has become
the dominant paradigm for few-shot learning [15, 51].
Various meta-learning based methods have been proposed
for few-shot image classification, such as MAML [15],
REGRAB [43], TAML [23], MetaOptNet [28], and etc.
However, according to [9, 17, 42], training CNNs from
scratch with meta-learning shows inferior performance in
comparison to fine-tuning a CNN feature extractor pre-
trained in a standard manner. There are also other methods
focusing on better feature extraction [59], additional
knowledge [56], knowledge transfer [29], and graph neural
networks [26]. Different from previous meta-learning
methods, we introduce the inherent semantic hierarchies
of images into transformers and supervise the parameter
learning with latent attribute surrogates. In this way, we
alleviate the overfitting problem and get impressive results.

Tokens Pooling in Transformers. ViT [13] directly ap-
plies transformer architecture into vision tasks by splitting
input image into 16 × 16 tokens via patch embedding.
Despite impressive results on several vision benchmarks,
vanilla transformer architectures focus on attending global
information while neglecting local connections, which
hinders the use of fine-grained image features thus leading
to their data-hungry nature. Many subsequent works
address this issue by establishing a progressive shrinking
pyramid that allows models to explicitly process low-level
patterns. There is a group of approaches that merge tokens
within each fixed window into one to reduce the number
of tokens [7, 20, 31, 40, 54, 57, 66]. In contrast, the second
group of methods drops this constraint and introduces
more flexible selection scheme [8, 37, 44, 67]. While our
HCTransformers allow tokens to be adaptively merged with
their neighboring tokens according to their spatial layout
and semantic similarities.

Supervise Patch Tokens in Transformers. ViT [13] adds
a [cls] token to globally summarize the integral information
of patch tokens and only this token directly receives super-
vision signals. However, other tokens maintain the ability
to express distinctive patterns and may delicately assist fi-
nal prediction. Some works proposed to remove the [cls] to-
ken and construct a global token by integrating patch tokens
via certain average pooling operation [7, 31, 40, 45]. LV-
ViT [24] explored the possibility of jointly utilizing [cls] to-
ken and patch tokens. It reformulates the classification task
with the token labeling problem. Likewise, So-ViT [60] ap-
plied a second-order and cross-covariance pooling to visual
tokens, which is combined with the [cls] token for final clas-
sification. Our method shares similar intuition with these
two methods, but the difference is apparent. We integrate
patch tokens as a weighted sum where scores are calcu-
lated based on their connections with the global [cls] token,
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which aims to mostly utilize significant patch tokens. Be-
sides, we suppose the integrated patch tokens do not share
the feature space with the [cls] token and supervise them
within their own feature space.

3. Hierarchically Cascaded Transformers
3.1. Overview

The core of HCTransformers is to make the full usage
of the annotated data to train transformers as a strong meta
feature extractor for few-shot learning. To benefit from
existing self-supervised learning techniques [6, 19], we use
DINO [6] as our base learning framework and multi-crop
strategy [5] to conduct knowledge distillation [22]. In the
pretraining stage of few-shot learning, we can access image
labels. We design a latent attribute surrogate learning
scheme for both patch tokens and the [cls] tokens to avoid
directly learning from labels. To incorporate the semantic
hierarchy into transformers, we insert a spectral tokens
pooling layer between two ViTs [13]. The output similarity
matrix of patches can be used to conduct spectral clustering
to segment patches into disjoint regions. Then the feature
average of patches in the same region is treated as a
new token feature, which captures higher-level semantic
information. In Fig. 1, we illustrate the complete pipeline
of our proposed method.

3.2. Preliminary

Similar to BYOL [19], DINO [6] employs a knowledge
distillation framework for self-supervised learning with two
homogeneous networks: teacher and student, where the
teacher’s parameter (θt) is an exponential moving average
results of the updated student’s parameter (θs) on the foun-
dation of ViT [13] architecture. Each network consists of a
transformer encoder and a classification head (i.e., a multi-
layer perceptron and one fully connected layer).

Given an input image x ∈ RH×W×C , DINO first re-
shapes x into a sequence of flattened 2D patch tokens tp ∈
RN×D. tp is then concatenated with a learnable class token
tc ∈ R1×D for an augmented sequence T ∈ R(N+1)×D.
Here, {H,W} denote the spatial resolution of the input im-
age, C stands for the image channel number. N = HW/P 2

is the resulting number of patches, where P denotes the
patch size. D represents the encoded feature dimension.
After passing through the transformer encoder, the sequence
enhances its representation through self-attention. We de-
note the enhanced patch tokens as fp(x) ∈ RN×D. Like-
wise, the enhanced [cls] token is denoted as fc(x) ∈ R1×D.
Moreover, the token similarity matrix A ∈ R(N+1)×(N+1)

can be acquired from the self-attention process. Afterwards,
only the encoded [cls] token is used for final prediction. We
pass this [cls] token to the projection head to map it into a

higher D′-dimension, which is denoted as P (x).
Besides, DINO employs a multi-crop training augmen-

tation scheme. For any given image x, it constructs a set
V of the subregions, including two global views, xg

1 and xg
2

and m local views. DINO minimizes the following loss to
encourage the “local-to-global” prediction consistency:

LDINO =
1

M

∑
xg∈{xg

1 ,x
g
2}

∑
x′∈V, x′ ̸=xg

−Pt(xg) logPs(x
′),

(1)
where M is the pair number 2×(m+1). Pt(xg), Ps(x

′) are
the outputs of teacher and student networks, respectively.

3.3. Jointly Attribute Surrogates and Parameters
Learning

We design a latent supervision propagation scheme for
transformers to avoid supervising the parameter learning
only through a quite limited amount of one-hot labels. For
each visual concept y in the label space, we aim to learn a
semantic attribute surrogate z(y) ∈ R1×D′

for it,

y → z(y), (2)

where D′ is the surrogate descriptor dimension. When there
are C classes, the surrogate descriptors Z ∈ RC×D′

would
contain C entries. During the learning process, the supervi-
sion is passed through surrogates to supervise the student’s
parameter learning. At the same time, these surrogates need
to be learned. Supposing the supervised learning objective
of the student is Lsurr, then the parameters θs of the stu-
dent and its associated surrogates can be updated with the
following equations

θt+1
s = θts − γ1

∂Lsurr

∂θts
, (3)

z(y)t+1 = z(y)t − γ2
∂Lsurr

∂z(y)t
, (4)

where γ1 and γ2 are the learning rates. During the initial-
ization, both θs and Z are initialized with Gaussian noises.
Following the settings in DINO [6], we use the AdamW op-
timizer [32] with momentum to update both θs and Z with
linear scaling rule [?], which is a slightly different with that
in the center loss [55].

To make full advantage of transformers, we learn se-
mantic attribute surrogates for both patch and class tokens
respectively.

Supervise the Class Token. In DINO [6] and other knowl-
edge distillation methods, the student network produces
probability over D′ dimensions. Different from traditional
supervised learning paradigms, D′ is set to a quite large
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Figure 1. Illustration of the overall structure. HCTransformers contain three sets of cascaded transformer networks, each corresponding to
a teacher-student knowledge distillation framework. During training, every student transformer builds and updates a surrogate descriptor
for each category. The patch tokens integrated through the attention map are also used to generate patch surrogate descriptors in the first
stage. In between every two transformer sets, a spectral tokens pooling layer is used to down-sample the patch token number by 1

2
for

information aggregation.

number without considering the dataset’s real class num-
ber. In this paper, we set D′ = 8192. To be consistent
with the teacher-student knowledge distillation in DINO,
we use the surrogate loss to supervise the probability dis-
tribution learning for every class. Then the surrogate de-
scriptor zc(y) ∈ R8192 of the class y is a vector on 8192
dimensions. We normalize zc(y) with the Softmax oper-
ation to get an attribute distribution zc(y). Following the
annotations in Eq. 1, the class token loss becomes:

Lcls
surr =

1

2

∑
xg∈{xg

1 ,x
g
2}

DKL(Ps(xg)||zc(y)), (5)

where y is the label of the input image x, and DKL is
the Kullback–Leibler divergence. Note that only global
views are involved here considering that local views may
introduce negative effects when updating class centers due
to the loss of information.

Supervise Patch Tokens. In transformers, patch tokens are
hard to be supervised due to the lack of patch-level anno-
tations. To supervise patch tokens, we firstly aggregate the
patch token features fp(x) to generate a global descriptor of
an image x by applying the attention map Ac(x) ∈ R1×N :

F p(x) = Softmax(Ac(x))fp(x), (6)

where Ac(x) denotes the similarity matrix that can be ac-
quired by calculating the similarity between the [cls] token
and each patch token. F p(x) ∈ R1×D is the patch token
feature. Similarly with that in the class token, we have an
attribute surrogate zp (y) for each class. The patch token

(a) Input Image (b) Partitions in ViT (c) Partitions after
Pooling 1

(d) Partitions after 
Pooling 2

Figure 2. Visualized tokens pooling results. After spectral to-
kens pooling operations, adjacent tokens with similar semantics
are clustered into one. (c) and (d) shows that our clustering results
are well consistent with the image’s basic structure. The pixel col-
ors in the same cluster are averaged.

loss becomes:

Lpth
surr =

1

2

∑
xg∈{xg

1 ,x
g
2}

DKL(F p(x)||zp (y)), (7)

where zp (y) = Softmax zp (y). Only the global views are
applied for same consideration as aforementioned.

3.4. Spectral Tokens Pooling

Different from the grid pooling scheme in Swin Trans-
former [31], here we exploit the irregular pooling method
to match the image structures with more flexibility. Since
transformers will generate self-attention matrices among to-
kens, it provides a strong prior for spectral clustering algo-
rithms to segment tokens according to both their semantic
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similarities and the spatial layout. So we propose a spec-
tral clustering-based pooling method, called spectral tokens
pooling.

For the N patch tokens in a ViT, we retrieve attention
matrix between patches Ap ∈ RN×N from A. To bring
in spatial consistency, we maintain an adjacency matrix
H ∈ RN×N to reflect the neighborhood relationship. In
our design, only 8-connected neighboring tokens are con-
nected with the center token. We use the following formula
to retrieve a symmetric S matrix.

S = Ap ⊙H+AT
p ⊙HT. (8)

Through the spatial constraint, the S matrix can be viewed
as a sparse matrix for computation acceleration. We then
perform the Softmax operation on each row of S to get the
final adjacency weight matrix S′. The spectral clustering al-
gorithms [38, 49, 62] are exploited to partition patch tokens
into N ′ clusters T = {T1,T2, ...,TN ′} and generate new
tokens with Algorithm 1. During the backward stage, gra-
dients of token clusters are copied to each of the averaged
tokens. We implement the spectral tokens pooling with Py-
Torch. Fig. 2 visualizes results of two consecutive spectral
tokens pooling.

Algorithm 1: Spectral Tokens Pooling Algorithm

Input: Tokens T ∈ RN×D, adjacency weight
matrix S′ ∈ RN×N, number N ′ clusters to
construct.

Output: Tokens T′ ∈ RN′×D.
1 Compute the normalized Laplacian L from S′;
2 Compute the first N ′ eigenvectors µ1, µ2, ..., µN ′ of

L;
3 Construct a matrix U ∈ RN×N′

to contain the
vectors µ1, µ2, ..., µN ′ as columns;

4 For i = 1, ..., n, let vi ∈ RN ′
be the vector

corresponding to the i-th row of U ;
5 Cluster the points (vi)i=1,...,N ∈ RN ′

with K-means
algorithm into clusters T = {T1,T2, ...,TN ′};

6 Features of tokens in the same clusters are averaged
to generate new tokens T′ ∈ RN′×D.

3.5. Training Strategy of HCTransformers

In our design, two spectral tokens pooling layers are in-
serted into three different transformers. That means the
outputs of previous transformers are sent to the subsequent
transformers after performing pooling operations. In this
way, tokens are organized with different semantic hierar-
chies. For different transformers, we set the output token
numbers to 784, 392, 196, respectively.

Since computing eigenvectors in spectral tokens pooling
is time consuming ( 21.3 im/sec and 75.2 im/sec in two

pooling layers respectively), we don’t jointly all the three
transformers end-to-end. The training is divided into two
stages. In the first stage, we train the first two transformer
as the same setting as DINO [6] with the loss function bel-
low,

Lstage1 = LDINO + αLcls
surr + βLpth

surr. (9)

Then we frozen parameters of the first two transformer and
train the subsequent two sets of transformers jointly with the
same loss function in Eq. 10. We only supervise on the [cls]
token for higher efficiency in the second stage. Since fea-
tures produced by the first transformer already have strong
discriminative ability, the training of subsequent transform-
ers converges quickly in several epochs.

Lstage2 = LDINO + αLcls
surr (10)

The weights α and β are set to 1 and 0.1 in this work.

4. Experiments
4.1. Datasets

We perform experiments on four popular benck-
mark datasets for few-shot classification, including
miniImageNet [53], tieredImageNet [46], CIFAR-FS [4],
and FC100 [39]. miniImageNet [53] contains 100 classes
from the ImageNet [48] [4], randomly split into 64 bases,
16 validation, and 20 novel classes, and each class con-
tains 600 images. tieredImageNet [46] contains 608 classes
from 34 super-classes of the ImageNet, randomly split into
351 bases, 97 validation, and 160 novel classes. There
are 779,165 images in total. CIFAR-FS [4] contains 100
classes from the CIFAR100 [27], randomly split into 64
bases, 16 validation, adn 20 novel calsses, and each class
contains 600 images. FC100 [39] contains 100 classes from
36 super-classes of the CIFAR100, where 36 super-classes
were split into 12 base (including 60 classes), 4 validation
(including 20 classes) and 4 novel (including 20 classes)
super-classes, and each class contains 600 images.

4.2. Implementation Details

All experiments are run on ViT-S/8 (8 is the size of each
patch). We adopt the multi-crop strategy of DINO, we ran-
domly crop and resize an image to 2 global images at resolu-
tion 2242 and 8 local images at resolution 962. The teacher
networks take in the 2 global views and the student net-
works take in all 10 image corps. In the first stage, to train a
reliable meta feature extractor, we set α and β to 1 and 0.1,
respectively, then the gradients produced by LDINO, Lcls

surr

and Lpth
surr are in the same order of magnitude. Other specific

parameters are inherited from DINO. In the second stage for
spectral tokens pooling, we employ K-mean++ to conduct
clustering. The [cls] token input for the latter pooling trans-
former is initialized by the former’s transformed [cls] token
for efficient training.
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Method backbone miniImagenet tieredImagenet
1-shot 5-shot 1-shot 5-shot

DeepEMD [68] ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
IE [47] ResNet-12 67.28 ± 0.80 84.78 ± 0.52 72.21 ± 0.90 87.08 ± 0.58

DMF [61] ResNet-12 67.76 ± 0.46 82.71 ± 0.31 71.89 ± 0.52 85.96 ± 0.35
BML [73] ResNet-12 67.04 ± 0.63 83.63 ± 0.29 68.99 ± 0.50 85.49 ± 0.34
PAL [35] ResNet-12 69.37 ± 0.64 84.40 ± 0.44 72.25 ± 0.72 86.95 ± 0.47

METAQDA [70] WRN 67.38 ± 0.55 84.27 ± 0.75 74.29 ± 0.66 89.41 ± 0.77
TPMN [58] ResNet-12 67.64 ± 0.63 83.44 ± 0.43 72.24 ± 0.70 86.55 ± 0.63

MN + MC [69] ResNet-12 67.14 ± 0.80 83.82 ± 0.51 74.58 ± 0.88 86.73 ± 0.61
DC [65] WRN-28-10 68.57 ± 0.55 82.88 ± 0.42 78.19 ± 0.25 89.90 ± 0.41

MELR [14] ResNet-12 67.40 ± 0.43 83.40 ± 0.28 72.14 ± 0.51 87.01 ± 0.35
COSOC [34] ResNet-12 69.28 ± 0.49 85.16 ± 0.42 73.57 ± 0.43 87.57 ± 0.10

CSEI [30] ResNet-12 68.94 ± 0.28 85.07 ± 0.50 73.76 ± 0.32 87.83 ± 0.59
CNL [72] ResNet-12 67.96 ± 0.98 83.36 ± 0.51 73.42 ± 0.95 87.72 ± 0.75

Baseline-Cosine ViT-S 52.92 ± 0.17 65.04 ± 0.14 66.04 ± 0.20 78.05 ± 0.16
Ours-Cosine ViT-S 74.74 ± 0.17 85.66 ± 0.10 79.67 ± 0.20 89.27 ± 0.13

Ours-Classifier ViT-S 74.62 ± 0.20 89.19 ± 0.13 79.57 ± 0.20 91.72 ± 0.11

Table 1. Comparison with the state-of-the-art 5-way 1-shot and 5-way 5-shot performance with 95% confidence intervals on miniImagenet
and tieredImagenet. ViT-S is our baseline. Top three results are shown in red, blue and green based on their relative rankings.

Evaluation. We evaluate experiments on 5-way 1-shot and
5-way 5-shot classification. For each task, we randomly
select 5 categories. In each category, we use 1 or 5 la-
beled images as support data and another 599 or 595 un-
labeled images of the same category as novel data. The re-
ported results are the averaged classification accuracy over
10,000 tasks. During the meta test, we don’t fuse the fea-
tures of three student transformers. We use the validation
set to select the class token features of the second student
transformer to generate the final feature representation. For
module ablations, we use the class token feature of the indi-
vidual transformer as the output. We use the simple Cosine
classifier and the linear classifier in S2M2 [36] to predict
query labels.

4.3. Comparisons with State-of-the-art Results

Tab. 1 shows the 1-shot and 5-shot comparison re-
sults with the latest state-of-the-art (SOTA) methods on
miniImagenet [53] and tieredImagenet [46]. We outper-
form previous SOTA results by great margins with simple
classifiers. For instance, on miniImagnet, HCTransformers
surpasses SOTAs by 5.37% (1-shot) and 4.03% (5-shot), re-
spectively. When we turn to tieredImagenet, our method
outperforms the most recent DC [65] by 1.48% and 1.81%
on 1-shot and 5-shot, respectively. Compared with DC
which borrows class statistics from the base training set,
we don’t need to do this and our classifier is lightweight.
Another evidence is that the margin between our method
and the third-best approach is 5.09% on 1-shot, which helps
validate our contribution. We give credit to our network
structure for such impressive results, which can learn a lot

of inherent information in data and maintain good general-
ization ability.

Tab. 2 and Tab. 3 display the results on small-resolution
datasets, i.e., CIFAR-FS and FC100. HCTransformers show
comparable or better results in these low-resolution settings:
1-shot (1.02%) and 5-shot (0.76%) on CIFAR-FS; 1-shot
(0.51%) and 5-shot (1.12%) on FC100. We observe that
on the small resolution datasets, we don’t surpass previous
SOTA methods too much. We attribute this to the patch-
ing mechanism of ViT. When the image resolution is small,
such as 322, it is difficult to retrieve useful representation
from cropped patches with limited numbers of real pixels.
Similarly, DeepEMD [68] also mentioned that patch crop-
ping would have negative impacts on the small resolution
images. However, our method still achieves the new SOTA
results on both of these two benchmarks.

4.4. Ablation Studies

Whether the latent supervision propagation is helpful?
To demonstrate the effectiveness of our proposed latent su-
pervision propagation scheme, we conduct a series of exper-
iments with different settings on miniImagenet in the first
training stage. Results in Tab. 4 show that our proposed
scheme greatly improves over DINO baseline by 9.70% for
1-shot setting and 9.17% for 5-shot setting. To explore if
the patch and class surrogate losses bring in benefits, we
replace them with the commonly used cross entropy loss
as in ViT to supervise the parameter learning together with
the DINO loss. The 5-way 1-shot and 5-way 5-shot perfor-
mances drop by 4.46% and 4.41% respectively. It validates
our assumption that when there is few labeled data, super-
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                  (a) DINO on training set (b) HCTransformers on training set (Ours)          (c) DINO on val set (d) HCTransformers on val set (Ours)

Figure 3. Visualizing features of DINO and HTransformers by t-SNE [52] on both train and validation sets on miniImagenet. Points with
the same color correspond to the same category. (a) and (b) show that when equipped with semantic surrogates, more distinctive features
can be learned compared with DINO baseline. Feature distribution patterns on validation set(i.e., (c) and (d)) illustrate that our method can
generalize well on unseen data.

Method backbone CIFAR-FS
1-shot 5-shot

DSN-MR [50] ResNet-12 75.60 ± 0.90 86.20 ± 0.60
TPMN [58] ResNet-12 75.50 ± 0.90 87.20 ± 0.60

IE [47] ResNet-12 77.87 ± 0.85 89.74 ± 0.57
PSST [10] WRN-28-10 77.02 ± 0.38 88.45 ± 0.35
BML [73] ResNet-12 73.45 ± 0.47 88.04 ± 0.33
PAL [35] ResNet-12 77.10 ± 0.70 88.00 ± 0.50

MN + MC [69] ResNet-12 74.63 ± 0.91 86.45 ± 0.59
RENet [25] ResNet-12 74.51 ± 0.46 86.60 ± 0.32

METAQDA [70] WRN 75.95 ± 0.59 88.72 ± 0.79
ConstellationNet [63] ResNet-12 75.40 ± 0.20 86.80 ± 0.20

Baseline-Cosine ViT-S 57.75 ± 0.16 72.15 ± 0.12
Ours-Cosine ViT-S 78.89 ± 0.18 87.73 ± 0.11

Ours-Classifier ViT-S 78.88 ± 0.18 90.50 ± 0.09

Table 2. Comparison with the state-of-the-art 5-way 1-shot
and 5-way 5-shot performance with 95% confidence intervals on
CIFAR-FS. Top three results are shown in red, blue and green

.

Method backbone FC100
1-shot 5-shot

DeepEMD [68] ResNet-12 46.47 ± 0.78 63.22 ± 0.71
IE [47] ResNet-12 47.76 ± 0.77 65.30 ± 0.76

BML [73] ResNet-12 45.00 ± 0.41 63.03 ± 0.41
ALFA+MeTAL [3] ResNet-12 44.54 ± 0.50 58.44 ± 0.42

MixtFSL [1] ResNet-12 41.50 ± 0.67 58.39 ± 0.62
PAL [35] ResNet-12 47.20 ± 0.60 64.00 ± 0.60

TPMN [58] ResNet-12 46.93 ± 0.71 63.26 ± 0.74
MN + MC [69] ResNet-12 46.40 ± 0.81 61.33 ± 0.71

ConstellationNet [63] ResNet-12 43.80 ± 0.20 59.70 ± 0.20
Baseline-Cosine ViT-S 40.83 ± 0.15 50.93 ± 0.15

Ours-Cosine ViT-S 48.27 ± 0.15 61.49 ± 0.15
Ours-Classifier ViT-S 48.15 ± 0.16 66.42 ± 0.16

Table 3. Comparison with the state-of-the-art 5-way 1-shot and 5-
way 5-shot performance with 95% confidence intervals on FC100.
Top three results are shown in red, blue and green.

vising transformers with one-hot vectors will show inferior
generalization ability.

Method Loss 1-shot 5-shot

DINO - 61.57± 0.16 75.51 ± 0.12
DINO CE 66.81 ± 0.17 80.27 ± 0.12
DINO PTH 63.17 ± 0.16 78.59 ± 0.12
DINO CLS 68.95 ± 0.17 82.83 ± 0.11
Ours CLS+PTH 71.27 ± 0.17 84.68 ± 0.10

CE: cross-entropy loss, PTH: pth loss, CLS: cls loss.

Table 4. The results of the first student transformer trained with
different supervision on miniImagenet. All models are based on
the DINO baseline. ”CE” stands for the combination of a cross-
entropy loss (as that in ViT [13]) and the DINO loss. ”PTH” stands
for the combination of the patch surrogate loss and the DINO loss.
”CLS” stands for the combination of the class surrogate loss and
the DINO loss. ”CLS+PTH” stands for the full combination of the
class surrogate loss, the patch surrogate loss and the DINO loss.

β 1-shot 5-shot

1 61.45 ± 0.16 78.59 ± 0.12
0.1 71.27 ± 0.17 84.68 ± 0.10
0.01 70.40 ± 0.16 84.07 ± 0.10

Table 5. Test of the choice of different β about the patch surrogate
loss in the first student transformer on miniImagenet.

We also test the effects of the class and patch surrogate
losses individually. When we remove the patch token loss
for Eq. 9, the 5-way 1-shot and 5-way 5-shot accuracy drop
by 2.3% and 1.85%. If we remove the class token loss from
Eq. 9, the performances drop to 63.17% and 78.59% which
indicates that the class surrogate loss is key to getting good
performance. All these experiments show that the two sur-
rogate losses are effective in training transformers.

We try different weights β for the patch surrogate loss
by setting it to 1, 0.1, 0.01, respectively. Tab. 5 shows that
setting β to 0.1 is most suitable for the current setting.
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resolution/patch 1-shot 5-shot

562/2 71.99 ± 0.17 85.04 ± 0.11
1122/4 72.80 ± 0.17 85.93 ± 0.11
2242/8 73.28 ± 0.16 86.49 ± 0.11

Table 6. The performances of the first student transformer which
takes in images with different resolutions/patch sizes on CIFAR-
FS.

model 842 2242

IE [47] 66.82 ± 0.80 60.88 ± 0.81
DeepEMD [68] 65.91 ± 0.82 63.07 ± 0.81

Table 7. The influence of image resolutions on two state-of-the-art
methods on miniImagenet for 5-way 1-shot classification.

How is the input resolution affects the results? In our
implementation, images are resized into 224 × 224, which
is higher than traditional CNN-based methods, such as
IE [36, 47]. Multiple experiments are conducted to prove
such a resolution yield is suitable for ViT [13], while
other state-of-the-art methods including IE [47] and Deep-
EMD [68], fail to utilize high-resolution inputs. To test
the performance of our HCTransformers when taking im-
ages with different resolutions, we conduct experiments on
CIFAR-FS [4]. We resize images into 32 × 32 to 54 × 54,
112×112, and 224×224. The patch sizes are then 2×2,4×4
and 8×8 respectively. Results of different settings are listed
in Tab. 6, showing that higher resolutions lead to better per-
formance. We think that a higher resolution will make trans-
formers get more information in the input patches and pro-
duce stable patch representations.

We also run other state-of-the-art methods on
miniImagenet in 5-way 1-shot setting by upgrading
the resolution to 224 × 224, and list experimental results
in Tab. 7. Their performances with high resolution are
worse than their original ones. Results suggest that higher
resolution will always lead to performance improvement
in few-shot learning tasks. Similar to ours, BML [73]
also made experiments on DeepEMD with high-resolution
inputs but failed to obtain satisfactory results.

Is the end-to-end training necessary in the second train-
ing stage? To test whether it will be better to train the last
two sets of transformers one-by-one, we train the second
set of transformers and then freeze their parameters to train
the third set of transformers. As shown in Tab. 8, training
the last two sets of transformers one-by-one leads to com-
parable but slightly lower performance than the end-to-end
one. The reason may be that jointly training the latter two
sets of transformers end-to-end may help the second set of

training mode stage1 stage2 stage3

one-by-one 71.27 ± 0.17 74.40 ± 0.17 73.01 ± 0.18
end-to-end 71.27 ± 0.17 74.74 ± 0.17 72.66 ± 0.18

Table 8. Ablations of training the last two sets of transformers in
a one-by-one or end-to-end manner.

transformers to learn better features.

5. Limitations

HCTransformers achieve good results in few-shot clas-
sification, but the current setting requires images to have a
rather large resolution to pacify possible chaos within the
patch to construct a stable patch-level representation. This
may lead to unsatisfactory performance when the input im-
ages are in low resolutions. Besides, spectral tokens pooling
is time-consuming. It will limit the usage of HCTransform-
ers in many real applications.

6. Conclusion

We propose hierarchically cascaded transformers that
can improve the data efficiency to tackle the task of few-
shot image classification. Despite vision transformer’s data-
hungry nature, we achieved good performance in few-shot
learning tasks. Our proposed method introduces a latent su-
pervision propagation technique that implicitly supervises
the parameter learning with attribute surrogates that can be
learned. We propose a scheme to integrate patch tokens that
can work in complementary with [cls] token. Also, spectral
tokens pooling is proposed to embed the object/scene lay-
out and semantic relationship among tokens for transform-
ers. Our proposed HCTransformers not only outperform
the DINO baseline significantly but also surpass previous
state-of-the-art methods by clear margins on miniImagenet,
tieredImagenet datasets, CIFAR-FS and FC100.
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Doersch, Bernardo Ávila Pires, Zhaohan Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
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cember 3-8, 2018, Montréal, Canada, pages 719–729, 2018.
2, 5

[40] Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jian-
fei Cai. Scalable vision transformers with hierarchical pool-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 377–386, October
2021. 2

[41] Bernhard Pfahringer, Hilan Bensusan, and Christophe G.
Giraud-Carrier. Meta-learning by landmarking various learn-
ing algorithms. In Pat Langley, editor, Proceedings of the
Seventeenth International Conference on Machine Learning
(ICML 2000), Stanford University, Stanford, CA, USA, June
29 - July 2, 2000, pages 743–750. Morgan Kaufmann, 2000.
2

[42] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-
shot image recognition by predicting parameters from activa-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7229–7238, 2018. 2

[43] Meng Qu, Tianyu Gao, Louis-Pascal Xhonneux, and Jian
Tang. Few-shot relation extraction via bayesian meta-
learning on relation graphs. In International Conference on
Machine Learning, pages 7867–7876. PMLR, 2020. 2

[44] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision
transformers with dynamic token sparsification. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.
2

[45] Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu,
and Jie Zhou. Global filter networks for image classifica-
tion. In Advances in Neural Information Processing Systems
(NeurIPS), 2021. 2

[46] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, and
Richard S. Zemel. Meta-learning for semi-supervised few-
shot classification. In Proceedings of 6th International Con-
ference on Learning Representations ICLR, 2018. 2, 5, 6

[47] Mamshad Nayeem Rizve, Salman Khan, Fahad Shahbaz
Khan, and Mubarak Shah. Exploring complementary
strengths of invariant and equivariant representations for
few-shot learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 10836–10846, June 2021. 6, 7, 8

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. Int. J. Comput. Vis., 115(3):211–252, 2015. 5

9128



[49] Jianbo Shi and Jitendra Malik. Normalized cuts and image
segmentation. IEEE Transactions on pattern analysis and
machine intelligence, 22(8):888–905, 2000. 2, 5

[50] Christian Simon, Piotr Koniusz, Richard Nock, and
Mehrtash Harandi. Adaptive subspaces for few-shot learn-
ing. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4135–4144, 2020. 7

[51] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1199–1208, 2018. 2

[52] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008. 7

[53] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray
kavukcuoglu, and Daan Wierstra. Matching networks for one
shot learning. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 29, pages 3630–3638. Curran
Associates, Inc., 2016. 1, 2, 5, 6

[54] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In IEEE ICCV, 2021. 2

[55] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A
discriminative feature learning approach for deep face recog-
nition. In European conference on computer vision, pages
499–515. Springer, 2016. 3

[56] Davis Wertheimer and Bharath Hariharan. Few-shot learning
with localization in realistic settings. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 6558–6567, 2019. 2

[57] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing
convolutions to vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 22–31, October 2021. 2

[58] Jiamin Wu, Tianzhu Zhang, Yongdong Zhang, and Feng Wu.
Task-aware part mining network for few-shot learning. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 8433–8442, October 2021.
2, 6, 7

[59] Ziyang Wu, Yuwei Li, Lihua Guo, and Kui Jia. Parn:
Position-aware relation networks for few-shot learning. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 6659–6667, 2019. 2

[60] Jiangtao Xie, Ruiren Zeng, Qilong Wang, Ziqi Zhou, and
Peihua Li. So-vit: Mind visual tokens for vision transformer.
arXiv preprint arXiv:2104.10935, 2021. 2

[61] Chengming Xu, Chen Liu, Li Zhang, Chengjie Wang, Jilin
Li, Feiyue Huang, Xiangyang Xue, and Yanwei Fu. Learn-
ing dynamic alignment via meta-filter for few-shot learning.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2021. 6

[62] Linli Xu, Wenye Li, and Dale Schuurmans. Fast normal-
ized cut with linear constraints. In 2009 IEEE Conference

on Computer Vision and Pattern Recognition, pages 2866–
2873. IEEE, 2009. 5

[63] Weijian Xu, Yifan Xu, Huaijin Wang, and Zhuowen Tu.
Attentional constellation nets for few-shot learning. In
9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. 7

[64] Donghui Yan, Ling Huang, and Michael I Jordan. Fast ap-
proximate spectral clustering. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 907–916, 2009. 1

[65] Shuo Yang, Lu Liu, and Min Xu. Free lunch for few-shot
learning: Distribution calibration. In International Confer-
ence on Learning Representations (ICLR), 2021. 6

[66] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zi-Hang Jiang, Francis E.H. Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from
scratch on imagenet. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
558–567, October 2021. 2

[67] Xiaoyu Yue, Shuyang Sun, Zhanghui Kuang, Meng Wei,
Philip H.S. Torr, Wayne Zhang, and Dahua Lin. Vision
transformer with progressive sampling. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 387–396, October 2021. 2

[68] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Few-shot image classification with differen-
tiable earth mover’s distance and structured classifiers. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 6, 7, 8

[69] Chi Zhang, Henghui Ding, Guosheng Lin, Ruibo Li,
Changhu Wang, and Chunhua Shen. Meta navigator: Search
for a good adaptation policy for few-shot learning. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9435–9444, 2021. 6, 7

[70] Xueting Zhang, Debin Meng, Henry Gouk, and Timothy
Hospedales. Shallow bayesian meta learning for real-world
few-shot recognition. arXiv preprint arXiv:2101.02833,
2021. 6, 7

[71] Gangming Zhao, Weifeng Ge, and Yizhou Yu. Graphfpn:
Graph feature pyramid network for object detection. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2763–2772, 2021. 1

[72] Jiabao Zhao, Yifan Yang, Xin Lin, Jing Yang, and Liang He.
Looking wider for better adaptive representation in few-shot
learning. In Thirty-Fifth AAAI Conference on Artificial In-
telligence, AAAI 2021, Thirty-Third Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 10981–10989. AAAI Press, 2021. 6

[73] Ziqi Zhou, Xi Qiu, Jiangtao Xie, Jianan Wu, and Chi Zhang.
Binocular mutual learning for improving few-shot classifica-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 8402–8411, 2021. 2, 6, 7,
8

9129


