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Abstract

Cross domain object detection is a realistic and challenging
task in the wild. It suffers from performance degradation
due to large shift of data distributions and lack of instance-
level annotations in the target domain. Existing approaches
mainly focus on either of these two difficulties, even though
they are closely coupled in cross domain object detection.
To solve this problem, we propose a novel Target-perceived
Dual-branch Distillation (TDD) framework. By integrating
detection branches of both source and target domains in
a unified teacher-student learning scheme, it can reduce
domain shift and generate reliable supervision effectively.
In particular, we first introduce a distinct Target Proposal
Perceiver between two domains. It can adaptively enhance
source detector to perceive objects in a target image, by
leveraging target proposal contexts from iterative cross-
attention. Afterwards, we design a concise Dual Branch
Self Distillation strategy for model training, which can
progressively integrate complementary object knowledge
from different domains via self-distillation in two branches.
Finally, we conduct extensive experiments on a number of
widely-used scenarios in cross domain object detection.
The results show that our TDD significantly outperforms
the state-of-the-art methods on all the benchmarks. The
codes and models will be released afterwards.

1. Introduction
Object detection has achieved remarkable success with

the help of advanced deep neural networks [2, 12–14, 26,
28–31,36]. However, it still faces challenges in realistic ap-
plications such as autonomous driving and mobile robots,
where data variance is often large due to various conditions
of weather, illumination, object appearance, etc. Hence,

∗ Equal contribution. † Corresponding author.
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Figure 1. Two typical examples of detection results on the adverse
weather conditions adaptation experiments with different methods.
Semi-supervised method UBT [27] lacks awareness of objects in
the fog. Adversarial based GPA [49] attempts to exploit the objects
in the fog but gives some wrong predictions, such as the motorcy-
cle in the first row and the person in the second row. Our methods
can predict the boxes and categories more accurately.

cross-domain object detection has attracted lots of attention
in recent years. In general, there are two difficulties in this
problem. First, object detection is more vulnerable to do-
main shift. The main reason is that, object detection focuses
on instance-level prediction, which is more sensitive to ob-
ject variance in various image styles and contents. Second,
object annotations are more expensive and labor-intensive
to get, causing the scarcity of discriminative object supervi-
sion in a new domain. Both of them inevitably deteriorate
the detection performance in target domain.

Recently, several approaches have been proposed for
cross-domain object detection [5, 24, 32, 34, 49]. Unfortu-
nately, most of them focus on either domain shift or label
deficiency, which limits their power in cross domain ob-
ject detection. For example, domain adaption approaches
[5, 34, 49] propose to reduce domain shift via adversarial
training. Besides of unstable model optimization, the dis-
crimination ability of the network is limited in such ad-
versarial design. As shown in Figure 1, adversarial based
GPA [49] tends to produce wrong predictions on the regions
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where the target domain characteristics are significant. Al-
ternatively, self-training based approaches [1,16,22,23,55]
study the problem from the viewpoint of semi-supervised
learning, and propose to generate pseudo object supervision
via label distillation. In this way, many advanced semi-
supervised methods can be transferred to this task. How-
ever, these approaches are often insufficient to deal with the
complex domain shifts. In Figure 1, it is difficult for a semi-
supervised method like UBT [27] to aware objects in the
target domain. Hence, both types of solutions are unsatis-
factory in cross domain object detection.

Based on these discussions, we propose a novel
Target-perceived Dual-branch Distillation (TDD) frame-
work, which can effectively tackle domain shift and la-
bel deficiency via object perception and knowledge distil-
lation in a concise dual-branch detection network. Specifi-
cally, our network consists of a source-adaptive branch and
a target-like branch, both of which are elaborately designed
to be target-oriented for domain shift reduction. For the
source-adaptive branch, we introduce a distinct Target Pro-
posal Perceiver, which leverages iterative cross-attention
to discover target-domain contexts for each proposal. As
a result, it can adaptively enhance source branch to per-
ceive objects in the target domain image. For the target-
like branch, we transfer source images into target-like im-
ages. Via training this branch with these labeled images,
we can learn discriminative object knowledge of target do-
main reliably. Finally, we design a concise Dual Branch
Self Distillation strategy for network training. It is a tai-
lored mean-teacher style framework to generate pseudo an-
notations of target images from both source-adaptive and
target-like branches. Through three well-designed training
steps, namely joint-domain pretraining, cross-domain dis-
tillation and dual-teacher refinement, we can progressively
integrate complementary object knowledge from different
domains to boost cross domain object detection.

In summary, this paper has the following contributions.
First, we develop a novel Target-perceived Dual-branch
Distillation (TDD) framework, which leverages two dis-
tinct detection branches to address both domain shift and
label deficiency in a unified teacher-student learning man-
ner. Second, we introduce a smart Target Proposal Per-
ceiver module, which can adaptively guide source detec-
tion branch to perceive target domain objects, via cross-
attention-style transformer on proposal contexts. Finally,
we conduct extensive experiments on a number of widely-
used benchmarks and our TDD outperforms the state-of-
the-art methods with a large margin.

2. Related Work
Object detection. Object detection is one of the fun-

damental tasks in computer vision. Boosted by the strong
representation ability of deep neural network, object detec-

tion has obtained a promising performance in recent years.
Previous work can be roughly categorized into two-stage
[2,12–14,31] and one-stage [28–30,36] detectors. Recently,
some anchor-free [10,40,51,53] and transformer [3,45,58]
based methods also stand out in the detection task.

Cross domain object detection. [5]first propose im-
age and instance level domain classifiers to implement fea-
ture alignment in an adversarial manner. Following this,
[34]impose a strong-weak alignment strategy to the local
and global features respectively. [15] and [47] employ multi
level domain feature alignment. [48]exploit the categori-
cal consistency between image-level and instance-level pre-
diction with the help of a multi-label classification model.
[17] propose a center-aware feature alignment method to al-
low the discriminator to focus on features coming from the
object region. Some other works [16, 24, 32, 38, 57] add
additional constraint during the adversarial learning stage.
[54, 56] emphasis the different strategies to deal with fore-
ground and background features.

Another mainstream method [1, 16, 22, 23, 55] is dedi-
cated to solving the problem of inaccurate label in target
domain. [22]retrain the object detector using the original la-
beled data and the refined machine-generated annotations in
the target domain. [1] study the problem from the viewpoint
of semi-supervised learning and integrate the object rela-
tions into the measure of consistency cost between teacher
and student modules. [9]propose a cross-domain distillation
method which utilizes both the source-like and target-like
images. It uses soft label and instance selection to heal
the model bias in Mean-Teacher. Different from [9], our
method proposes a dual-branch framework with a cross-
domain perceiver for teacher-student mutual learning.

Semi-supervised object detection. Semi-supervised
object detection attempts to solve the problem when there
are only a part of annotations for the train set. In this
setting [20] propose a consistency-based method, enforc-
ing the predictions consistency between an input image and
its flipped version. [37] pre-train a detector using a small
amount of labeled data and generate pseudo-labels on un-
labeled data to fine-tune the pre-trained detector. [27] pro-
pose to use strong and weak augmentations to improve the
mean-teacher method and can get more accurate pseudo la-
bels by EMA training. Those methods can be easily ap-
plied to the cross domain object detection problem owing
to the similar data setting. But they did not take the domain
difference into consideration, which limited their detection
performance unavoidably.

3. Proposed Methods

3.1. Overview

As shown in Figure 2, we propose a novel Target-
perceived Dual-branch Distillation framework (TDD),
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Figure 2. An overview of Target-perceived Dual-branch Distillation framework. To simplify the description, ROI refers to the operation
to get proposal features of each image. First, a source domain image is transferred into target-like domain. All of the images from three
domains are fed to a shared proposal extractor to get proposals and proposal features. Then, the proposal features of source and target-like
images are used to train corresponding branches with supervision of ground truth. Moreover, we feed the proposal features of a real target
domain image into both branches, for learning object knowledge from both source and target-like domains. As the images from target
domain are not annotated, the model is optimized by self-distillation.

which tackles domain shift and label deficiency together in
cross domain object detection task.

First, we introduce a style transfer module from the as-
pect of input image. It is used to transfer source images
into style that is close to target domain. In this case, we can
bridge the domain gap by such target-like domain. More-
over, since target-like images inherit label annotations from
the corresponding source images, they can be used as ex-
tra object supervision in the target-like domain. In this pa-
per, we mainly use a concise and effective Fourier trans-
form [50] method as this module.

Second, we design a novel dual branch detection net-
work from the aspect of model architecture. Via such
design, we can effectively extract complementary object
knowledge from different domains to boost object detec-
tion on the target images. Basically, our network consists
of a shared proposal extractor and two individual detec-
tion branches. The former allows us to construct domain-
invariant feature space of all the images for domain gener-
alization, while the latter preserves domain-specific object
characteristics of each image for domain discrimination.
Specifically, two detection branches are Source-Adaptive
(SA) and Target-Like (TL) branch respectively. We feed
the proposals of source images to train the SA branch, while
feeding the proposals of target-like images to train the TL
branch. Moreover, the proposals of a real target image are
sent into both branches, for learning object knowledge from
both source and target-like domains. However, source do-
main may be significantly different from target domain. In
this case, the proposals of a target image cannot be detected
accurately in the SA branch, without any target-oriented
guidance. To tackle this problem, we design a novel Target
Proposal Perceiver. Inspired by perceiver in [19], it smartly

uses iterative cross attention between proposal features in
two branches. In this case, we leverage contextual propos-
als of TL branch as guidance, which can effectively guide
SA branch to perceive object proposals in the target domain.
We will explain the details of this module in 3.2.

Finally, we introduce a concise dual-branch self-
distillation approach from the aspect of supervision. As
introduced before, all the images do not have any anno-
tations in target domain. Hence, it is critical to generate
reliable supervision in this domain. Thanks to our dual-
branch network, we can construct discriminative pseudo la-
bels of each target image from the cooperative SA and TL
branches. To effectively leverage these pseudo labels, our
self-distillation is based on teacher-student mutual learning,
which can dynamically adjust teacher in the training pro-
cedure to progressively boost target-domain supervision of
our two branches. We will explain the details in 3.3.

3.2. Target Proposal Perceiver

As discussed in our TDD framework, we feed proposal
features of each target-domain image respectively into SA
and TL branches, for learning object knowledge from both
domains. However, SA branch is not good at exploiting
objects from these features due to the large shift between
the source and real target domain. To guide SA branch to
discover target domain objects, we propose a novel Target
Proposal Perceiver between SA and TL branches, which can
progressively exploit object contexts in the TL branch to
enhance proposal features in the SA branch.

Note that, we inherit the name of Perceiver from [19],
since our motivation is also to mimic humans and other
animals to take in data from many sources and integrate
it seamlessly. But different from the generic Perceiver
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Figure 3. The structure of our Target Proposal Perceiver. The cross
attention between SA and TL is explored to help source branch
perceive target domain objects.

[19] architecture, our Target Proposal Perceiver is elabo-
rately tailored for cross-domain object detection, by using
Transformer-style cross attention iteratively to reduce do-
main shift in the instance level.

As shown in Figure 3, we feed a target-domain image
Xt into proposal extractor, and generate its proposal fea-
tures Pt. Subsequently, we put these proposal features re-
spectively into SA and TL branches, where Target Proposal
Perceiver leverages cross attention to process them in the
following,

ΦSA = FSA(P
t), (1)

ΦTL = FTL(P
t), (2)

ΨSA = MHPCA(ΦSA,ΦTL). (3)

First, to extract object knowledge from both SA and TL
branches, we use the FC layerFSA(.) andFTL(.) to encode
Pt as source features ΦSA and target-like features ΦTL in
Eq. (1)-(2). Second, we introduce a novel Multi-Head Pro-
posal Cross Attention (MHPCA) between ΦSA and ΦTL in
Eq. (3). This allows us to leverage target-like proposal fea-
tures ΦTL as context guidance, for enhancing source pro-
posal features ΦSA to perceive objects in the target image.

Proposal Cross Attention. Specifically, our MHPCA is
a concise Transformer style with Query-Key-Value. In each
cross attention head, we use FC layers to encode ΦSA as
Query, and encode ΦTL as Key and Value. The similarity
between Key and Query is used to discover affinity between
ΦSA and ΦTL. Then, we use such affinity as guidance
to aggregate target-like features V(ΦTL) as cross-domain
contexts for the SA branch.

HTL =W(Q(ΦSA),K(ΦTL)) · V(ΦTL), (4)

where Query, Key and Value are respectively Q(ΦSA),
K(ΦTL) and V(ΦTL). The affinity function is W . Typi-
cally, scaled dot-product is used asW in transformer [41],
Ai,j = Qi(ΦSA) · K⊤

j (ΦTL)/σ, where σ is a scale param-
eter that is root square of the dimension of a query feature
vector. However, we consider an object detection problem,
where spatial position information can be important to de-
scribe similarity between proposals. In this work, the ge-
ometry weight in [18] is used to describe positional similar-
ity between any two proposal boxes. We use this geome-
try weight U to enhance feature similarity A and describe
proposal affinity in Eq. (4) via a weighted formulation of
softmax, i.e.,W(Q(ΦSA),K(ΦTL)) = W,

Wi,j =
Ui,j · exp(Ai,j)∑K

k=1 Ui,k · exp(Ai,k)
, (5)

where Wi,j refers to affinity score between proposal i in
SA branch and proposal j in TL branch.

Iterative MHPCA. After obtaining target-like contexts
HTL from each cross attention head, we use FC layer
G(.) to summarize all these contexts from L attention
heads to construct MHPCA, denoted as ΨSA = ΦSA +
G([H(1)

TL, ...,H
(L)
TL ]). In this case, we enhance source pro-

posal features ΦSA into target-perceived ones ΨSA, which
allows SA branch to be aware of related object contexts in
the target image. Additionally, we perform MHPCA in an
iterative manner, by which our Target Proposal Perceiver
can progressively exploit target-like proposal contexts from
TL branch to boost learning capacity of SA branch. Typi-
cally, there are two FC layers to encode proposal features in
Faster RCNN. Hence, we iteratively use MHPCA twice in
our design, as shown in Figure 3.

3.3. Dual-Branch Self Distillation

After introducing our network, we explain how to train
it for cross domain object detection. As mentioned before,
the images are unlabeled in the target domain. Hence, it is
critical to generate reliable pseudo annotations of these im-
ages for effective training. To achieve this goal, we design a
generic Dual-Branch Self Distillation approach, which can
generate pseudo labels from both SA and TL branches to
cooperatively boost our detection network via self-training.
Specifically, it is based on the general procedure of teacher-
student mutual learning [27, 39], but with elaborate designs
for cross domain object detection. As shown in Figure 4, it
consists of three key stages, i.e., Joint-Domain Pretraining,
Cross-Domain Distillation, and Dual-Teacher Refinement.

Joint-Domain Pretraining. This stage is to generate re-
liable initialization of dual-branch network. As mentioned
before, target-like images have same annotations inheriting
from source images. Hence, we pretrain our dual-branch
network jointly, by multi-task learning on the labeled im-
ages of both source and target-like domains. Specifically,
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Figure 4. The whole training process of our Dual-Branch Self Distillation models. First, in the joint-domain pretraining stage, we pretrain
our dual-branch network jointly, by multi-task learning on the labeled images of both source and target-like domains. Second, in the
cross-domain distillation stage, we feed a target-domain image into the fixed and well-trained teacher, which can generate pseudo object
annotations from both SA and TL branches. Finally, to generate more stable pseudo annotations, we refine teacher gradually from student
via Exponential Moving Average (EMA).

the training loss in this stage consists of three terms.

LJDP = L(S+T L)
RPN + L(S)

SA + L(T L)
TL . (6)

First, RPN is shared among all the domains to gener-
ate domain-invariant feature. We use both source and
target-like data to train this module, i.e., L(S+T L)

RPN =
LRPN (Xs,Ys) + LRPN (Xtl,Ytl), where RPN loss con-
tains the RPN classification and regression losses in Faster
RCNN [31]. Then, different detection branches are used to
learn different domain-specific object knowledge. Hence,
we use source and target-like data respectively to train SA
and TL branches, i.e., L(S)

SA = LSA(X
s,Ys) and L(T L)

TL =
LTL(X

tl,Ytl) where each branch loss contains the ROI
classification and regression losses in Faster RCNN.

Cross-Domain Distillation. After joint-domain pre-
training, we leverage the well-initialized network to gener-
ate pseudo annotations of unlabeled images in the target do-
main. In this case, we can further adjust our network with-
out target-domain ground truth labels. As shown in Figure
4, this stage is a concise self distillation procedure, where
both teacher and student are based on dual branch network.
Specifically, we feed a target-domain image into the fixed
and well-trained teacher, which can generate pseudo object
annotations from both SA and TL branches. We use NMS to
remove the duplicated boxes and then set a threshold to ob-
tain confident box predictions as object annotations of this
target image in each branch. Subsequently, we also feed this
target image into the learnable student, and train student by
pseudo annotations from teacher.

LCDD = L(T )
RPN + L(T )

SA + L(T )
TL . (7)

Since pseudo labels Ŷt
SA and Ŷt

TL are from SA and

TL branches, the RPN loss contains two terms L(T )
RPN =

LRPN (Xt, Ŷt
SA) +LRPN (Xt, Ŷt

TL). Moreover, both SA
and TL branches are also trained with pseudo labels of
target-domain images, i.e., L(T )

SA = LSA(X
t, Ŷt

SA) and
L(T )
TL = LTL(X

t, Ŷt
TL). Additionally, it is important to in-

crease diversity of student to refine teacher afterwards. As
suggested in [27], for each target image, we use its strong
augmentation as input of student to predict object boxes,
while using its weak augmentation as input of teacher to
provide reliable pseudo annotations. Finally, we also use
Eq. (6) to train student network with source and target-like
images in this stage, to reduce learning difficulties in two
detection branches.

Dual-Teacher Refinement. To generate more stable
pseudo annotations, we refine teacher gradually from stu-
dent via Exponential Moving Average (EMA) [27, 39],

Θteacher ← αΘteacher + (1− α)Θstudent (8)

where Θteacher and Θstudent are the learnable parameters
in teacher and student models. Note that, we perform dis-
tillation and refinement in an iterative manner, which can
boost cross domain object detection by mutual learning, i.e.,
teacher generates pseudo labels to train student, and student
passes what it learns to update teacher.

Finally, we explain how to train Target Proposal Per-
ceiver in this procedure. We only train it in the last two
stages. In the cross-domain distillation stage, we use the
pretrained network as teacher, and use the pretrained net-
work with randomly-initialized Target Proposal Perceiver as
student. After a number of training iterations in this stage,
we can obtain well-trained Target Proposal Perceiver. Sub-
sequently, in the refinement stage, we update teacher from
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the entire student network where all the modules are fully
trained. From then on, distillation and refinement can be
iteratively performed without any difficulties. Moreover,
TPR is just used in training stage to guide SA branch. With
the dual-branch framework, we only use the SA branch
teacher to get the detection results during inference. As it
has been well refined by student and TL branch.

4. Experiments
In this section, we conduct experiments on popular cross

domain object detection benchmarks with distinct domain
shift, including Adverse Weather Conditions Adaptation,
Synthetic to Real Adaptation and Cross Camera Adaptation.

4.1. Implementation details

We adopt Faster R-CNN with the VGG16 and Res50
pretrained on ImageNet [8] as the backbone network. The
shorter edge of each input image is resized to 600 pixels
following the implementation of Faster RCNN with ROI-
alignment [13]. The network is trained by SGD [33] opti-
mizer with 0.0005 weight decay and 0.9 momentum. The
learning rate and maximum training iterations are set as
0.01 and 25000 for all experiments, with 9000 iterations
for the joint-domain pretraining stage and 16000 iterations
for cross-domain distillation and dual-teacher refinement
stage. Follow the [27], we use Focal-loss as the classi-
fication loss and the strong-weak augmentations are used
during our whole training stage. For our proposal cross at-
tention, we set the attention head number L=16. The pro-
posal features are encoded to Key-Query-Value by three FC
layers with output dimension=1024. We set the frequency
parameterβ = 0.1 for the Fourier transform module. The
threshold to obtain pseudo annotations of target image is set
to 0.7. During the dual-teacher refinement stage, we set the
EMA ratio α = 0.9996 to update teacher model. We use 8
NVIDIA GeForce 1080 Ti GPUs for training in our exper-
iments. Each mini-batch contains 2 images per GPU, one
from the source domain and the other from target domain.

4.2. Adverse Weather Conditions Adaptation

Datesets. In this experiment, we use Cityscapes as
source domain and Foggy Cityscapes as target domain to
implement adaptation under adverse weather conditions
(C→F). Cityscapes [6] is a dataset of real urban scenes con-
taining 3,475 images. 2,975 images are used for training
and the remaining 500 for validation. Foggy Cityscapes
[35] is a synthetic dataset generated from the Cityscapes.
We use the fog level (β = 0.02) with highest intensity in our
experiments. The Cityscapes train set and unlabeled Foggy
Cityscapes train set are used for training and the validation
set of Foggy Cityscapes is used for evaluation.

Results. The detection results are demonstrated in Ta-
ble 1. Source only denotes the Faster RCNN model trained

Table 1. The mean Average Precision (mAP) of different models
on Foggy Cityscapes validation set for C → F transfer.

method Arch person rider car truck bus train motor bike mAP
DA-Faster [5] V16 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SCDA [57] V16 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
D&Match [24] V16 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6
SWDA [34] V16 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
ICR-CCR [48] V16 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
HTCN [4] V16 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
SAPNet [25] V16 40.8 46.7 59.8 24.3 46.8 37.5 30.4 40.7 40.9
ATF [16] V16 34.6 47.0 50.0 23.7 43.3 38.7 33.4 38.8 38.7
CDN [38] V16 35.8 45.7 50.9 30.1 42.5 29.8 30.8 36.5 36.6
UMT [9] V16 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.3 41.7
MeGA [42] V16 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
RPA [54] V16 33.4 44.3 50.1 29.9 44.8 39.1 29.9 36.3 38.5
source only V16 28.5 34.2 39.9 14.7 26.3 11.4 23.4 28.3 25.8
TDD(ours) V16 39.6 47.5 55.7 33.8 47.6 42.1 37.0 41.4 43.1
ocacle(tgt) V16 39.1 44.9 56.7 33.3 50.4 34.8 32.3 39.0 41.3
ocacle(src+tgt) V16 39.5 47.5 58.1 34.2 49.3 41.9 36.4 41.0 43.5
DA-Faster [5] R50 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0
D&Match [24] R50 31.8 40.5 51.0 20.9 41.8 34.3 26.6 32.4 34.9
SW-DA [34] R50 31.8 44.3 48.9 21.0 43.8 28.0 28.9 35.8 35.3
SC-DA [57] R50 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.5 35.9
MTOR [1] R50 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
AFAN [43] R50 42.5 44.6 57.0 26.4 48.0 28.3 33.2 37.1 39.6
GPA [49] R50 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5
ViSGA [32] R50 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3
SFA [44] R50 46.5 48.6 62.6 25.1 46.2 29.4 28.3 44.0 41.3
DSS [46] R50 50.9 57.6 61.1 35.4 50.9 36.6 38.4 51.1 47.8
MKT [7] R50 43.5 52.0 63.2 34.7 52.7 45.8 37.1 49.4 47.3
source only R50 36.9 36.1 44.5 21.7 32.3 9.2 21.5 32.4 28.3
TDD(ours) R50 50.7 53.7 68.2 35.1 53.0 45.1 38.9 49.1 49.2
oracle(tgt) R50 50.1 51.7 70.1 33.4 49.5 42.8 37.6 44.3 47.4
oracle(src+tgt) R50 50.0 50.2 69.9 35.6 56.3 47.4 41.0 43.4 49.2

with only source domain data. Oracle(tgt) model is trained
with labeled target domain data. Oracle(src+tgt) model is
trained with labeled data from both source and target do-
main. Same augmentations are also used for training the
oracle models. We compare with the methods implemented
with same backbone for fair comparison. For the VGG-
based methods, the state-of-the-art MeGA [42] has achieved
41.8% mAP, while our results show a significant +1.3% im-
provement. For the Res50-based methods, we outperform
all prior works and get a significant mAP gain of +1.4%. It
is worth noting that our methods show a competitive per-
formance with two oracle models. It proves that our model
can perceive target domain knowledge while retaining the
useful information of the source domain for discrimination.

4.3. Synthetic to Real Adaptation

Datesets. In this experiment, the model is adapted from
synthetic data to real world examples. Sim10k is used as
source domain dataset and Cityscapes represents target do-
main (S→ C). SIM10K [21] is a simulated dataset contain-
ing 10,000 images. We train the detector only on the com-
mon class “car”. The whole dataset Sim10k and unlabeled
train set of Cityscapes is used for training and the validation
set of Cityscapes is used for evaluation.
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Table 2. The car Precision (mAP) of different models on
Cityscapes validation set for S→ C and K → C adaptaion.

method Arch S→ C K → C method Arch S→ C K → C
DA-Faster [5] V16 39.0 38.5 DA-Faster [5] R50 41.9 41.8
SCDA [57] V16 43.0 42.5 SCDA [57] R50 45.1 43.6
SWDA [34] V16 47.7 37.9 SWDA [34] R50 44.6 43.2
CoT [55] V16 44.5 43.6 GPA [49] R50 47.6 47.9
SAPNet [25] V16 44.9 43.4 ViSGA [32] R50 49.3 47.6
EPM [17] V16 49.0 43.2 SFA [44] R50 52.6 41.3
ATF [16] V16 42.8 42.1 D&Match [24] R50 43.9 42.7
MeGA [42] V16 44.8 43.0 DSS [46] R50 44.5 42.7
RPA [54] V16 45.7 - MKT [7] R50 50.2 44.3
C2F [56] V16 43.8 - AFAN [43] R50 45.5 -
UMT [9] V16 43.1 - MTOR [1] R50 46.6 -
source only V16 37.8 30.2 source only R50 42.8 32.5
TDD(ours) V16 53.4 47.4 TDD(ours) R50 63.3 49.8
oracle(tgt) V16 60.0 60.0 oracle(tgt) R50 75.9 75.9
oracle(src+tgt) V16 60.1 62.5 oracle(src+tgt) R50 76.4 75.8

Table 3. The mean Average Precision (mAP) of different models
on BDD100k daytime validation set for C → B transfer.

method Arch person rider car truck bus motor bicycle mAP
DA-Faster [5] V16 26.9 22.1 44.7 17.4 16.7 17.1 18.8 23.4
SWDA [34] V16 30.2 29.5 45.7 15.2 18.4 17.1 21.2 25.3
ICR-CCR [48] V16 31.4 31.3 46.3 19.5 18.9 17.3 23.8 26.9
source only V16 29.3 28.2 45.7 15.5 16.6 16.0 22.1 24.8
TDD(ours) V16 39.6 38.9 53.9 24.1 25.5 24.5 28.8 33.6
oracle(tgt) V16 39.7 35.9 57.9 47.1 48.0 32.3 33.0 42.0
oracle(src+tgt) V16 39.6 39.2 59.4 45.6 48.0 31.0 33.8 42.4
source only R50 50.4 33.3 67.4 18.1 20.8 19.6 28.9 34.1
TDD(ours) R50 57.9 47.4 74.5 31.5 27.5 32.0 36.5 43.9
oracle(tgt) R50 68.0 52.0 83.7 61.2 61.6 44.9 49.9 60.2
oracle(src+tgt) R50 69.5 54.1 84.4 61.1 61.5 43.8 53.2 61.1

Results. The results of car AP are reported in Table
2. We can see our proposed TDD methods can achieve
the state-of-the-art performance between two dissimilar do-
mains. It outperforms VGG-based EPM [17] by +4.4% and
Res50-based SFA [44] +10.7%, which shows a stable abil-
ity of our methods to tackle domain adaptation problems.

4.4. Cross Camera Adaption

Datesets. We conduct on two cross camera adap-
ataion experiments involving KITTI [11], Cityscapes and
BDD100k [52] datasets. In the first experiment, we adapt
from KITTI to Cityscapes, where only the category car is
used for evaluation (K→C). KITTI is a similar scene dataset
to Cityscapes except that KITTI has different camera setup.
It consists of 7,481 labeled images for training. In the sec-
ond experiment, we adapt from Cityscapes to BDD100K
(C→B), which is a more challenging setting with more cat-
egories and scenes. The daytime subset of BDD100k are
used as our target domain, including 36,278 training and
5,258 validation images.

Results. The KITTI adaptation results are shown in Ta-
ble 2. We outperform the sota VGG-based approach by
3.8% and R50-based approach by 1.9%. Meanwhile, the re-
sults on BDD100K are summarized in Table 3. Our method
surpasses all the previous works with a large margin. This

Table 4. Dual Branch Structure

Structure S T TL C→ F S→ C C→ B
✓ 34.8 48.3 34.3

Single ✓ ✓ 41.2 59.0 38.9
✓ ✓ ✓ 47.4 61.1 39.4

Dual ✓ ✓ ✓ 48.3 62.6 42.2

Table 5. Multi Head Proposal Cross Attention

Target Proposal Perceiver C→ F S→ C C→ B
without 48.3 62.6 42.2
with 49.2 63.3 43.9
Self-Attention 46.8 61.0 40.6
Sym Cross-Attention 48.1 62.4 43.7
Asym Cross-Attention 49.2 63.3 43.9

Table 6. Dual-Branch Self Distillation Procedure

Dual-Branch Self Distillation C→ F S→ C C→ B
JDP 37.4 56.7 37.5
JDP+CDD 44.1 62.1 42.7
JDP+CDD+DTR 49.2 63.3 43.9
Refine α=0.96 39.3 59.1 28.7
Refine α=0.996 48.4 63.6 41.5
Refine α=0.9996 49.2 63.3 43.9

demonstrates that our method performs well under more
complex situation. We also observe an obvious improve-
ment with R50 backbone, increasing the source only results
by 9.8%. It further verifies the robustness of our methods.

4.5. Ablation Studies and Analysis

To verify designs in our network, we conduct a set of
ablation studies on the Res50 backbone.

Dual branch. To validate the effectiveness of our dual
branch structure, we conduct a set of ablation studies with
images from different domains. Table 4 shows the results
of different experiments. When implemented with a single
branch, target domain images are supervised by the pseudo
annotations generated by the single teacher branch, while
the target-like images were feed to the network paired with
source images. The proposed Target-proposal-perceiver is
not used in this dual-branch structure to fairly compare with
the single-branch experiments. We can observed that the
model performance improved step by step with the target
and target-like images participating in the training. This
verifies our motivation that data from each domain is use-
ful. The dual-branch experiment outperforms all the sin-
gle branch methods, which demonstrates that our dual-
branch distillation framework can effectively retain the use-
ful source domain knowledge and explore target domain in-
formation simultaneously.

Multi Head Proposal Cross Attention. We implement
the MHPCA to guide the source adaptive branch to learn
knowledge closer to the target domain with the help of
target-like domain branch. Table 5 shows the effectiveness
of our MHPCA module. First, we can see a significant im-
provement with the MHPCA module added. Moreover, to
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(a) Qualitative results. (b) Visualization for MHPCA head

Figure 5. (a): Qualitative detection results of on the C → F scenario for different models. We set confidence thresh=0.6 for visualization.
(b): Top 3 most relevant clue proposals in TL branch found by our MHPCA.

validate that domain difference between two branches mat-
ters for our attention model, we also experiment with self-
attention. Besides, to explore the guide manner between
two branch, we also add a cross attention head in the target-
like branch. Sym Cross-Attention means that a same cross-
attention module is added on both the source-adaptive and
target-like branch. While Asym Cross-Attention refers to
our TDD methods which equip the SA branch with the cross
attention module. Our asymmetric TDD performs best in
these three manners. It also confirms that in our framework,
the cross attention manner is needed for the SA branch due
to the lack of target domain knowledge.

Dual-Branch Self Distillation. We do ablation studies
to verify the effectiveness of our dual-branch self distillation
procedure, which is composed of Joint-Domain Pretraining
(JDP), Cross-Domain Distillation (CDD), and Dual Teacher
Refinement (DTR) steps. We see from Table 6 that all of the
three steps in our method improve former step results. We
also experiment with different EMA rate α in dual-teacher
refinement stage. The smaller the value of α, the more in-
formation teacher receives from the target image during the
refine stage. When α is set to be small (e.g., 0.96), the
model performance drops significantly. Additionally, when
α = 1, the teacher is not refined which is JDP+CDD in Ta-
ble 6. All these show the teacher model should be updated
gradually. A reasonable rate is needed to impart the target
domain knowledge learned by student to teacher.

Qualitative results. We show the detection results of

Faster [31], GPA [49], UBT [27] and our TDD in Figure 5
(a). We can see that many objects can not be detected by
the Faster RCNN and UBT due to the heavy fog, while the
GPA attempts to capture objects in the fog but gives wrong
prediction. Our TDD can localize and classify objects more
accurately. We also visualize the working mechanism for
our cross-domain MHPCA module. For a SA branch pro-
posal, our attention head can discover useful contextual pro-
posal features in TL branch as clues for detection. As the
top image shown in Figure 5(b), a rider is classified with the
guidance of a motorcycle and two person proposals.

5. Conclusion

In this work, we propose a novel Target-perceived Dual
branch Distillation framework. Through a target proposal
perceiver and our dual-branch self distillation procedure,
we tackle domain shift and label deficiency together in
cross domain object detection. Extensive experiments are
conducted on multiple benchmarks, and the results clearly
show that our TDD surpasses the existing state-of-the-art
models. Acknowledgement: This work is partially sup-
ported by the National Natural Science Foundation of China
(61876176,U1813218), the Joint Lab of CASHK, Guang-
dong NSF Project (No. 2020B1515120085,the Shenzhen
Research Program(RCJC20200714114557087), the Shang-
hai Committee of Science and Technology, China (Grant
No. 21DZ1100100).
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