
Density-preserving Deep Point Cloud Compression

Yun He1∗ Xinlin Ren1∗ Danhang Tang2 Yinda Zhang2 Xiangyang Xue1 Yanwei Fu1

1 Fudan University 2 Google

Abstract

Local density of point clouds is crucial for represent-
ing local details, but has been overlooked by existing point
cloud compression methods. To address this, we propose a
novel deep point cloud compression method that preserves
local density information. Our method works in an auto-
encoder fashion: the encoder downsamples the points and
learns point-wise features, while the decoder upsamples
the points using these features. Specifically, we propose
to encode local geometry and density with three embed-
dings: density embedding, local position embedding and
ancestor embedding. During the decoding, we explicitly
predict the upsampling factor for each point, and the di-
rections and scales of the upsampled points. To mitigate
the clustered points issue in existing methods, we design a
novel sub-point convolution layer, and an upsampling block
with adaptive scale. Furthermore, our method can also
compress point-wise attributes, such as normal. Extensive
qualitative and quantitative results on SemanticKITTI and
ShapeNet demonstrate that our method achieves the state-
of-the-art rate-distortion trade-off.

1. Introduction

Point cloud is one of the most important and widely
used 3D representation in many applications, such as au-
tonomous driving, robotics and physics simulation [13].
With the rapid development of 3D scanning technology,
complex geometry can now be effectively captured as large
point clouds with fine details. As a consequence, point
cloud compression becomes crucial for storage and trans-
mission. Particularly, to achieve favorable compression ra-
tio, the community has been focusing on lossy methods and
pondering the key question: what properties of point clouds
should be preserved, given limited bitrate budget?

Besides the global geometry, we argue that local density

∗indicates equal contribution.
Yun He, Xinlin Ren and Xiangyang Xue are with the School of Com-

puter Science, Fudan University.
Yanwei Fu is with the School of Data Science, Fudan University.

GT Ours (Bpp: 1.61)

G-PCC (Bpp: 1.66) Depoco (Bpp: 1.73)

\ \

\ \

Figure 1. We argue that local density is an important character-
istic of the point cloud and should be preserved during compres-
sion. Existing methods that ignore the local density exhibit ar-
tifacts such as uniform distribution (G-PCC [12]) and clustered
points (Depoco [40]), resulting in worse reconstruction, especially
when the bitrate is low.

is an important characteristic and should be preserved as
much as possible. Firstly, preserving density usually leads
to less outliers, and thus smaller reconstruction error. Sec-
ondly, point clouds captured in practice, e.g. from LiDAR,
are rarely with uniformly distributed points. Losing local
density means losing important traits such as scanning res-
olution and occlusion. Thirdly, point clouds are often pro-
cessed or simplified to be denser on regions of interest or
with complex geometry, such as human face, hand, etc. Pre-
serving density during compression means more budget is
spent on these regions. Last but not the least, if the decom-
pressed point cloud has significantly different density from
the raw one, downstream applications such as semantic seg-
mentation may be affected.

Mathematically, a point cloud can be considered as a set,
often with different cardinality and permutation settings [8],
which makes it difficult for image/video compression or
conventional learning-based solutions that assume fixed di-
mensional and ordered input. A typical strategy of exist-
ing lossy methods is to voxelize the points before compres-

2333

sion [12, 27, 28, 37, 38]. While this allows leveraging con-
ventional methods [7, 22], it obviously loses the local den-
sity, and has a precision capped by the voxel size. Recent
methods [17, 41] utilize PointNet [24] or PointNet++ [25]
to ignore the cardinality and permutation with max pool-
ing, and preserve density to some extent. However, the de-
compressed point clouds always lose local details and suf-
fer from clustered points issue, since most of the local ge-
ometry has been discarded by max pooling. Depoco [40]
adopts KPConv [35] to capture more local spatial informa-
tion than pooling, but clustered points artifact still exists
due to feature replication, see Fig 1. Alternatively, Zhao et
al. [46] introduces attention mechanism to handle different
cardinalities and permutations, though it is not designed for
compression purpose.

In this paper, we propose a novel density-preserving
deep point cloud compression method which yields superior
rate-distortion trade-off to prior arts, and more importantly
preserves the local density. Our method has an auto-encoder
architecture, trained with an entropy encoder end-to-end.
The contributions of our paper are summarized as follows.
On the encoder side: three types of feature embeddings are
designed to capture local geometry distribution and density.
On the decoder side: to mitigate the clustered points issue,
we propose 1) the sub-point convolution to promote feature
diversity during upsampling; 2) learnable number of upsam-
pling points, and scale for their offsets in different regions.

We conduct extensive experiments and ablation studies
to justify these contributions. Additionally, we demonstrate
that our method can be easily extended to jointly compress
attributes such as normal.

2. Related Work

Point Cloud Analysis. Point clouds are typically unstruc-
tured, irregular and unordered, which cannot be immedi-
ately processed by conventional convolution. To tackle this
issue, many works [21, 30] first voxelize points and then
apply 3D convolution, which however could be computa-
tionally expensive. Another type of approach directly op-
erates on point clouds, hence termed point-based. For ex-
ample, PointNet [24] and PointNet++ [25] use max pool-
ing to ignore the order of points. DGCNN [39] proposes
dynamic graph convolution for non-local feature aggrega-
tion. And Point Transformer [46] introduces a purely self-
attention [36] based network.

Point Cloud Compression. Traditional point cloud com-
pression algorithms [10–12, 23, 31, 32] usually rely on oc-
tree [22] or KD-tree [5] structures for storage efficiency.
Inspired by the great success of deep learning technology
in point cloud analysis [24, 25, 39, 46] and image compres-
sion [2, 3], the community begins to focus on the learning
based point cloud compression. Similarly, lossy methods

can also be categorized into voxel-based [27,28,37,38] and
point-based [17, 40, 41]. While sharing the discussed pros
and cons in point cloud analysis, point-based methods en-
able preserving local density for taking the raw 3D points as
inputs. Specifically, Yan et al. [41] integrates PointNet [24]
into an auto-encoder framework, while Huang et al. [17]
uses PointNet++ [25] instead. Architecture wise, Wies-
mann et al. [40] proposes to downsample the point cloud
while encoding and upsample during decoding. Moreover,
the research on deep entropy model [6,16,29] is also active,
while it is nearly lossless since its loss is only from quan-
tization. In this paper we are focusing on the more lossy
compression in favor of higher compression ratio.

Point Cloud Upsampling. Point cloud upsampling aims
to upsample a sparse point cloud to a dense and uniform
one. And previous methods always design various fea-
ture expansion modules to achieve it. In particular, Yu et
al. [44] replicates features and transforms them by multi-
branch MLPs. And some other methods [19,20,43] employ
folding-based [42] upsampling, which also duplicates fea-
tures first. Specifically, Wang et al. [43] assigns each dupli-
cated feature a 1D code. Li et al. [19] and Li et al. [20]
concatenate each replicated feature with a point sampled
from a 2D grid. However, the upsampled features generated
from these methods could be too similar to each other due
to replication, which inevitably results in clustered points.

3. Methodology

The proposed density-preserving deep point cloud com-
pression framework is based on a symmetric auto-encoder
architecture, where the encoder has S downsampling stages
indexed by 0, 1...S − 1, and the decoder also has S upsam-
pling stages indexed reversely by S−1, S−2...0. For stage
s of the encoder, the input point cloud is notated as Ps and
the output as Ps+1. Reversely on the decoder side, the in-
put and output of stage s are P̂s+1 and P̂s respectively, as
shown in Fig 2. Note that to distinguish from encoding, the
hat symbol is used for reconstructed point clouds and asso-
ciated features.

The input point cloud P0 is first partitioned into smaller
blocks which will be compressed individually. For simplic-
ity, we use the same notation P0 for a block. Specifically,
on the encoder side, the input Ps is downsampled to Ps+1

by a factor fs at each stage s, while local geometry and den-
sity are also encoded into features Fs+1. At the bottleneck,
features FS are then fed into an end-to-end trained entropy
encoder for further compression. When decompressing, we
recover the downsampled point cloud P̂S , along with the
features F̂S extracted by the entropy decoder. Our upsam-
pling module then utilizes F̂S to upsample P̂S back to the
reconstructed point cloud P̂0 stage by stage.

2334

DS
Block

DS
Block

DS
Block

Downsampling Module

Entropy
Encoder

… … … …
: Downsampled Point Cloud

: Downsampled Features

Stage 1 Stage 2

US
Block

US
Block

US
Block

Adaptive Upsampling Module

Stage 2 Stage 1 Stage 0Stage 0

Figure 2. Our pipeline first partitions the point cloud into small blocks. Each block is then downsampled three times while the local density
and geometry patterns of collapsed points are encoded into features. At the bottleneck, downsampled features are further compressed by an
entropy encoder. The decoder can then use the features to adaptively upsample the downsampled point cloud back to the original geometry
and density. The details of downsampling (DS) block and upsampling (US) block are shown in Fig 3 and Fig 5 respectively.

3.1. Density-preserving Encoder

Downsampling. At each stage s of the encoder, an input
point cloud block Ps will be downsampled to Ps+1 by a
factor of fs using farthest point sampling (FPS), which en-
courages the sampled points to have a good coverage of the
point cloud Ps. Please refer to the supplementary section
for the ablation study of different sampling techniques.

Feature embedding. As Ps+1 itself does not preserve the
discarded points distribution of Ps. Simply upsampling
Ps+1 by 1/fs will end up with a reconstruction with poor
accuracy and uniform density. To address this, for each
point p ∈ Ps+1, we calculate three different embeddings:
density embedding, local position embedding and ancestor
embedding, to capture the geometry and density of the dis-
carded points Ps − Ps+1 in a compact form with low en-
tropy.

First we define the concept of a collapsed points set C(p).
After the downsampled points set is decided, each discarded
point is deemed to collapse into its nearest downsampled
point exclusively. Thus all the points that collapse into a
downsampled point p form a collapsed points set C(p), and
we term u = |C(p)| as the downsampling factor of point p.

The density embedding FD captures the cardinality
of C(p) by mapping the downsampling factor u to a d-
dimensional embedding via MLPs. Secondly, the local po-
sition embedding captures the distribution of C(p). Specifi-
cally, for each pk ∈ C(p), the direction and distance of the
offset pk − p are calculated as below:

(
pk − p

||pk − p||2
, ||pk − p||2), p ∈ Ps+1, pk ∈ C(p) (1)

where the direction (3D) and distance (scalar) are repre-
sented by this 4D vector. Consequently, the local point dis-
tribution centered at p can be represented by a u×4 feature,
which is mapped to a higher dimensional (u×d) space with
MLPs, before attention mechanism [36] is applied to aggre-
gate them into a d-dimensional embedding FP .

While the density and position embedding capture the
local density and geometry at stage s, it is necessary to
pass along these information from previous stages without
adding much rate cost. To this end, we employ the point
transformer layer [46] to aggregate the previous stage fea-
tures of the collapsed points set C(p) into the representative
sampled point p, due to its simplicity and effectiveness. We
term this d-dimensional vector FA as ancestor embedding.

At last, an MLP fuses these three embeddings
(FP ,FD,FA) into a new d-dimensional feature Fs+1 for
the next stage. This process is illustrated in Fig 3.

Entropy encoding. At the bottleneck, we have a downsam-
pled point cloud PS and per-point features FS . For PS , we
use half float representation to reduce bitrate. And FS are
further compressed by an entropy encoder. Following re-
cent success in deep image compression [2,3], we integrate
an arithmetic encoder into the training process to jointly op-
timize the entropy of the features. This process is accompa-
nied by a rate loss function that will be introduced later in
Sec 3.3.

3.2. Density-recovering Decoder

Overview. During decoding, symmetrically, we have S up-
sampling stages. At the bottleneck, we have the downsam-
pled point cloud P̂S and decoded features F̂S extracted by
the entropy decoder. Recall that during encoding, for each

2335

Sample with
FPS

Find Collapsed
Points for Samples

Point
Transformer

Attention

MLP
Downsample
Factor = 2

Raw
Pointcloud

MLP

Figure 3. The downsampling block: first a subset of points are
chosen as samples, and then three types of embeddings are com-
puted and fused into Fs+1.

downsampled point p, u discarded points collapse into it.
This information is not losslessly transmitted but fused into
the features. During decoding, in order to properly upsam-
ple each point, we apply MLPs to predict an upsampling
factor û ≈ u from the features. Similar to the collapsed
set C(p) on the encoder, we define the upsampled set of a
specific point p̂ ∈ P̂s+1 as Ĉ(p̂).

In addition to Ĉ(p̂), the feature of each upsampled point
is also predicted. Therefore the output of each point p̂ at
upsampling stage s is:

(Ĉ(p̂)
U×3

, F̂(p̂)
U×d

, û), p̂ ∈ P̂s+1, û ≤ U (2)

where Ĉ(p̂) and F̂(p̂) here have U items, but only the first û
points and features will be chosen as the final outputs. The
union of all chosen points is the upsampled point cloud P̂s

for the next stage, and same goes for F̂s.
Sub-point convolution. At upsampling stage s, guided by
the features F̂s+1, we aim to upsample each point p̂ ∈ P̂s+1

by the predicted upsampling factor û. Additionally, F̂s+1

also need to be expanded to û features F̂s for the next
stage. To achieve so, prior upsampling methods either use
multi-branch MLPs for feature expansion [40, 44] or apply
folding-based [42] upsampling modules [19, 20, 43]. De-
spite efforts of regularization and refinement, they still suf-
fer from the aforementioned clustered points artifact due to
feature replication. To address this, we propose a novel and
efficient operator sub-point convolution (Fig 4), inspired by
the sub-pixel convolution [33].

Specifically, given the input N × din features F̂s+1, we
first divide them into U groups along the channel dimen-
sion, such that each group has din/U channels. A convo-
lution layer per group is applied to expand the features to a
space with dimension N × Udout.

At last, we use periodic shuffle to reshape the upsam-
pled features to UN × dout. Compared with prior meth-
ods [19, 20, 40, 43, 44], sub-point convolution has the fol-
lowing advantages: 1) the clustered points issue is mitigated
by preventing feature replication; 2) convolution is applied

Individual

Individual

Input
Features

Convolution

Periodic
Shuffle

Convolution

Upsampled
Features

Figure 4. The illustration of sub-point convolution.

to each group with lower dimension, which significantly re-
duces the parameters and computations.

Upsampling block with adaptive scale. Based on the sub-
point convolution, we build our upsampling block for points
and associated features, as depicted in Fig 5. Centering at
each point p̂ ∈ P̂s+1, offsets of upsampled points are pre-
dicted. Since both downsampling and upsampling happen
in local regions, the scales of predicted offsets need to be
constrained. To this end, folding-based methods [19,20,43]
use predefined small grid sizes. While Wiesmann et al.
[40] constrains predicted offsets to [-1,1], and then scales
them with a predefined factor. However, this scaling factor
may vary significantly across different regions and different
point clouds. Hence we design a new upsampling module
with learnable scales.

Weights

Scales

Unit
Sphere

Candidate
Directions

Uniform
Sample

Sub-point
Convolution

D
ire

ct
io

ns

Input
Points

D
up

lic
at

e
Offsets

Upsampled
Points

Duplicate

Input
Features

Upsampled
Features

Sub-point
Convolution

Upsampled
Features

Duplicate

Sum

Sub-point
Convolution

Figure 5. The scale-adaptive upsampling block, includes both
point upsampling and feature upsampling.

In particular, a pool of M vectors is first sampled from
a unit sphere and kept fixed as candidate directions for
both training and inference. During upsampling, weights of
these candidates are predicted such that the weighted sum
result is the most probable direction. Some scaling fac-
tors, or magnitudes are also predicted from the input fea-
tures F̂s+1 to have the offsets and thus upsampled points.

The feature expansion is performed by sub-point convo-
lution within a residual block [14]. Once we obtain the final

2336

points and features, a refinement layer is added to finetune
the upsampled points and features. It is essentially an up-
sampling block with upsampling factor û = 1.

3.3. Loss Function

We employ the standard rate-distortion loss function dur-
ing training for better trade-off.

L = D + λR, (3)

where D penalizes distortion and R penalizes bitrate.
Distortion loss. For distortion (reconstuction error), we
utilize the symmetric point-to-point Chamfer Distance [16]
to measure the difference between the reconstructed point
cloud P̂s and ground truth Ps. Since the decoder has S
stages, to avoid error accumulation, we compute the distor-
tion loss at each stage and aggregate them as Dcha.

A density term is also designed to encourage recovering
local density. At stage s of the decoder, a point p̂ is upsam-
pled to a new chosen points set Ĉ(p̂) (see Sec 3.2). We then
find its nearest counter point p on the encoder side, which
is collapsed from a set C(p) (see Sec 3.1). Hence we can
define the density loss Dden as:

Dden =

S−1∑
s=0

∑
p̂∈P̂s+1

∣∣∣|C(p)| − |Ĉ(p̂)|
∣∣∣+ γ

∣∣∣C(p)− Ĉ(p̂)
∣∣∣

|P̂s+1|
(4)

where the first term of numerator calculates the cardinality
difference between the two sets, the second calculates the
difference between the mean distances of all points in sets
to center points p or p̂, and γ is the weight.

To further facilitate the density estimation, for each stage
s, we utilize another loss to measure the cardinality differ-
ence of ground truth Ps and reconstructed point cloud P̂s:

Dcard =
S−1∑
s=0

∣∣∣|Ps| − |P̂s|
∣∣∣ (5)

Finally, the overall distortion loss is as follows:

D = Dcha + αDden + βDcard (6)

where α and β are the weights of respective terms.
Rate loss. Since entropy encoding is non-differentiable,
a differentiable proxy is applied during training. Follow-
ing [2, 3], we replace the quantization step with an additive
uniform noise, and estimate the number of bits as the rate
loss R. During inference, features are properly quantized
and compressed by a range encoder.

3.4. Attribute Compression

Our framework can also compress point cloud attributes
such as color, normal, etc. As an example, we incorporate

normal compression into our framework. To avoid extra
cost of bitrate, we fix the same network architecture and
hyperparameters. The only difference is the input/output
dimension has changed from 3D to 6D (position+normal).
To facilitate this, we employ a simple L2 loss to minimize
the normal reconstruction error.

4. Evaluation
In this section, we evaluate our method by comparing to

state-of-the-art methods on compression rate, reconstruc-
tion accuracy and local density recovering. We then pro-
vide ablation studies to justify the design choices. Lastly,
we demonstrate that additional attributes like normal can be
also compressed. Please refer to the supplementary section
for implementation details and parameter settings.

4.1. Experiment Setup

Datasets. We conduct our main experiments on Se-
manticKITTI [4] and ShapeNet [9]. For SemanticKITTI,
we follow the official training/testing split [4]. For
ShapeNet, we follow [17] to split training/testing sets and
sample points from meshes based on [15]. All point clouds
are first normalized to 100m3 cubes and divided into non-
overlapping blocks of 12m3 and 22m3 for SemanticKITTI
and ShapeNet respectively, while each block is further nor-
malized to [-1, 1]. For downstream surface reconstruction
task, we use the RenderPeople [1] dataset.
Baselines. We compare to both state-of-the-art non-
learning based methods: G-PCC [12], Google Draco [11],
MPEG Anchor [23]; and learning-based methods: De-
peco [40], PCGC [38]. Note that all learning-based methods
have been retrained on the same datasets as our method.
Evaluation metrics. Following [6, 16], we adopt the sym-
metric point-to-point Chamfer Distance (CD) and point-to-
plane PSNR for geometry accuracy and Bits per Point (Bpp)
for compression rate. Moreover, we design a new metric to
measure the local density differences. And all these metrics
are evaluated on each block. Specifically, for each point
p, we notate its neighbor points within radius r = 0.15 as
K(p). Since the cardinalities of ground truth P0 and recon-
structed point cloud P̂0 are not necessarily the same, we
define a symmetric density metric DM as:

DM(P0, P̂0) =
1

|P0|
∑
p∈P0

δ(p, p̂) +
1

|P̂0|

∑
p̂∈P̂0

δ(p̂, p),

where δ(a, b) =
||K(a)| − |K(b)||

|K(a)|
+ µ

∣∣∣K(a)−K(b)
∣∣∣

K(a)
(7)

where b is the nearest counter point of a, µ is the weight,
|K(a)| denotes the cardinality of K(a) and K(a) denotes
the mean distance of all points in K(a) to a.

2337

G
T

O
ur

s
G

-P
C

C
D

ra
co

M
PE

G
 A

nc
ho

r
D

ep
oc

o
PC

G
C

Bpp: 1.94 PSNR: 44.73

Bpp: 1.95 PSNR: 39.77

Bpp: 2.89 PSNR: 26.50

Bpp: 2.56 PSNR: 24.61

Bpp: 2.39 PSNR: 34.34

Bpp: 2.54 PSNR: 36.02

Bpp: 4.23 PSNR: 47.98

Bpp: 4.52 PSNR: 45.29

Bpp: 4.83 PSNR: 38.32

Bpp: 4.89 PSNR: 38.65

Bpp: 4.98 PSNR: 40.01

Bpp: 4.91 PSNR: 40.22

Bpp: 1.67 PSNR: 39.65

Bpp: 1.71 PSNR: 36.78

Bpp: 1.85 PSNR: 32.32

Bpp: 1.76 PSNR: 35.52

Bpp: 1.69 PSNR: 29.44

Bpp: 1.99 PSNR: 34.79

Bpp: 4.06 PSNR: 44.00

Bpp: 4.21 PSNR: 42.87

Bpp: 4.25 PSNR: 41.31

Bpp: 4.16 PSNR: 40.93

Bpp: 4.13 PSNR: 39.12

Bpp: 4.09 PSNR: 39.97

0.167 0.333 0.500 0.667 0.833 1.001.00e-07
Error Colormap

Figure 6. Qualitative results on SemanticKITTI (the first two columns) and ShapeNet (the last two columns). From top to bottom: Ground
Truth, Ours, G-PCC [12], Draco [11], MPEG Anchor [23], Depeco [40] and PCGC [38]. We utilize the distance between each point in
decompressed point clouds and its nearest neighbor in ground truth as the error. And the Bpp and PSNR metrics are averaged by each
block of the full point clouds. It is obvious that our method successfully achieves both the most accurate geometry and lowest bitrates.

2338

Figure 7. Quantitative results on SemanticKITTI (the first row) and ShapeNet (the second row). Our method consistently achieves more
accurate geometry and recovering density across the full range of bitrates.

4.2. Comparison with SOTA

We first compare our method with SOTA on the rate-
distortion trade-off. In Fig 7, we show the per-block Cham-
fer Distance, PSNR and density metric of all methods
against Bits per Point (Bpp). Our method yields more accu-
rate reconstruction consistently across the full spectrum of
Bpp on both SemanticKITTI and ShapeNet datasets. Note
the differences are more evident under the density metric.

Fig 6 shows qualitative results at various bitrates. Draco
[11] and MPEG Anchor [23] typically need a high Bpp (e.g.
>4) to achieve a satisfactory reconstruction. Plus they per-
form poorly at low bitrates due to quantization. Depoco [40]
often generates clustered points caused by feature replica-
tion. PCGC [38] tends to miss a continuous chunk of points,
because it regards decompression as a binary classification
process (occupied or not), which has extremely imbalanced
data due to the intrinsic sparsity of point clouds. Besides, it
also significantly alters the density. Although G-PCC [12]
recovers the overall geometry successfully, due to voxeliza-
tion, it loses local details. Our method achieves the highest
compression performance in terms of both geometry and lo-
cal density while spending the lowest bitrates.

Complexity analysis. Table 1 shows the per-block latency
and memory footprint of different methods. For G-PCC
[12], Draco [11] and MPEG Anchor [23], we use the sizes
of their executable files. For Depoco [40] and PCGC [38],

Methods Enc. time (ms) Dec. time (ms) Size (MB)

G-PCC [12] 180/165 163/152 3.49
Draco [11] 147/153 147/153 2.49
MPEG Anchor [23] 151/142 136/130 27.8
Depoco [40] 32/126 2/2 0.54
PCGC [38] 130/96 24/19 7.73

Ours 80/81 24/31 0.70

Table 1. The average per-block encoding time, decoding time and
model size of different methods on SemanticKITTI/ShapeNet, us-
ing a TITAN X GPU.

we use their checkpoint sizes. Our model is competitive in
computational efficiency, only second to Depoco [40] but
achieves a better rate-distortion trade-off.

4.3. Ablation Study

For fair comparison, we conduct all the ablation experi-
ments on SemanticKITTI while fixing the Bpp at 2.1.

Effectiveness of each component. We build a baseline
model consisting of a point transformer encoder [46], en-
tropy encoder and multi-branch MLPs decoder [44]. The
proposed components, including dynamic upsampling fac-
tor û, local position embedding FP , density embedding
FD, scale-adaptive upsampling block, sub-point convolu-
tion and upsampling refinement layer, are then added incre-
mentally, as shown in Table 2. All the modules contribute
to the reconstruction quality under a fixed Bpp.

2339

Components CD (10−2) ↓ PSNR ↑ DM ↓
Baseline 2.61 38.82 4.17
+û 2.29 39.64 3.23
+FP 1.67 40.96 3.02
+FD 1.32 41.68 2.58
+Adaptive Scale 0.98 42.49 2.31
+Sub-point Conv 0.45 43.73 2.07
+Refinement 0.36 44.03 1.98

Table 2. The effectiveness of each component in our method.
Each row a component is added on top of the previous row.

Effectiveness of our decoder. To show that our decoder,
consisting of our upsampling block and sub-point convo-
lution, is more effective in leveraging the information pro-
vided by the encoder for recovering density, we utilize var-
ious point upampling modules from previous works as the
decoders to jointly train with our encoder, as shown in Ta-
ble 3. Our decoder significantly outperforms others on all
the reconstruction quality metrics, indicating that our de-
coder preserves geometry and local density better.

Decoders CD (10−2) ↓ PSNR ↑ DM ↓
Yu et al. [44] 1.25 41.51 2.60
Wang et al. [43] 1.03 42.54 2.46
Li et al. [19] 0.98 42.57 2.45
Li et al. [20] 0.90 42.83 2.32
Qian et al. [26] 0.81 43.06 2.25

Ours 0.36 44.03 1.98

Table 3. The effectiveness of our decoder. In each row, we replace
our decoder with the decoder from another work.

Figure 8. Quantitative normal compression results. Left: Se-
manticKITTI; right: ShapeNet. Our method consistently performs
better than Draco [11], G-PCC [12] and MPEG Anchor [23] across
the bitrate spectrum.

4.4. Normal Compression

Besides positions, we also evaluate the capability of
compressing attributes, using normals as an example. The
normals are concatenated with the point locations and fed
into our model. The decompressed locations and normals
are then compared with the inputs by per-block F1 score [6].

As modifying learning based approaches such as PCGC
[38] and Depoco [40] to have attribute compression is non-
trivial, we only compare to Draco [11], G-PCC [12] and

Figure 9. Quantitative results of downstream tasks. Left: surface
reconstruction on RenderPeople; right: semantic segmentation on
SemanticKITTI.

MPEG Anchor [23], as shown in Fig 8. Our method consis-
tently outperforms others, especially by a large margin on
the SemanticKITTI dataset.

4.5. Impact on Downstream Tasks

Point cloud compression, as an upstream task, should not
affect the performance of downstream applications much.
In this section, we compare the impact of different com-
pression algorithms on two downstream tasks: surface re-
construction and semantic segmentation. Since some meth-
ods do not support attribute compression, all methods only
compress the positions for fair comparison.

In the surface reconstruction experiments, Poisson re-
construction [18] is run on the full decompressed point
clouds. Reconstructed meshes are then compared with the
ground truth with the symmetric point-to-plane Chamfer
Distance [34]. For semantic segmentation, we train Polar-
Net [45] on raw point clouds from SemanticKITTI training
set, and test on the full decompressed point clouds. The
mean intersection-over-union (IOU) is used as metric, fol-
lowing [16]. As shown in Fig 9, our method consistently
yields the best rate-distortion trade-off, which reiterates the
importance of recovering local density. Please refer to the
supplementary section for qualitative comparisons.

5. Conclusion
We introduce a novel deep point cloud compression

framework that can preserve local density. Not only does
it yield the best rate-distortion trade-off against prior arts, it
also recovers local density more accurately under our den-
sity metric. Qualitative results show that our algorithm can
mitigate the two main density issues of other methods: uni-
formly distributed and clustered points. Complexity wise
our method is only second to Depoco while with much bet-
ter accuracy.
Acknowledgments. This work was supported in part by
NSFC under Grant (No. 62076067), SMSTM Project
(2021SHZDZX0103), and Shanghai Research and Innova-
tion Functional Program (17DZ2260900). Danhang Tang,
Yinda Zhang and Yanwei Fu are the corresponding au-
thours.

2340

References
[1] Renderpeople. https://renderpeople.com/free-

3d-people, 2018. 5
[2] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.

End-to-end optimized image compression. arXiv preprint
arXiv:1611.01704, 2016. 2, 3, 5

[3] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018. 2, 3, 5

[4] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 9297–9307,
2019. 5

[5] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the ACM,
18(9):509–517, 1975. 2

[6] Sourav Biswas, Jerry Liu, Kelvin Wong, Shenlong Wang,
and Raquel Urtasun. Muscle: Multi sweep compres-
sion of lidar using deep entropy models. arXiv preprint
arXiv:2011.07590, 2020. 2, 5, 8

[7] Andrew Brock, Theodore Lim, James M Ritchie, and
Nick Weston. Generative and discriminative voxel mod-
eling with convolutional neural networks. arXiv preprint
arXiv:1608.04236, 2016. 2

[8] Christian Bueno and Alan Hylton. On the representation
power of set pooling networks. In Thirty-Fifth Conference
on Neural Information Processing Systems, 2021. 1

[9] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 5

[10] Ricardo L De Queiroz and Philip A Chou. Compression of
3d point clouds using a region-adaptive hierarchical trans-
form. IEEE Transactions on Image Processing, 25(8):3947–
3956, 2016. 2

[11] Frank Galligan, Michael Hemmer, Ondrej Stava, Fan Zhang,
and Jamieson Brettle. Google/draco: a library for com-
pressing and decompressing 3d geometric meshes and point
clouds. https://github.com/google/draco,
2018. 2, 5, 6, 7, 8

[12] D Graziosi, O Nakagami, S Kuma, A Zaghetto, T Suzuki,
and A Tabatabai. An overview of ongoing point cloud com-
pression standardization activities: video-based (v-pcc) and
geometry-based (g-pcc). APSIPA Transactions on Signal and
Information Processing, 9, 2020. 1, 2, 5, 6, 7, 8

[13] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,
and Mohammed Bennamoun. Deep learning for 3d point
clouds: A survey. IEEE transactions on pattern analysis and
machine intelligence, 2020. 1

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[15] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar
Vinacua, and Timo Ropinski. Monte carlo convolution for
learning on non-uniformly sampled point clouds. ACM
Transactions on Graphics (TOG), 37(6):1–12, 2018. 5

[16] Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu,
and Raquel Urtasun. Octsqueeze: Octree-structured en-
tropy model for lidar compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1313–1323, 2020. 2, 5, 8

[17] Tianxin Huang and Yong Liu. 3d point cloud geometry
compression on deep learning. In Proceedings of the 27th
ACM International Conference on Multimedia, pages 890–
898, 2019. 2, 5

[18] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM Transactions on Graphics (ToG),
32(3):1–13, 2013. 8

[19] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-gan: a point cloud upsampling ad-
versarial network. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 7203–7212,
2019. 2, 4, 8

[20] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu.
Point cloud upsampling via disentangled refinement. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 344–353, 2021. 2, 4, 8

[21] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, 2015. 2

[22] Donald Meagher. Geometric modeling using octree encod-
ing. Computer graphics and image processing, 19(2):129–
147, 1982. 2

[23] Rufael Mekuria, Kees Blom, and Pablo Cesar. Design, im-
plementation, and evaluation of a point cloud codec for tele-
immersive video. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 27(4):828–842, 2016. 2, 5, 6, 7,
8

[24] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 2

[25] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 2

[26] Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali
Thabet, and Bernard Ghanem. Pu-gcn: Point cloud upsam-
pling using graph convolutional networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11683–11692, 2021. 8

[27] Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux.
Learning convolutional transforms for lossy point cloud ge-
ometry compression. In 2019 IEEE International Confer-
ence on Image Processing (ICIP), pages 4320–4324. IEEE,
2019. 2

[28] Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux.
Improved deep point cloud geometry compression. In 2020

2341

IEEE 22nd International Workshop on Multimedia Signal
Processing (MMSP), pages 1–6. IEEE, 2020. 2

[29] Zizheng Que, Guo Lu, and Dong Xu. Voxelcontext-net: An
octree based framework for point cloud compression. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6042–6051, 2021. 2

[30] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Octnet: Learning deep 3d representations at high resolutions.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3577–3586, 2017. 2

[31] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point
cloud library (pcl). In 2011 IEEE international conference
on robotics and automation, pages 1–4. IEEE, 2011. 2

[32] Ruwen Schnabel and Reinhard Klein. Octree-based point-
cloud compression. In PBG@ SIGGRAPH, pages 111–120,
2006. 2

[33] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 4

[34] Danhang Tang, Saurabh Singh, Philip A Chou, Christian
Hane, Mingsong Dou, Sean Fanello, Jonathan Taylor, Philip
Davidson, Onur G Guleryuz, Yinda Zhang, et al. Deep im-
plicit volume compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1293–1303, 2020. 8

[35] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6411–6420, 2019. 2

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2,
3

[37] Jianqiang Wang, Dandan Ding, Zhu Li, and Zhan Ma. Multi-
scale point cloud geometry compression. In 2021 Data Com-
pression Conference (DCC), pages 73–82. IEEE, 2021. 2

[38] Jianqiang Wang, Hao Zhu, Haojie Liu, and Zhan Ma. Lossy
point cloud geometry compression via end-to-end learning.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 2021. 2, 5, 6, 7, 8

[39] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 2

[40] Louis Wiesmann, Andres Milioto, Xieyuanli Chen, Cyrill
Stachniss, and Jens Behley. Deep compression for dense
point cloud maps. IEEE Robotics and Automation Letters,
6(2):2060–2067, 2021. 1, 2, 4, 5, 6, 7, 8

[41] Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al.
Deep autoencoder-based lossy geometry compression for
point clouds. arXiv preprint arXiv:1905.03691, 2019. 2

[42] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 206–215, 2018. 2, 4

[43] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and
Olga Sorkine-Hornung. Patch-based progressive 3d point set
upsampling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5958–
5967, 2019. 2, 4, 8

[44] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-net: Point cloud upsampling network.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2790–2799, 2018. 2, 4, 7, 8

[45] Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Ze-
rong Xi, Boqing Gong, and Hassan Foroosh. Polarnet: An
improved grid representation for online lidar point clouds se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9601–9610, 2020. 8

[46] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 16259–16268, 2021. 2, 3, 7

2342

