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Abstract

Segmenting an image into its parts is a common pre-
process for high-level vision tasks such as image editing.
However, annotating masks for supervised training is ex-
pensive. Weakly-supervised and unsupervised methods ex-
ist, but they depend on the comparison of pairs of im-
ages, such as from multi-views, frames of videos, and im-
age augmentation, which limit their applicability. To ad-
dress this, we propose a GAN-based approach that gener-
ates images conditioned on latent masks, thereby alleviating
full or weak annotations required by previous approaches.
We show that such mask-conditioned image generation can
be learned faithfully when conditioning the masks in a hi-
erarchical manner on 2D latent points that define the po-
sition of parts explicitly. Without requiring supervision of
masks or points, this strategy increases robustness of mask
to viewpoint and object position changes. It also lets us
generate image-mask pairs for training a segmentation net-
work, which outperforms state-of-the-art unsupervised seg-
mentation methods on established benchmarks. Code can
be found at https://github.com/xingzhehe/GANSeg.

1. Introduction
This paper tackles the problem of unsupervised part seg-

mentation. Discovering object parts in images is a fun-
damental problem in computer vision as parts provide an
intermediate representation that is robust to object appear-
ance and pose variation [17, 48]. Many high-level tasks
benefit from part representations, such as 3D reconstruc-
tion [31, 67], pose estimation [27, 42], and image editing
[14, 66]. Keypoints and part segmentation maps are among
the most commonly used forms. However, their supervised
training [12, 43, 56] requires pixel-level annotations for ev-
ery new application domain since labels hardly generalize
to other object categories and the number of parts and their
granularity vary across tasks.

On the side of keypoint detection, several unsupervised
detectors exist [20, 64] but segmentation methods are still
in their infancy [17, 32]. Segmenting parts without pixel-

level annotation is difficult because it requires disentangling
parts from other parts and the foreground from the back-
ground. Existing unsupervised1 methods mainly follow the
same strategy as applied for unsupervised keypoint detec-
tion [52]. Real images are transformed by an affine map
or a thin plate spline to find those parts that are equivari-
ant under the known deformation. For precise reconstruc-
tion they require additional information, such as saliency
maps [17] or assume the objects to be consistently cen-
tered [32], which is constraining. For example, when ap-
plied to face datasets [33], the neck and shoulders are often
ignored although part of almost every image.

Our goal is to improve the unsupervised part segmenta-
tion task. We propose to first train a generative adversar-
ial network (GAN) [10] to generate images that are inter-
nally conditioned on latent masks. This GAN formulation
alleviates the dependency on image pairs and pre-defined
image transformation in existing autoencoder networks. In
this way, the network learns the part distribution from the
dataset instead of from pre-defined image transformations.
Subsequently, we use the generator to synthesize virtually
infinite mask-image pairs for training a segmentation net-
work. Figure 1 provides an overview of our model.

The key question we address is how to design a GAN
that generates images with part segmentation masks that
are meaningful, i.e., group pixels into regions that typically
move together and have shared appearance across images.
We start from a backbone architecture that is borrowed from
supervised segmentation networks [3, 43] and the GAN
strategy is inspired by its recent application to unsupervised
keypoint detection [14]. Our innovation is the hierarchical
generation of the image via multiple abstraction levels, in-
cluding the use of masks. In the first level, we use Gaussian
noise to generate part appearance embeddings and a set of
2D latent points. Unlike [14] which continues straight from
points to image generation, we first group points to define
the position and the scale of each part. In the second ab-
straction level, we use a part-relative positional encoding to

1Most existing literature refers to unsupervised when training on single
images without annotation, and self-supervised when training on auxiliary
tasks using multi-views or videos. We follow this convention.
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Figure 1. GANSeg. A segmentation network (right) is trained on mask-image pairs generated by a new hierarchical image generator (left;
from points, to mask, over foreground to the image). It is unsupervised and applies to faces, persons, birds, and flowers.

generate 2D feature maps and then generate the mask with
a CNN. In the third level, the foreground image is generated
from a combination of feature maps with corresponding ap-
pearance embeddings. Independently, a background image
is generated with a randomized position to disentangle fore-
ground and background. Finally the foreground is blended
with the background. The generated masks are used here a
second time to define the blend weight.

The key to the success of our GAN framework are sev-
eral design choices that preserve translational equivariance
of parts [22], which are not applicable to the traditional au-
toencoder approaches, as explained in Appendix E. As a
result, by not knowing the absolute location, the convolu-
tional network is forced to condition the image purely on
the spatial extent of the masks; moving the part mask will
move the image part. This is a crucial inductive bias in our
unsupervised learning. Our contributions are threefold:

1. An unsupervised GAN approach to generate mask-
image pairs for training part segmentation;

2. A novel hierarchical image generator, which encour-
ages the segmentation of meaningful parts;

3. Alleviating prior assumptions on saliency maps and
object position.

Ethics - Risks. GANs can be abused for creating deep
fakes. However, our method does not work towards editing

nor improving image quality but scene understanding. Our
final output is a detector, which can not be abused to gener-
ate new images but unwanted surveillance applications are a
risk. Benefits. Since our method is entirely unsupervised, it
could be applied on objects, animals, or situations that have
not yet been labeled.

2. Related Work

Unsupervised Landmark Detection methods discover
keypoints in the images without any supervision signals.
Most existing works discover keypoints by comparing pairs
of images of the same object category. The common idea
is that the keypoints change as the image changes. The
change can be inferred from videos [7,21,28,30,36,47] and
multi-views [40, 41, 50] of the same object category. While
videos and multi-views naturally contain pairs of images,
those relying on unsupervised learning from image collec-
tions require pairs created by pre-defined random transfor-
mations [20, 34, 52, 64] and learned transformation [57, 61]
that are tuned for the dataset. Their underlying idea is simi-
lar. Keypoints must follow the transformation that is applied
to the original images—equivariance. Recently, [14] intro-
duced an alternative. They use a GAN to generate images
along with corresponding latent keypoints and use them to
train a detector. By contrast to sparse keypoints, our goal
is to generate masks at the pixel level, which we attain by
introducing a hierarchical generator.
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Unsupervised Foreground Segmentation aims to segment
foreground objects from the background in an unsupervised
manner. Gupta et al. [11] learn a patch level mask of fore-
ground to benefit representation learning, which, however,
is only coarse. Singh et al. [49] use a multi-stage GAN
to disentangle the foreground shape and texture but they
only focus on editing. Bielski et al. [2] propose to re-
position the generated foreground to disentangle it from the
background. Katircioglu et al, [24, 25] detect that region
as foreground that cannot be inpainted from the surround-
ing, a strategy previously used on optical flow [63], which
however requires a similar background in all training exam-
ples or an optical flow estimator. Chen et al. [4] achieved
unsupervised foreground segmentation by resampling the
foreground appearance to disentangle foreground and back-
ground. Voynov et al. [54] and Yang et al. [62] introduce
comparison-based segmentation methods using pre-trained
GANs, achieving better results than generation-based meth-
ods. As pointed out by [2, 4], such unsupervised meth-
ods can easily get into trivial solutions, where the back-
ground includes the whole foreground. To counteract, we
introduce two losses that overcome trivial solutions. Be-
sides, we found that preserving translation equivariance in
the network architecture can naturally mitigate trivial solu-
tions. This is another important reason why we chose to use
a GAN, as we will explain in Section 3 and supplementary.
In comparison to the above methods, this yields comparable
results even if they are specialized for foreground separation
while we provide more fine-grained part segmentation.

Unsupervised Part Segmentation aims at pixel-level
masks for multiple parts of an object, including separat-
ing foreground from background without mask annotation.
Collins et al. [6] use matrix factorization to find similar parts
in images, but it requires test images at training time, which
makes it computational prohibitive. Hung et al. [17] draws
lessons from unsupervised keypoint detection and extends
them to predict the part segmentation masks of an object us-
ing various loss functions that preserve the geometry and se-
mantic consistency of the masks. However, it needs off-the-
shelf saliency maps or ground truth background masks. Liu
et al. [32] alleviate the need for the background mask, but
they use a central prior to constrain the object mask to the
center of the image, which can be a constraining bias. For
example, in portrait images, the hair is often not masked.
Temporal information can be used [9, 48] to achieve bet-
ter segmentation results. In comparison to all of these ap-
proaches, our model uses less information (single images
without video or saliency map) yet outperform these on half
of the most established metrics and datasets, as we evalu-
ate in our experiments, Section 4. The recently proposed
DatasetGAN [65] also utilize the a GAN to segment parts,
but they still need some ground truth masks as parts are not
explicitly disentangled within the network.
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Figure 2. Hierarchical generation overview. Level 1 (red): The
Point Generator converts two Gaussian noise vectors to part po-
sition and appearance embedding. Level 2 (orange): The Mask
Generator turns part positions and embeddings into masks defin-
ing the part support. Level 3 (green and blue): The Foreground
Generator uses the quantities from the previous level to generate
a foreground image that is finally blended with the independently
generated background.

3. Method
We train a Generative Adversarial Network (GAN) [10]

to generate points, part masks, foreground, background, and
the image in a hierarchy. Figure 2 gives an overview of our
method. In a second stage, we generate mask-image pairs
to train the Deeplab V3 [3] segmentation network, thereby
enabling unsupervised part segmentation. Our core network
architecture design principle is to build a hierarchy that pre-
serves the translation equivariance of its part representations
at each of the following three stages.

3.1. Level 1: Point Generation and Part Scale
In the first level, we utilize independent noise vectors

to generate the locations and appearances of K parts. We
found training to be most stable by first predicting nper ⇥K

points separated into K groups with nper points. The part
location and scale are computed from the mean and stan-
dard deviation of the corresponding nper points, which reg-
ularizes training. Figure 3 gives an overview of the under-
lying Point Generator module. It takes two noise vec-
tors as input zpoint, zapp ⇠ N (0Dnoise , I

Dnoise⇥Dnoise), where
Dnoise is the noise dimension. We use a 3-layer multi-
layer perceptron (MLP) to map zpoint to nper ⇥ K points
{x1

k
, ...,x

nper
k

}K
k=1. Then we calculate the part locations

{x1, ...,xK} and part scales {�1, ...,�K},

xk =
1

nper

nperX

i=1

x
i

k
, �k =

qPnper
i

kxi

k
� xkk2

nper � 1
,

with {x1
k
, ...,x

nper
k

}K
k=1 = MLPpoint(zpoint), (1)

where k = 1, ...,K.
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Figure 3. Level 1. The Point Generator uses two Gaussian noise
vectors to generate part location, and part appearance embeddings,
respectively.

We use another 3-layer MLP to map zapp to a part ap-
pearance vector wdynamic 2 RDemb . Following [14], we de-
fine a constant embedding vector wconst

k
2 RDemb for each

part. We then perform an elementwise multiplication be-
tween w

dynamic and w
const
k

to obtain the final part embedding
wk 2 RDemb . That is,

w
dynamic = MLPapp(zapp) (2)

wk = w
dynamic ⌦w

const
k

(3)

where ⌦ is the elementwise product. It is important that
the noise source for appearance and position is independent
to prevent the appearance from interfering with the location
information.

3.2. Level 2: From Points to Masks
In the second level, the mask generation, we use Gaus-

sian heatmaps to model the local independence and posi-
tional encoding [39] to generate masks relative to the pre-
dicted part location. We encode relative instead of absolute
position between the points and the image pixels to keep
long-distance relations and to prevent leaking the absolute
coordinate information, which would violate the translation
equivariance. To further preserve the translation equivari-
ance, we initialize the positional encoding in a larger grid
than the real image range and crop to a fixed margin size
after each 2x upsampling [22], which prevents convolu-
tional layers from passing on boundary information (see
Section 3.3 for additional details).

These operations are implemented with the Mask Gen-
erator illustrated in Figure 4. It takes the nper ⇥K points
{x1

k
, ...,x

nper
k

}K
k=1, part locations xk and part scales �K ,

and part embeddings wk as input. We generate a Gaussian
heatmap for each part using the mean and standard devi-
ation of each part defined in Equation 1. The embedding
wk is then multiplied with every pixel of the correspond-
ing heatmap, generating a spatially localized embedding
map. We assume the additivity of feature maps (see sup-
plementary for more details). All K part-specific embed-
dings are summed to form a single feature map Wmask 2
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Figure 4. Level 2. The Mask Generator uses points, part locations,
part scales, and part appearance embeddings to generate masks.

RDemb⇥H⇥W . Formally we write,

Hk(p) = exp
�
�kp� xkk22/�2

k

�
,

Wmask(p) =
KX

k=1

Hk(p)wk.
(4)

Note that we use �
2
k

instead of 2�2
k

to obtain sharper
heatmaps, making it easier for the network to generate sharp
masks.

The generated embedding map Wmask will subsequently
be used to generate masks, together with the mask starting
tensor M(0) 2 RDemb⇥H⇥W . To avoid leaking absolute po-
sition information, we do not use a constant tensor [23] or a
linearly mapped noise [39]. Instead, we use low frequency
positional encoding [51] of the difference between the pixel
position and the nper ⇥K points. That is,

M
(0)(p) = [ sin(⇡FC([p� x

1
1, ...,p� x

nper
K

])),

cos(⇡FC([p� x
1
1, ...,p� x

nper
K

]))]
(5)

where FC stands for a fully connected layer without activa-
tion function followed (a linear projection).

With the mask starting tensor M
(0) and mask em-

bedding map Wmask defined, we generate masks M =
[Mbg,M1, ...,MK ] 2 R(K+1)⇥H⇥W with SPADE Res-
Blocks [39],

M
(i) = SPADE ResBlock(M(i�1)

,Wmask)

M = softmax(M(Tmask))
(6)

where i = 1, ..., Tmask, Tmask is the number of blocks, and
an additional channel is reserved for the background. For
more details of SPADE ResBlock, we refer the reader to
our supplementary document and the original paper [39].
In theory, the Batch Normalization [18] may leak absolute
position information and break the translation equivariance.
However, in practice, experiments have shown SPADE has
strong local disentanglement [14, 39, 66].
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Figure 5. Level 3 - Part I. The foreground Generator uses part
locations, part appearance embeddings, and masks.

3.3. Level 3: Mask-conditioned Image Generation
In the third level, we generate the foreground and the

background separately and blend them linearly by reusing
the masks from the previous level. The Foreground Gen-
erator is illustrated in Figure 5. It takes the K + 1 masks
M, K part locations xk, and K part appearance embed-
ding wk as input. Similar to the procedure that generates
masks, we first broadcast the embedding with the corre-
sponding mask to generate the foreground embedding map
Wfg 2 RDemb⇥H⇥W ,

Wfg(p) =
KX

k=1

Mk(p)wk. (7)

We then use K part locations to generate the foreground
starting tensor F(0) with low frequency positional encoding
similar to Equation 5. Finally we use SPADE ResBlocks to
generate the Foreground feature map F 2 RDemb⇥H⇥W ,

F
(i) = SPADE ResBlock(F(i�1)

,Wfg)

F = F
(Tfg),

, (8)

where i = 1, ..., Tfg and Tfg is the number of SPADE
ResBlocks. Independent of this, the Background Gen-
erator takes two noise vectors as input zbg app ⇠
N (0Dnoise , I

Dnoise⇥Dnoise), ubg pos ⇠ U([�1, 1]2). We first use
a 3-layer MLP to map zbg app to a background appearance
vector wbg 2 RDemb ,

wbg = MLPbg app(zbg app). (9)

Positional encoding is used on the difference between the
background center ubg pos and the pixel position, to generate
the background starting tensor B(0), similar to Equation 5.

Finally we use AdaIN ConvBlocks [15] to generate the
background feature map B 2 RDemb⇥H⇥W ,

B
(i) = AdaIN ConvBlock(B(i�1)

,Wbg)

B = B
(Tbg)

(10)
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Figure 6. Level 4 - Part II. The Background Generator uses
a Gaussian noise vector, and a random position to generate
translation-invariant background.

where i = 1, ..., Tbg and Tbg is the number of AdaIN Con-
vBlocks. For more detail on AdaIN ConvBlocks, we refer
readers to our supplementary, or the original paper [15].
Combining Foreground and Background. Recall that we
generate the background mask Mbg 2 RH⇥W along with
the part masks. This is used to combine our Foreground
and Background together. The final image is generated by
feeding the feature map into a two-layer CNN. That is,

I = Conv((1�Mbg)⌦ F +Mbg ⌦B) (11)

where ⌦ is the pixel-wise product.
Upsampling and Cropping. For simplicity, we used size
H ⇥ W for all above feature maps. For mask, foreground
and background generation, the starting tensor has a 10-
pixel-wide margin at each border, same as [22], so that the
central feature map will not be interfering with the bound-
ary. For example, instead of generating a H0 ⇥W0 grid in
range [�1, 1]2, we generate a (H0 + 20)⇥ (W0 + 20) grid
in range

[�1� 20/H0, 1 + 20/H0]⇥ [�1� 20/W0, 1 + 20/W0].
(12)

We use this grid to calculate the starting tensors for masks,
foreground, and background. After each SPADE ResBlock
and each AdaIN ConvBlock, we use 2x upsampling on the
feature maps. The margin becomes 20-pixel wide. To
bound the otherwise increasing boundary width, we sub-
sequently crop the feature map to keep the 10-pixel margin.
The Gaussian heatmaps are calculated on a grid with a 10-
pixel-wide-margin, separately for each resolution.

3.4. Training Objective
Our hierarchical GAN is trained end-to-end on image

collections using the following loss functions.
Adversarial Loss. We denote G as the generator and D as
the discriminator. We use the non-saturating loss [10],

LGAN(G) = Ez⇠N log(exp(�D(G(z))) + 1) (13)

for the generator, and logistic loss,

LGAN(D) =Ez⇠N log(exp(D(G(z))) + 1)+

Ex⇠pdata log(exp(�D(x)) + 1)
(14)
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for the discriminator, with gradient penalty [35] applied
only on real data,

Lgp(D) = Ex⇠pdatarD(x). (15)

Geometric Concentration Loss Pixels from the same seg-
ment are usually connected and concentrated around its cen-
ter as assumed by [17]. We enforce the mask to be in an area
around its center with the geometric concentration loss

Lcon(G) =
KX

k=1

X

p

Mk(p)P
p0 Mk(p0)

kp� xkk22. (16)

Note that the background mask is not constrained by
L(G)con. We found that this loss alone can cause parts to
collapse since it encourages a small mask area. To mitigate
this problem, we introduce the Area Loss below.
Area Loss. We force the mask area to be larger than the
area of the Gaussian heatmap, which is not predefined but
predicted from the generated points in level 1. If the part
is visible, this loss encourages the visibility of the mask.
Otherwise, the area loss encourages a smaller (close to a
zero area) Gaussian heatmap.

Larea(G) =
KX

k=1

max

 
0,
X

p

Hk(p)�
X

p

Mk(p)

!
.

(17)
We will empirically show that this loss makes the masks
more consistent.

The final loss for the discriminator is

L(D) = LGAN(D) + �gpLgp(D), (18)

and the final loss for the generator is

L(G) = LGAN(G) + �conLcon(G) + �areaLarea(G). (19)

4. Experiments
Following related work [17, 32, 48], we analyze the im-

provement of our method in terms of the positioning of
parts and the mask coverage on the established benchmarks.
We provide results for a wide variety of images containing
faces, animals, flowers, and humans. The supplemental pro-
vides additional examples.

4.1. Datasets and Metrics
Our evaluation follows the dataset-specific protocols and

metrics as established in prior work:
CelebA-in-the-wild [33] shows celebrity faces in un-

constrained conditions and is used to estimate the consis-
tency of part positions and the mask center of mass. We fol-
low [17] removing images with a face-covering fewer than
30% of the pixel area from the MAFL train and test sets. As

in [17, 32], we train a linear regression model without bias
from the part centers to the ground truth keypoints. The er-
ror metric is the landmark regression error in terms of mean
L2 distance normalized by inter-ocular distance. The splits
are 45609 images for GAN training, 5379 with keypoint la-
bels for regression, and 283 for testing.

CelebA-aligned [33] contains 200k faces, each centered
such that eyes align. Following [52], we use three subsets:
CelebA training set without MAFL (160k images), MAFL
training set (19k images), MAFL test set (1k images). The
error metric is the same as on CelebA-in-the-wild.

CUB-2011 [55] consists of 11,788 images of birds. We
follow [4] to use 10,000 images for training, 1,000 for test-
ing, and the remaining 778 for validation. We use this
dataset to analyze segmentation coverage accuracy. We ag-
gregate part segments to form the foreground mask and cal-
culate the Intersection Over Union (IoU) between the pre-
dicted foreground masks and the ground truth foreground
masks [17, 32]. To this end, we calculate the foreground
mask as the sum of our part masks.

Flowers [38] consists of 8,189 images of flowers. The
ground truth masks are obtained by an automated method
built specifically for flowers [38]. We follow [4] to use
6,149 images for training, 1,020 for testing, and 1020 for
validation. The metric is IoU of the foreground mask.

Taichi [33] contains 3049 training videos and 285 test
videos of people performing Tai-Chi. We train our GAN on
the training images (not videos) using 5000 images for fit-
ting the regression model and 300 other images for testing.
For a fair comparison, we use the same 5300 images as [48].
The metric, mean average error (MAE), is calculated as the
sum of the L2 distances between 18 regressed keypoints and
their ground truth. We also calculate IoU based on the pro-
vided foreground masks.

4.2. Baselines
We compare to the following unsupervised methods,

most requiring stronger assumptions: DEF [6] uses test im-
ages at training time, which has a high computational cost.
SCOPS [17] uses saliency maps. Liu et al. [32] requires
a strong prior on the mask center being close to the im-
age center. Siarohin et al. [48] trained on videos exploiting
temporal information.

4.3. Qualitative analysis
We show detection examples in Figure 7, and qualita-

tively compare our predicted masks with the baselines in
Figure 8. Our mask has better coverage with the foreground
object, less fragmented parts, and better consistency, with
the same part masks mapping to the same body parts across
different images. For example, the shoulder exists in al-
most all images in wild CelebA [33], but SCOPS [17] can-
not consistently discover this apparent part, likely because
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Figure 7. Detection Examples showing faithful part segmentation
on the tested datasets, with varying object size and complexity.

DEF [6] SCOPS [17] Ours

Figure 8. Mask quality comparison. We qualitatively compare
the mask on wild CelebA (first row) and Taichi (second row). Our
masks have better quality than other methods due to our hierarchi-
cal generator.

Method Type Aligned (K=10) Wild (K=4) Wild (K=8)
Thewlis et al. [52] Landmark 7.95% - 31.30% ?

Zhang et al. [64] Landmark 3.46% - 40.82% ?

LatentKeypointGAN [14] Landmark 5.85% 25.81% 21.90%
Lorenz et al. [34] Landmark 3.24% 15.49% † 11.41% †
IMM [20] Landmark 3.19% 19.42% † 8.74% †
DEF [6] by [17] Part - - 31.30% ?

SCOPS [17] (w/o saliency) Part - 46.62% 22.11%
SCOPS [17] (w/ saliency) Part - 21.76% 15.01%
Liu et al. [32] Part - 15.39% 12.26%
Huang et al. [16] (w/ detailed label) Part - - 8.40%
Ours Part 3.98% 12.26% 6.18%

Table 1. Landmark detection on CelebA. The metric is the land-
mark regression (without bias) error in terms of mean L2 distance
normalized by inter-ocular distance (lower is better). Although the
pair-based methods work better on aligned CelebA, they do not
generalize well. Our generation-based methods are more robust
on Wild CelebA. The sign ? means reported by [17] and † by [32].

their employed saliency map focuses on the face. For more
qualitative comparisons, refer to the supplementary.

4.4. Part Center Consistency
Table 1 shows the results for keypoint detection. Our

method outperforms other part segmentation methods on
the part consistency metric on the challenging CelebA-in-
the-wild. The keypoint-based methods that perform better

Method Type CUB Flowers
GrabCut [44] Foreground Segmentation 0.360 0.692
PerturbGAN [2] Foreground Segmentation 0.380 -
ReDO [4] Foreground Segmentation 0.426 0.764
IEM + SegNet [45] Foreground Segmentation 0.551 0.789
SCOPS [17] w/ GT BG by us Part Segmentation 0.329 † 0.544 †
Ours Part Segmentation 0.629 0.739

Table 2. Foreground-Background Segmentation. The metric on
CUB and Flowers is the IoU of foreground (higher is better). We
use K = 8 for both ours and SCOPS [17]. The sign † means being
trained by us using their official implementation.

Method Type MAE # IoU "
DEF [6] no train/test split 494.48 † -
SCOPS [17] images with saliency maps 411.38 † 0.5485 †
Siarohin et al. [48] trained on videos 389.78 0.7686
Ours trained on single images 417.17 0.8538

Table 3. Part Segmentation on Taichi. The sign † means being
reported by [48]. All the results are shown in the case of K = 10.

on aligned face images do not generalize to real-world ex-
amples. The results on Taichi in Table 3 confirm that our
model is comparable in consistency (MAE metric) even-
though others are trained with additional information. In
addition, we evaluate our model on CUB using the protocol
of [34]. Our estimation error 3.23% (L2 error normalized
by edge length of the image) is lower (better) than Zhang et
al. [64] (5.36%) and Lorenz et al. [34] (3.91%).

4.5. Mask Coverage
Since the datasets used in [17,32] are too small for train-

ing a GAN (see limitations) we only use the sufficiently
large CUB-2011 [33] and Flowers [38] dataset. To never-
theless compare with SCOPS [17] we retrain their model.
We use the ground truth masks and the required saliency
masks on our train/val/test split with their default param-
eters. Furthermore, we compare our results with the un-
supervised foreground-background segmentation methods
that already report on these datasets. Note that these meth-
ods focus on foreground-background segmentation instead
of part segmentation. Their approaches are tailored for this
task while it is rather a byproduct for us.

As shown in Table 2, our model outperforms the unsu-
pervised part segmentation methods with better mask cov-
erage, and is comparable with the dedicated foreground seg-
mentation methods. On the most challenging Taichi dataset,
we outperform all methods in Table 3 in terms of mask cov-
erage (foreground IOU) even though they use additional in-
formation, such as saliency maps and videos.

4.6. Ablation Tests
Figure 9 shows a qualitative comparison when removing

different parts from our full model. Instead of showing the
segmentation on real images, we show the generated masks
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Figure 9. Ablation Tests. From top to bottom: models disabling
1) points, 2) separated background, 3) points and separated back-
ground, 4) geometric concentration loss 5) area loss, and 6) noth-
ing (full model). For visualization purposes we show the back-
ground in grey-scale. All contributions improve across datasets.

from our GAN. These masks explain our model more di-
rectly. For ablation tests on the number of parts, we refer
readers to the supplementary document.

Disabling Points. We remove the point generation from
the network and in turn also the Gaussian heatmaps and
SPADE blocks. Instead, we use AdaIN [15], which is a
spatially invariant version of SPADE. We use the mean of
the part embeddings as the embedding for the feature map
of AdaIN and replace the starting tensor with a learned con-
stant tensor as in StyleGAN [23].

Disabling Separated Background Generation. We in-
tegrate the background generator into the foreground gener-
ator and treat the background as one of the parts.

Disabling Losses. We remove losses and show examples
from each dataset in Figure 9. Without the Geometric Con-
centration Loss, masks become fragmented. Without the
Area Loss some parts vanish. Surprisingly, even without
points and separate background generation, the model can

Ours Siarohin et al. [48]

Figure 10. Limitations. The method fails for poses underrepre-
sented in the training set (1st and 2nd col) and under occlusions
(left eye of the face is marked as blue, which is usually on the ear),
which we have in common with other methods such as [48] (4th
col). In some rare cases the generator fails to generate good body
shape on Taichi (5th col).

discover some commonly shared parts in the images except
for human bodies, as shown in the third row in Figure 9. We
hypothesize it is due to our spatially variant network design
with translation equivariance encouraged at all levels. Over-
all, it is evident that our hierarchical architecture is crucial
for mask generation.

5. Limitations and Future Work
Our GAN training requires a larger dataset (>5000 im-

ages), which does not apply to some existing benchmarks
but is acceptable for domains with large unlabelled image
collections. Figure 10 shows representative failure cases
that are typical also for related work. In some rare cases
and only for the Taichi dataset, the generator fails to gener-
ate good shape. Nevertheless, the detection remains accu-
rate as there is no such unusual shape in the real data. When
a part is occluded in the image the associated mask will still
cover a region nearby, such as the left arm moving to the
back instead of being occluded. Sometimes, front/back for
bird and left/right for humans are flipped. The comparison
to [48] shows that this is common for 2D methods and de-
mands for extensions to 3D and occlusion handling.

6. Conclusion
We presented a GAN-based approach for learning part

segmentation from unlabelled image collections. Crucial is
our hierarchical generator design that synthesizes images in
a coarse-to-fine manner, with independence and invariance
built in. It forms a viable alternative to existing autoencoder
techniques and opens up a path for learning part-based 3D
models from 2D images in the future.
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