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Abstract

Large-scale pre-training has been proven to be cru-
cial for various computer vision tasks. However, with the
increase of pre-training data amount, model architecture
amount, and the private/inaccessible data, it is not very
efficient or possible to pre-train all the model architec-
tures on large-scale datasets. In this work, we investi-
gate an alternative strategy for pre-training, namely Knowl-
edge Distillation as Efficient Pre-training (KDEP), aim-
ing to efficiently transfer the learned feature representa-
tion from existing pre-trained models to new student mod-
els for future downstream tasks. We observe that existing
Knowledge Distillation (KD) methods are unsuitable to-
wards pre-training since they normally distill the logits that
are going to be discarded when transferred to downstream
tasks. To resolve this problem, we propose a feature-based
KD method with non-parametric feature dimension align-
ing. Notably, our method performs comparably with su-
pervised pre-training counterparts in 3 downstream tasks
and 9 downstream datasets requiring 10× less data and
5× less pre-training time. Code is available at https:
//github.com/CVMI-Lab/KDEP.

1. Introduction

With the booming of large-scale datasets [16, 37, 45,
55, 59], many computer vision tasks have benefitted sig-
nificantly from pre-training in the past decade. In fact, it
has been a de facto strategy to first pre-train on datasets
like ImageNet [16] and then fine-tune on downstream tasks
[8, 24, 54, 66, 73], especially when the data of downstream
tasks is scarce.

However, the increasing pre-training data scale and the
inaccessibility of private data [59] render pre-training all
architectures on large datasets not efficient or possible.
As well-trained deep neural networks are essentially con-
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Figure 1. Transfer performance (averaged top-1 accuracy of four
image classification tasks (details in Sec. 4)) compared to Super-
vised Pre-training (SP), traditional KD method (logits KD, 1×1
conv), and KDEP (SVD+PTS) with different data amount (10%
or 100% ImageNet-1K data) and training schedules.

densed memory bank of datasets [3,20], we wonder whether
the condensed data knowledge encoded into a pre-trained
model can be leveraged to efficiently pre-train new architec-
tures with only a relatively small set of pre-training data?

In this work, we propose Knowledge Distillation as Ef-
ficient Pre-training (KDEP), transferring the feature extrac-
tion capability of the teacher obtained from large-scale data,
to the student model for solving future downstream tasks.
Note that KDEP is quite different from traditional Knowl-
edge Distillation (KD) that only targets at distilling the
knowledge of a given specific task to a student model.
Studies of existing KD methods for KDEP. Our empiri-
cal studies show that existing KD methods such as logits
KD [29] (i.e. distilling the task-specific output logits) and
feature-level KD [27] lead to inferior performance (see Fig-
ure 1: “logits KD” and “1×1 conv”), indicating that exist-
ing KD methods tailored to different tasks might be unable
to fully leverage the knowledge condensed in the teacher
model when pre-training new models with limited data and
computation budget.

After further investigation, we conclude a potential issue
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Figure 2. Framework and visualization. Here we illustrate the
KDEP framework of feature-based KD with (a): parametric align-
ing; and (b): non-parametric aligning. Notations refer to Sec. 3.1.
Notice that only the learned F s is to transfer to downstream tasks.
Moreover, we visualize the feature representation of (c): original
teacher, (d): student distilled by (a) with 1×1 conv aligning, and
(e): student distilled by (b) with our SVD+PTS aligning. For vi-
sualization, we randomly sample 10 classes in ImageNet-1K and
use 100 samples from each class. T-SNE [62] is used for dimen-
sionality reduction.

of “indirect feature learning”, where the supervision of dis-
tillation is not directly applied on the feature extractor that
will be transferred, but on a new learnable module added
after it and jointly optimized with it, which turns the feature
representation learning into an indirect process. Specifi-
cally, “logits KD” applies the supervision on the classifier’s
output, where the learnable parameters of the classifier is
jointly learned with the feature extractor. Although feature-
level KD applies supervisions on the features, most feature-
level KD methods adopt a parametric module to align the
feature dimensions of teacher and student, typically a 1×1
convolutional layer (“1×1 conv”) [2,27,28,56], which again
adds learnable parameters after the feature extractor and
forms an indirect process. As shown in Figure 2d, we vi-
sualize the learned feature representation of feature-based
KD with 1×1 conv alignment: the learned feature represen-
tation fails to follow that of the teacher’s (Figure 2c). Con-
sequently, the pre-trained models only deliver suboptimal
transfer learning performance.
Our Method. Motivated by the identified potential prob-
lem, our KDEP investigates non-parametric methods for
aligning the feature dimensions to avoid indirect feature
learning. Empirically, we found Singular Value Decompo-
sition (SVD) works effectively by compressing1 the features
with minimal information loss.

However, features processed by SVD will trigger the
component domination effect [13], i.e. the feature variances

1We focus on the setting that teachers having larger dimensions in our
study, since this is more frequently met in real-world applications. Foun-
dation models tend to have larger feature dimensions where models for
deployment usually have smaller dimensions.

among channels are of great magnitude differences, and
largely differ from those of normal DCNNs. This interferes
the optimization of the network. To further boost feature
learning, we design a Power Temperature Scaling (PTS)
function to reduce the variance differences while preserv-
ing the original relative magnitude, which tailors features
from SVD for DCNNs. As illustrated in Figure 2e, with
our SVD+PTS aligning method, the distilled student obtains
feature representation similar to the original teacher’s (Fig-
ure 2c) while matching the feature dimensions. Notably,
our method adds no learnable parameters, does not rely on
the task loss or the logits loss [29], and only use supervision
from the teacher’s penultimate feature (after global average
pooling), which is more general for feature representation
learning and allows more potential pre-trained teachers.
Results. Our major findings of KDEP are summarized in
Figure 1: 1) Faster convergence. Our method achieves
comparable or better transfer learning results with only
10% or 20% training time than supervised pre-training
(SP) on the whole ImageNet-1K dataset. 2) Higher data-
efficiency. With only 10% of ImageNet-1K unlabeled data
(discard the labels) and an available pre-trained teacher
model, our distilled student obtains better transfer learn-
ing results than SP with 100% ImageNet-1K data. 3) Bet-
ter Transferability. Given the same computation budget
and data amount as SP, our method achieves higher transfer
learning performance. With the proposed KDEP method,
we could realize pre-training once and distilling it to all:
distilling a pre-trained teacher (either to utilize an available
pre-trained model or pre-train a certain architecture) to effi-
ciently pre-train all other student models.

2. Related Works
Transfer Learning (TL), usually by fine-tuning a pre-
trained model to a downstream task with labeled data, has
become a common practice in machine learning problems
and applications. To better understand TL, it can be sepa-
rated into two steps: pre-training and transfer.

Recent years have witnessed increasing successful works
on pre-training, including supervised pre-training [32, 34,
39, 45, 59], self-supervised pre-training [5, 9, 11, 22, 23, 68,
72], and semi-supervised pre-training [10,53,64]. Given the
pre-trained models, the next step is to transfer the learned
representation to a target task. Except from the widely used
fine-tuning method [1,70], there are also other methods pro-
posed for better exploiting the knowledge absorbed in pre-
training, such as L2-SP [65], DELTA [40], BSS [12], and
Co-Tuning [71].

While large-scale pre-training yield better representation
and downstream performance, the cost of pre-training is
also rapidly increasing [17, 34, 59]. Therefore, we hope to
propose an orthogonal strategy for pre-training, distilling a
pre-trained model to pre-train different student models.
Knoledge Distillation (KD) has been developed as an ef-
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fective way for model compression and acceleration, and
various methods mainly falls into three research streams:
response-based [4,29,75], feature-based [6,27,28,30,31,33,
35,49,56], and relation-based [7,38,43,48,50,52,60,61,69]
methods.

Response-based methods usually take the final outputs
called logits as supervision and use a temperature factor
to adjust the smoothness [29]. Though the logits introduce
“dark knowledge” into training and show improved results,
response-based KD leaves out large information of the in-
termediate features, which are found to be crucial for repre-
sentation learning [56].

Feature-based KD was first introduced by Fitnets [56],
using intermediate feature maps as hints to improve KD
performance. Following Fitnets, attention maps [35], neu-
ron selectivity patterns [30], paraphraser [33], route con-
straint [31], and activation boundary [28] are also proposed
to better utilize feature-level knowledge. Heo et al. [27] in-
vestigate different design aspects of feature-based KD, and
propose margin ReLU, Pre-ReLU distillation position, and
a partial L2 loss function. Chen et al. [6] use an attention
mechanism to adaptively assign proper teacher layers for
each student layer.

Relation-based methods further boost results by utilizing
the relationships between different layers or data samples.
FSP [69] uses inner products between features of two layers
as a flow of solution process, but it restricts to the same fea-
ture map sizes between teacher and student. Lee et al. [38]
also utilize the correlations between feature maps by using
Radial Basis Function, and apply SVD on spatial dimen-
sions to both teacher and student’s feature maps to avoid the
mismatch in spatial resolutions. However, they still need the
dimension of feature maps to be equal for teacher and stu-
dent. In contrast, our method can adapt to teacher and stu-
dent pairs with different feature map resolutions and dimen-
sions. Another line in relation-based methods is utilizing
the relation between data samples, where different mecha-
nisms have been proposed, including instance relationship
graph [43], similarity matrix [61], similarity probability dis-
tribution [50] and so on.

However, traditional KD methods only focus on a sin-
gle task and transfer task-specific knowledge, while our
KDEP focuses on the transferability of the distilled student,
which distinguishes us from most previous KD methods.
To our best knowledge, only Li et al. [41] try to utilize
KD for student’s transferability. They show traditional KD
would hurt the transferability of the student, and propose
a multi-head, multi-task distillation method using an un-
labeled proxy dataset and a generalist teacher to improve
downstream performance of the distilled student.

Nevertheless, their method needs the student model ini-
tialized by ImageNet pre-trained weights, multiple teachers
fine-tuned on the domains which are related to the down-

stream domains, and a multi-head, multi-task training pro-
cedure, which violates our efficient pre-training setting.
On the contrary, our method optimizes the student from
scratch, and only needs a single generalist teacher, an un-
labeled dataset with a simple yet efficient training pipeline
to achieve comparable transfer learning performance with
supervised pre-training.

3. KDEP
3.1. Overview

We define the KDEP setting as below: given a teacher
model F t (pre-trained on a large-scale dataset D) and a set
of unlabeled examples Du = {xu

i }
Nu
i=1 (Nu is the num-

ber of unlabeled images), our goal is to pre-train a stu-
dent model F s to generalize well on various downstream
tasks. Note that the dataset scale of Du could be magnitude
smaller than D and only Du is available during the student
training. Since we focus on feature representation learn-
ing rather than tailoring the model to a specific task, both
F t and F s yield the feature representations instead of task-
specific logits. We denote the shape of F t(xu

i ), F
s(xu

i ) as
Dt, Ds. The training objective of the KDEP method is

1

Nu

Nu∑
i=1

L(F t(xu
i ), F

s(xu
i )), (1)

where L is the L2 loss. To meet the demand of our proposed
KDEP, several under-explored obstacles are needed to be
addressed.

The first is a known issue for feature-based KD, that is
the feature dimension mismatch (i.e., Dt ̸= Ds) between
the teacher and student. In our study, we found the fre-
quently adopted strategy, to add a parametric module like
a 1×1 conv, is sub-optimal for our KDEP settings. Instead,
we demonstrate that non-parametric methods (e.g. SVD) are
more effective than 1×1 conv for aligning the dimensions.
Analysis and details will unfold in Sec.3.2.

The second is a byproduct of our non-parametric feature
dimension aligning method: the feature statistics after the
alignment would differ from normal DCNNs. Hence, we
study several mechanisms for correcting the feature statis-
tics and conclude them as a transformation module. We will
further elaborate on the design choices in Sec. 3.3.

The third is still an open issue even after our exploration:
What is a good teacher for KDEP? Our empirical studies
show that stronger models are not necessarily better teach-
ers, and we find the compactness of the teacher’s feature
distribution to be a crucial indicator (see Sec. 3.4). We
hope we could inspire more future works on this topic.

3.2. Aligning Feature Dimensions

Motivated by the indirect feature learning problem, we
propose non-parametric feature dimension aligning meth-
ods with several variants. Concretely, previous parametric
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Figure 3. We propose PTS function for reducing Std Ratio while
preserving the original relative magnitude. Curves of different val-
ues of T and n are shown.

methods add a parametric module to align Ds toward the
supervision Dt (ref. Figure 2a). In contrast, as presented in
Figure 2b, we apply a non-parametric method to project Dt

to Ds, which can then serve as the supervision directly.
We investigate three variants for non-parametric aligning

methods: channel selection, interpolation, and SVD. Along
this line, SVD stands out thanks to its power of effectively
compressing the feature-level knowledge and maintaining
as much information as possible. Detailed experimental re-
sults would be included in Sec. 4.
Pre-ReLU distillation feature position has been used in
previous feature-based KD [27, 28] and shown improved
results. In our methods, we distill the features before the
ReLU activation function for one more consideration, that
SVD’s outputs contain both negative and positive values.

3.3. Transformation Module
While SVD effectively compresses the features with un-

noticeable information loss, it brings along difficulties for
optimization. After the SVD alignment, the feature vari-
ances of different channels are of magnitude differences,
whereas those of normal DCNNs are usually within the
same magnitude. Concretely, we define the term Std Ra-
tio as the largest standard deviation (Std) to the smallest
Std among all feature channels at the penultimate features
across all training data samples. According to our study, we
found the Std Ratio of features after SVD is usually over
10× larger than that of normal DCNNs.

As a result, the L2 loss tends to be dominated by the fea-
ture channels with the largest variances, leaving the minor
ones under-fitted, for which we provide theoretical analy-
sis below. We view the value of each feature channel from
the teacher as a random variable (T ), which is of zero mean
after SVD. Also, since the student is optimized from ran-
dom initialization [25], we regard each feature channel of
the student also as a random variable (S) with zero mean.
As shown in Theorem 1 and Proof 1, we state and prove

that the mathematical expectation of the L2 loss from each
feature channel increases monotonically with the Std of the
teacher’s feature channel, which explains the difficulty of
learning from teacher with large Std Ratio.
Theorem 1 Given two independent random variables with
normal distribution T ∼ N(0, σ2) and S ∼ N(0, σ2

s), then
F (σ) = E[(T − S)2] is monotonically increasing (σ > 0).
Proof 1 (Detailed Proof in Appendix.)

F (σ) =

∫ +∞

−∞

∫ +∞

−∞
(t− s)2 · P (t, s)dtds

=
1√
2πσ

∫ +∞

−∞
e

−t2

2σ2 (t2 + σ2
s)dt = σ2 + σ2

s

dF (σ)

dσ
= 2σ > 0 ⇒ monotonically increasing

Therefore, we propose to reduce the Std Ratio after SVD
to normal ranges of DCNNs by a transformation module.
A simple method of Scale Normalization (SN) has been
used in previous works [13, 38], which divides each feature
channel by its corresponding Std to ensure each channel has
similar scales. Similarly, we also experiment with a variant
of SN: rather than dividing the corresponding Std to obtain
similar scales, we scale each channel’s Std to match the top-
Ds Std of features before SVD (target Std), which we name
as Std Matching (SM). However, both SN and SM are lo-
cal transformations that transform channel-wisely, and thus
may fail to preserve the original relative magnitude between
different feature channels (example in Appendix).

To match statistics without hurting the original rela-
tive magnitude, we propose to use a global non-decreasing
transformation function that can reduce the Std Ratio while
maintaining the relative magnitude. Concretely, we control
the value ranges by a temperature parameter T similar to
logits KD [29], and then apply a power operation while pre-
serving the signs. We refer to the function as Power Tem-
perature Scaling (PTS), which is as follows:

PTS(f) = sign(f)| f
T
| 1
n , (2)

where n is the parameter of the exponent and f is the input
value. As shown in Figure 3, the PTS function could enlarge
small values and compress large values, while globally non-
decreasing, and thus fulfills our goal of matching normal
statistics and preserving the relative magnitude.

3.4. Teacher Selection

In this section, we further explore how to select a good
teacher for KDEP. Naturally, we would consider utilizing
stronger models as the teacher, where we study and compare
several paradigms of potential stronger models:

• Standard SP: the most frequent supervised pre-training
strategy that pre-trains a model on ImageNet-1K; we
use the architecture of ResNet50 (R50) [26] as teacher
for this study;
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• SP with more data: we experiment with an avail-
able Microsoft (MS) Vision R502 pre-trained with
four datasets (over 40 million data): ImageNet-22K,
COCO, and two webly-supervised datasets [67]. The
provided weights only contain the feature extractor;

• Pre-training with unlabeled data: we explore a semi-
weakly supervised pre-trained R50 (SWSL);

• Distilled models: we use a MEAL V2 R50 trained by
distillation on ImageNet-1K.

• Advanced architecture: we experiment with a state-
of-the-art architecture Swin Transformer [44] and
use Swin-B pre-trained with ImageNet-22K and fine-
tuned on ImageNet-1K.

We empirically found that stronger models (i.e. higher
performance on ImageNet-1K benchmark) do not neces-
sarily achieve better KDEP performance (i.e. distilled stu-
dent’s transferability under the KDEP setting), which res-
onates with previous findings in KD [46,47] that more accu-
rate teachers may distill worse. To investigate the reasons,
we visualize the feature representation of different teachers
(ref. Figure 4), and surprisingly found that the KDEP per-
formance has a strong correlation with the teacher’s feature
compactness (compactness means the feature distribution of
data samples of the same class lying tightly in the feature
space while those of different classes far from each other).
Detailed analysis and results are in Sec. 4.3.

4. Experiments

4.1. Experimental Setup
Datasets and downstream tasks. For the proposed
KDEP setting, we use the ImageNet-1K [16] dataset as un-
labeled data by abandoning the labels, and we use 10% or
100% of the dataset for different settings.

To evaluate the transfer learning performance of the
models, we evaluate on three popular downstream tasks:
image classification, semantic segmentation, and object de-
tection. For image classification, we select four diverse
datasets to study the transferability: CIFAR-100 [36], CUB-
200-2011 [63], DTD [14], and Caltech-256 [21]. For se-
mantic segmentation, we use three widely used datasets:
Cityscapes [15], PASCAL VOC 2012 (VOC12) [18], and
ADE20K [74]. For object detection, we evaluate the trans-
fer performance on two benchmarks: PASCAL VOC [19],
and COCO [42].

Teacher-Student (T-S) pair. We experiment with two
different teacher-student pairs, R50 → ResNet18 (R18), and
R50 → MobileNetV2 (MNV2) [58], representing knowl-
edge transfer between similar and dissimilar networks, re-
spectively. For the teacher model, we conduct our main ex-
periments with standard SP R50 and MS R50.

2https://pypi.org/project/microsoftvision/

Comparison methods. We mainly compare KDEP with
supervised pre-training (SP). We denote the student super-
vised pre-trained with all ImageNet-1K data for 90 epochs
as SP oracle (SP. o.), and with fewer data or for shorter
schedule as SP baseline (SP. b.) in each setting.
Implementation details. We implement our method us-
ing PyTorch [51] and all experiments are conducted us-
ing four 32G V100 GPUs. For studying KDEP, we ex-
plore different settings with various data amounts and train-
ing schedules. For the 10% ImageNet-1K data setting, we
set the training epochs to 90 or 180; when using 100%
ImageNet-1K data, we train for 9 or 18 epochs to verify
fast convergence, and for 90 epochs to further boost per-
formance, where 90 epochs with all ImageNet-1K data is
the standard supervised pre-training schedule [57]. For all
downstream tasks, we use the same schedule and evaluation
protocols for all models for a fair comparison. More elabo-
rated implementation details are given in the Appendix.
Evaluation. We report the top-1 accuracy, mean Intersec-
tion over Union (mIoU), and AP, AP50, AP75 for classifica-
tion, segmentation, and detection, respectively. All results
are averaged over at least three trials. Time refers to the
pre-training time of SP or KDEP on four 32G V100 GPUs.

4.2. Main Results

In this section, we compare our best KDEP method
(SVD+PTS) with supervised pre-training under different
data amounts and training schedules. We evaluate the trans-
ferability on all 9 transfer learning tasks covering image
classification, semantic segmentation and object detection.
With our extensive experimental results (e.g. Table 1), we
demonstrate that Knowledge Distillation can be used as an
effective way of pre-training, outperforming standard su-
pervised pre-training with fewer training data and shorter
training schedules. In the following, we explore the trans-
ferability, data-efficiency, and convergence speed of KDEP
respectively under different setups.

Note that all KDEP methods use the MS R50 as the
teacher in this section. Results with more teachers are in
our ablation studies. Also, due to the length limit, we show
the results of R18 as student in our paper, and MNV2 as
student in the Appendix, where similar results are achieved.
Exploring transferability under 10% data with short
schedules. In this setting, we use only 10% ImageNet-1K
data, which is a total of 128k images randomly sampled
from the original 1.28 million images. We pre-train for 90
epochs or 180 epochs with KDEP or SP. As shown in Ta-
ble 1, KDEP significantly outperforms its SP counterparts
in different settings.

We take the transfer performance in classification as an
example to illustrate and analyze in this setting and the
settings following unless noted. SP models’ performance
drops significantly when pre-trained with only 10% data
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(77.13→71.05). Even increasing the training schedule to
180 epochs (71.05→71.60) or 900 epochs (71.05→72.44)
fails to eliminate such performance drop. In contrast, with
only 90 epochs, KDEP (75.74) largely bridges the gap be-
tween supervised pre-training baselines and oracle. Increas-
ing the schedule to 180 epochs further closes the gap to an
unnoticeable drop (77.07 vs. 77.13) while only using 10%
data and around 20% training time. Similar results are also
observed in segmentation and detection results as well as
the R50 → MNV2 pair (in Appendix).
Exploring transferability under the same data amount
and schedule as standard SP. We further explore the
KDEP performance given the same data amount and train-
ing schedules as standard SP. In Table 1, with 100% data
and 90 training epochs, KDEP produces models with much
stronger transferability (78.40) than standard SP (77.13),
while only adding minuscule computation costs.
Exploring data-efficiency. Here, we again only use 10%
data but extend the training schedule to 900 epochs, which
aligns the training iterations with the standard supervised
pre-training setting. In Table 1, KDEP could consistently
outperform the supervised oracle on all 9 tasks with only
10% ImageNet-1K data, which verifies our initial idea that
models pre-trained on large-scale data could transfer the
condensed data knowledge to other architectures even with-
out using full pre-training data.
Exploring convergence speed. For further exploring con-
vergence speed, we compare KDEP and SP under differ-
ent data amounts (i.e. 10% and 100% ImageNet-1K data)
as the training time increases. As shown in Figure 1, the
transfer performance of SP increases almost uniformly with
the training time, while KDEP shows a favourable charac-
teristic of fast convergence under both data amounts. No-
tably, KDEP produces comparable or superior transfer per-
formance as standard SP with 5× fewer training time.

4.3. Ablation Studies

For our KDEP settings, we notice a strong correlation be-
tween the transfer learning results of different tasks in Sec.
4.2. Hence, we use four image classification tasks to eval-
uate the transferability in our ablation studies. All results
in our ablation studies are the averaged top-1 accuracy over
four classification tasks.
Ablation study on feature dimension aligning methods.
In this ablation study, we aim to investigate the effective-
ness of various feature dimension aligning methods for
KDEP. Firstly, we compare parametric methods with non-
parametric methods under the 10% data and short sched-
ule of 90 epochs setting with three Teacher-Student (T-S)
pairs. For parametric methods, we experiment with three
1×1 conv variants: Post-ReLU, Pre-ReLU and the one in
[27] (details in Appendix). For non-parametric methods,
we explore channel selection (CS.var, CS.rand), interpola-

Method Data Epoch
Time
(/h)

Classification (Acc %)
Caltech DTD CUB CIFAR Avg

rand. init. - - - 55.27 45.16 55.89 77.34 58.42
SP. b. 10% 90 3.9 68.83 66.17 69.93 79.29 71.05
KDEP 10% 90 4.0 75.33 71.80 74.20 81.61 75.74
SP. b. 100% 9 3.9 71.27 68.14 71.97 80.27 72.91
KDEP 100% 9 4.0 75.42 72.15 75.11 82.22 76.23
SP. b. 10% 180 7.8 70.09 66.14 70.84 79.34 71.60
KDEP 10% 180 8.0 77.15 72.67 75.99 82.23 77.07
SP. b. 100% 18 7.8 74.01 69.18 74.63 81.43 74.81
KDEP 100% 18 8.0 77.29 73.07 76.50 82.47 77.33
SP. b. 10% 900 39 71.10 67.02 72.16 79.49 72.44
KDEP 10% 900 40 79.00 74.28 76.89 82.64 78.21
SP. o. 100% 90 39 77.18 71.81 77.44 82.08 77.13
KDEP 100% 90 40 79.08 74.34 77.29 82.89 78.40

Method Data Epoch
Time
(/h)

Segmentation (mIoU %)
Cityscapes VOC12 ADE20K Avg

rand. init. - - - 57.87 49.46 31.37 46.23
SP. b. 10% 90 3.9 69.56 68.30 34.39 57.41
KDEP 10% 90 4.0 70.41 72.34 36.09 59.61
SP. b. 100% 9 3.9 67.92 70.05 35.27 57.75
KDEP 100% 9 4.0 69.73 72.43 36.17 59.44
SP. b. 10% 180 7.8 69.89 69.79 35.03 58.24
KDEP 10% 180 8.0 70.27 72.82 36.60 59.90
SP. b. 100% 18 7.8 70.19 71.02 35.19 58.80
KDEP 100% 18 8.0 70.90 73.82 36.73 60.48
SP. b. 10% 900 39 69.85 69.55 35.52 58.31
KDEP 10% 900 40 71.93 74.28 37.30 61.17
SP. o. 100% 90 39 71.01 73.13 36.02 60.05
KDEP 100% 90 40 71.39 73.75 36.97 60.70

Method Data Epoch
Time
(/h)

Detection
VOC0712 COCO

AP AP50 AP75 AP AP50 AP75
rand. init. - - - 26.7 52.5 23.1 25.2 41.9 26.3

SP. b. 10% 90 3.9 39.8 69.7 39.1 27.6 45.3 28.8
KDEP 10% 90 4.0 41.9 72.4 41.7 28.6 46.5 29.9
SP. b. 100% 9 3.9 40.4 70.5 40.2 27.5 45.3 28.6
KDEP 100% 9 4.0 42.5 73.3 43.3 28.8 46.9 30.1
SP. b. 10% 180 7.8 39.4 69.6 38.7 28.2 45.9 29.4
KDEP 10% 180 8.0 43.4 73.8 43.8 29.2 47.4 30.6
SP. b. 100% 18 7.8 41.2 71.5 40.7 28.1 46.1 29.3
KDEP 100% 18 8.0 43.3 73.6 44.2 29.3 47.5 30.8
SP. b. 10% 900 39 39.3 69.9 38.8 28.5 47.0 29.9
KDEP 10% 900 40 42.8 73.5 43.4 29.9 48.4 31.7
SP. o. 100% 90 39 41.8 72.6 41.6 29.0 47.3 30.4
KDEP 100% 90 40 42.8 73.9 43.4 29.7 48.2 31.3

Table 1. KDEP vs. SP, R50 → R18, fine-tuned on various tasks.
KDEP refers to our SVD+PTS method. Note that COCO is used
for the teacher’s pre-training while not for the student’s.

tion, and SVD (details in Appendix). As shown in Table 2,
among three variants of 1×1 conv methods, the two that
adopts Pre-ReLU feature distillation position give better
performance. Interestingly, non-parametric methods con-
sistently outperform all variants of the 1×1 conv method
with significant gains. Moreover, SVD produces the best
performance under various T-S pairs.

Further, we study the data-efficiency and convergence
speed of parametric methods under various KDEP settings,
with results shown in Table 3. For data-efficiency, paramet-
ric methods suffer even trained for 900 epochs with 10%
data, showing low data-efficiency. For settings verifying
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(c) SWSL(b) Standard SP(a) MS (e) MEAL V2(d) Swin-B

Figure 4. Visualization (same as in Figure 2) of feature distributions. Order ranked by compactness: diverse (left) to compact (right).

convergence speed (i.e. 100% data with 9 or 18 epochs),
parametric methods perform similarly with the supervised
pre-training baselines. The lacking of high data-efficiency
and fast convergence characteristics may be caused by the
added learnable module that hinders feature learning.

Teacher Standard SP R50 MS R50 MS R50
Student R18 R18 MNV2

1×1 conv (Post-ReLU) 71.37 72.43 71.12
1×1 conv (Pre-ReLU) 71.01 73.10 73.72

1×1 conv ( [27]) 71.35 72.98 73.62
CS.var 73.54 74.60 74.92

CS.rand 73.47 74.37 74.90
Interpolation 73.27 74.81 74.96

SVD 74.29 75.09 75.07
Table 2. Ablation study on feature dimension aligning meth-
ods. Setting: 10% data and 90 epochs. CS: “Channel Selection”.

Method Data Epoch Time (/h) Acc (%)
SP. b. 10% 90 3.9 71.05

KDEP (1×1 conv, Pre-ReLU) 10% 90 4.0 73.10
KDEP (1×1 conv, [27]) 10% 90 4.0 72.98

KDEP (SVD, PTS) 10% 90 4.0 75.74
SP. b. 100% 9 3.9 72.91

KDEP (1×1 conv, Pre-ReLU) 100% 9 4.0 73.24
KDEP (1×1 conv, [27]) 100% 9 4.0 73.15

KDEP (SVD+PTS) 100% 9 4.0 76.23
SP. b. 10% 180 7.8 71.60

KDEP (1×1 conv, Pre-ReLU) 10% 180 8.0 74.02
KDEP (1×1 conv, [27]) 10% 180 8.0 73.90

KDEP (SVD, PTS) 10% 180 8.0 77.07
SP. b. 100% 18 7.8 74.81

KDEP (1×1 conv, Pre-ReLU) 100% 18 8.0 74.32
KDEP (1×1 conv, [27]) 100% 18 8.0 73.78

KDEP (SVD+PTS) 100% 18 8.0 77.33
SP. b. 10% 900 39 72.44

KDEP (1×1 conv, Pre-ReLU) 10% 900 40 75.29
KDEP (1×1 conv, [27]) 10% 900 40 75.33

KDEP (SVD+PTS) 10% 900 40 78.21
SP. o. 100% 90 39 77.13

Table 3. Ablation study on the 1×1 conv method. T-S pair: MS
R50 → R18.
Ablation study on transformation module. We explore
the effectiveness of three mechanisms of the transformation
module as introduced in Sec. 3.3. Concretely, we exper-
iment with two T-S pairs in the setting of 10% data and
short schedules of 90 or 180 epochs. As shown in Table 4,
PTS works as a competitive method across different setups,
while scale normalization (SN) and Std Matching (SM) also

achieve performance gains upon the SVD method, which
shows the importance of matching statistics while preserv-
ing original relative magnitude.

Moreover, we conduct hyper-parameter analysis to study
the sensitiveness of the hyper-parameters in the PTS func-
tion. From Table 5, both T and n have a relatively wide
range that could bring performance gains upon SVD (“w.o”
in the Table), which illustrates the robustness of the PTS
function.

T → S R50 → R18 R50 → MNV2
Epoch 90 180 90 180
SVD 75.09 76.28 75.07 76.28

SVD+SN 75.34 76.45 75.43 76.33
SVD+SM 75.87 76.89 75.21 76.35
SVD+PTS 75.74 77.07 75.37 76.53

Table 4. Ablation study on the transformation module. Setting:
10% data with 90 or 180 epochs. R50: MS. SN: Scale Normaliza-
tion. SM: Std Matching. Bold: best. Underlined: second-best.

T 0.01 0.03 0.06 0.1 0.3 0.5 0.7 0.9 w.o.
Acc 75.12 75.36 75.53 75.74 75.51 75.21 75.29 75.07 75.09

n 2 3 4 5 6 w.o.
Acc 75.06 75.74 75.69 75.61 75.19 75.09

Table 5. Hyper-parameter analysis on the PTS function. Set-
ting: 10% data with 90 epochs. T-S pair: MS R50 → R18. When
varying T , we fix n = 3. When varying n, we fix T = 0.1.

Ablation study with different teacher models. As shown
in Table 6, teachers with higher accuracy on ImageNet
benchmark do not necessarily lead to better KDEP perfor-
mance. Intriguingly, combining the visualization results
in Figure 4, we notice a strong correlation between the
teacher’s feature compactness and KDEP performance, that
compact feature representation suffers to serve as a good
teacher, whereas diverse ones produce superior results.

Teacher Standard SP MS SWSL Swin-B MEAL V2
ImageNet 75.77 73.85 81.12 84.81 80.68

SVD 74.29 75.09 73.75 72.053 70.33
SVD+PTS 74.79 75.74 74.27 72.252 72.41

Table 6. Ablation study on different teacher models. Setting:
10% data with 90 epochs. ImageNet: ImageNet val set top-1 Acc.

Ablation study on multiple layer feature-KD. Our
method only distills the penultimate layer feature to trans-
fer knowledge, whereas multiple layer feature-based KD
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has also been introduced in the literature. Here, we study
the effectiveness of multiple layer feature-based KD for
our KDEP settings. From Table 7, we observe that mul-
tiple layer feature-based KD may be more beneficial when
teacher and student are of similar architectures (i.e. R50 →
R18), but may cause performance degradation for dissimi-
lar architecture pairs (i.e. R50 → MNV2) due to potential
semantic mismatch of intermediate features.

T → S MS R50 → R18 MS R50 → MNV2
Epoch 90 180 90 180

SVD+PTS 75.74 77.07 75.37 76.53
SVD+PTS+ML 76.11 (+0.37) 77.21 (+0.14) 75.20 (-0.17) 76.25 (-0.28)

Table 7. Ablation study on multiple layer feature-based KD.
Setting: 10% data with 90 or 180 epochs. ML: multiple layer
feature-based KD.

Ablation study on logits KD. We also experiment with
logits KD for our KDEP settings. Since the best MS R50
teacher does not contain weights to produce logits, we study
with the second-best standard SP R50 teacher. As shown in
Table 8, logits KD leads to inferior performance compared
with our feature-based KD under various data amounts and
training schedules. More importantly, logits KD may fail to
utilize potential better teachers trained on more data, which
in our case could produce much better KDEP results (see
“Ours (SVD+PTS)†” in Table 8).

Method Data Epoch Time (/h) Acc (%)
SP. b. 10% 90 3.9 71.05
Logits 10% 90 4.0 71.95

Ours (SVD+PTS) 10% 90 4.0 74.79
Ours (SVD+PTS)† 10% 90 4.0 75.74

SP. b. 10% 180 7.8 71.60
Logits 10% 180 8.0 73.63

Ours (SVD+PTS) 10% 180 8.0 76.02
Ours (SVD+PTS)† 10% 180 8.0 77.07

SP. o. 100% 90 39 77.13
Logits 100% 90 40 77.19

Ours (SVD+PTS) 100% 90 40 77.66
Ours (SVD+PTS)† 100% 90 40 78.40

Table 8. Ablation study on logits KD. T-S pair: Standard SP R50
→ R18. †: MS R50 (provided weights do not contain classifiers’,
so we cannot apply logits KD with this model).

Ablation study on KDEP data Du. In the above studies,
we use 10% or 100% ImageNet-1K data as Du, which is
known to have large diversity. We further experiment with
different Du: (1) object-level data. We use the four down-
stream image classification datasets respectively; (2) scene-
level data. We use COCO and ADE20K respectively. Since
these different Du are of different sizes, we keep the train-
ing iterations same as the 10% data with 90 epochs setting.
Results are shown in Table 9, where we conclude that the
KDEP performance could relate to different aspects of Du:
data amount, data diversity, and image context (object or

scene level).
Harvesting the largest data amount and diversity,

ImageNet-1K yields the best KDEP performance with
object-centric samples. Meanwhile, COCO holds similar
data scale and fairly diverse scene-level images, produc-
ing the second-best results. On the contrary, constrained
by the fewest images of only texture patterns (low diver-
sity), DTD leads to the worst results. We suggest that en-
larging data amount and diversity is beneficial for KDEP,
and object-level images are more favourable for our current
KDEP method. However, we believe scene-level images
could be better utilized by further leveraging the character-
istic of scene context, which we leave as future work.

Du Nu Caltech DTD CUB CIFAR Avg
Caltech 15k 72.77 67.14 67.48 80.03 71.86

DTD 3.8k 54.32 64.97 62.43 74.79 64.13
CUB 6.0k 62.74 61.72 78.82 78.31 70.40

CIFAR 50k 61.83 56.36 61.19 81.48 65.21
COCO 118k 72.34 69.55 71.68 79.87 73.36

ADE20K 20k 67.66 67.38 68.20 78.90 70.54
10% ImageNet-1K 128k 75.33 71.80 74.20 81.61 75.74

Table 9. Varying Du. Setting: the same training iterations as 10%
ImageNet-1K data with 90 epochs. T-S pair: MS R50 → R18.

5. Conclusion

We have present KDEP, an orthogonal strategy for pre-
training new models. With extensive experimental re-
sults, our simple yet efficient feature-based KD method
has shown promising results for KDEP, offering several
favourable characteristics: Faster Convergence, Higher
Data-efficiency and Better Transferability. Without bells
and whistles, KDEP achieves comparable transfer perfor-
mance as supervised pre-training with only 10× less data
and 5× less training time.

Limitations and Broader Impact. The KDEP perfor-
mance largely relys on a suitable teacher model, where how
to obtain such a teacher still needs further investigation. In
our study, we found the compactness of feature distribution
could be an important indicator, from which we would hope
the community could release models not only with compact
features (usually tailored to ImageNet task) but also with di-
verse feature distributions (pre-trained with large-scale di-
versified data). Moreover, we hope our work could inspire
more research and applications on KDEP, which we believe
is very useful for academic research and practical usage.
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Tallec, Pierre H Richemond, Elena Buchatskaya, Carl
Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo,
Mohammad Gheshlaghi Azar, et al. Bootstrap your
own latent: A new approach to self-supervised learning.
arXiv:2006.07733, 2020.

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020.

[24] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In ICCV, 2015.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[27] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, No-
jun Kwak, and Jin Young Choi. A comprehensive overhaul
of feature distillation. In ICCV, 2019.

[28] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young
Choi. Knowledge transfer via distillation of activation
boundaries formed by hidden neurons. In AAAI, 2019.

[29] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. arXiv:1503.02531, 2015.

[30] Zehao Huang and Naiyan Wang. Like what you
like: Knowledge distill via neuron selectivity transfer.
arXiv:1707.01219, 2017.

[31] Xiao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu,
Ding Liang, Junjie Yan, and Xiaolin Hu. Knowledge distil-
lation via route constrained optimization. In ICCV, 2019.

[32] Armand Joulin, Laurens Van Der Maaten, Allan Jabri, and
Nicolas Vasilache. Learning visual features from large
weakly supervised data. In ECCV, 2016.

[33] Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing
complex network: Network compression via factor transfer.
arXiv:1802.04977, 2018.

[34] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning. In
ECCV, 2020.

9169



[35] Nikos Komodakis and Sergey Zagoruyko. Paying more at-
tention to attention: improving the performance of convolu-
tional neural networks via attention transfer. In ICLR, 2017.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[37] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig,
and Vittorio Ferrari. The open images dataset v4: Unified
image classification, object detection, and visual relationship
detection at scale. IJCV, 2020.

[38] Seung Hyun Lee, Dae Ha Kim, and Byung Cheol Song. Self-
supervised knowledge distillation using singular value de-
composition. In ECCV, 2018.

[39] Ang Li, Allan Jabri, Armand Joulin, and Laurens van der
Maaten. Learning visual n-grams from web data. In ICCV,
2017.

[40] Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao,
Liping Liu, Zeyu Chen, and Jun Huan. Delta: Deep learning
transfer using feature map with attention for convolutional
networks. arXiv:1901.09229, 2019.

[41] Zhizhong Li, Avinash Ravichandran, Charless Fowlkes,
Marzia Polito, Rahul Bhotika, and Stefano Soatto. Rep-
resentation consolidation for training expert students.
arXiv:2107.08039, 2021.

[42] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014.

[43] Yufan Liu, Jiajiong Cao, Bing Li, Chunfeng Yuan, Weiming
Hu, Yangxi Li, and Yunqiang Duan. Knowledge distillation
via instance relationship graph. In CVPR, 2019.

[44] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv:2103.14030, 2021.

[45] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens Van Der Maaten. Exploring the limits of weakly
supervised pretraining. In ECCV, 2018.

[46] Aditya K Menon, Ankit Singh Rawat, Sashank Reddi, Se-
ungyeon Kim, and Sanjiv Kumar. A statistical perspective
on distillation. In ICML, 2021.

[47] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. When
does label smoothing help? arXiv:1906.02629, 2019.

[48] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Rela-
tional knowledge distillation. In CVPR, 2019.

[49] Nikolaos Passalis and Anastasios Tefas. Learning deep rep-
resentations with probabilistic knowledge transfer. In ECCV,
2018.

[50] Nikolaos Passalis, Maria Tzelepi, and Anastasios Tefas. Het-
erogeneous knowledge distillation using information flow
modeling. In CVPR, 2020.

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. NIPS,
2019.

[52] Baoyun Peng, Xiao Jin, Jiaheng Liu, Dongsheng Li, Yichao
Wu, Yu Liu, Shunfeng Zhou, and Zhaoning Zhang. Correla-
tion congruence for knowledge distillation. In ICCV, 2019.

[53] Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta
pseudo labels. In CVPR, 2021.

[54] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, 2016.

[55] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi
Zelnik-Manor. Imagenet-21k pretraining for the masses.
arXiv:2104.10972, 2021.

[56] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv:1412.6550, 2014.

[57] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish
Kapoor, and Aleksander Madry. Do adversarially robust im-
agenet models transfer better? arXiv:2007.08489, 2020.

[58] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018.

[59] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-
nav Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In ICCV, 2017.

[60] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive representation distillation. arXiv:1910.10699, 2019.

[61] Frederick Tung and Greg Mori. Similarity-preserving knowl-
edge distillation. In ICCV, 2019.

[62] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
2008.

[63] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[64] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. In CVPR, 2020.

[65] LI Xuhong, Yves Grandvalet, and Franck Davoine. Explicit
inductive bias for transfer learning with convolutional net-
works. In ICML, 2018.

[66] Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao,
and Liwei Wang. Learning to navigate for fine-grained clas-
sification. In ECCV, 2018.

[67] Yazhou Yao, Jian Zhang, Xian-Sheng Hua, Fumin Shen, and
Zhenmin Tang. Extracting visual knowledge from the inter-
net: making sense of image data. In International Confer-
ence on Multimedia Modeling, 2016.

[68] Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang. Un-
supervised embedding learning via invariant and spreading
instance feature. In CVPR, 2019.

[69] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A
gift from knowledge distillation: Fast optimization, network
minimization and transfer learning. In CVPR, 2017.

[70] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lip-
son. How transferable are features in deep neural networks?
arXiv:1411.1792, 2014.

[71] Kaichao You, Zhi Kou, Mingsheng Long, and Jianmin Wang.
Co-tuning for transfer learning. NIPS, 2020.

9170



[72] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction. arXiv:2103.03230, 2021.

[73] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, 2017.

[74] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. IJCV, 2019.

[75] Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli
Wang, Junsong Yuan, and Qian Zhang. Rethinking soft la-
bels for knowledge distillation: A bias-variance tradeoff per-
spective. arXiv:2102.00650, 2021.

9171


