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Figure 1. We present a new regularizing loss (MDCA) for train time calibration of Deep Neural Networks (DNN). Figures (a)-(d) shows

comparison with a model trained using Cross Entropy loss (NLL), and ours (FL + MDCA). In (a), a DNN trained using NLL makes an incorrect

but over-confident prediction. Whereas, training with MDCA reduces the confidence of the mis-predicted label, and increases confidence

of the second-highest confident, but correct label. In (b) for a CIFAR 10 minority class, “truck”, a model trained with MDCA confidently

predicts the correct label as compared to a NLL trained model. In (c) and (d), we show an image from in-domain and out-of-domain dataset.

In (c), picture is taken from “Photo” domain (in-domain) of the PACS [30] dataset on which we trained the DNN. Both the models trained

with our method as well as NLL predict high confidence score for the correct label. However, in (d), when we change the domain to “Art”

(out-of-domain), we see NLL trained model makes highly over-confident mistake on domain shift, whereas, MDCA regularized model remains

calibrated. In (e) we show the Class Activation Maps (CAMs) for a model calibrated with Temperature Scaling (TS), and ours for label

cow (top row), and person (bottom row). More accurate CAMs show that training with MDCA improves model explainability. (f) shows

class-wise reliability diagrams of models trained with NLL and our method. Latter leads to models which are calibrated for all classes.

Abstract

Deep Neural Networks (DNNs) are known to make over-

confident mistakes, which makes their use problematic in

safety-critical applications. State-of-the-art (SOTA) calibra-

tion techniques improve on the confidence of predicted labels

alone, and leave the confidence of non-max classes (e.g. top-

2, top-5) uncalibrated. Such calibration is not suitable for

§Equal contribution

label refinement using post-processing. Further, most SOTA

techniques learn a few hyper-parameters post-hoc, leaving

out the scope for image, or pixel specific calibration. This

makes them unsuitable for calibration under domain shift,

or for dense prediction tasks like semantic segmentation. In

this paper, we argue for intervening at the train time itself,

so as to directly produce calibrated DNN models. We pro-

pose a novel auxiliary loss function: Multi-class Difference

in Confidence and Accuracy (MDCA), to achieve the same.

16081



MDCA can be used in conjunction with other application/task

specific loss functions. We show that training with MDCA

leads to better calibrated models in terms of Expected Cal-

ibration Error (ECE), and Static Calibration Error (SCE)

on image classification, and segmentation tasks. We report

ECE (SCE) score of 0.72 (1.60) on the CIFAR 100 dataset, in

comparison to 1.90 (1.71) by the SOTA. Under domain shift,

a ResNet-18 model trained on PACS dataset using MDCA

gives a average ECE (SCE) score of 19.7 (9.7) across all

domains, compared to 24.2 (11.8) by the SOTA. For segmen-

tation task, we report a 2× reduction in calibration error

on PASCAL-VOC dataset in comparison to Focal Loss [32].

Finally, MDCA training improves calibration even on imbal-

anced data, and for natural language classification tasks.

1. Introduction

Deep Neural Networks (DNNs) have shown promising

results for various pattern recognition tasks in recent years.

In a classification setting, with input x ∈ X , and label

y ∈ Y = {1, . . . ,K}, a DNN typically outputs a confidence

score vector s ∈ R
K . The vector, s, is also a valid probability

vector, and each element of s is assumed to be the predicted

confidence for the corresponding label. It has been shown in

recent years that the confidence vector, s, output by a DNN

is often poorly calibrated [14, 36]. That is:

P

(
ŷ = y∗

∣∣
s[ŷ]

)
̸= s[ŷ], (1)

where ŷ, and y∗ are the predicted, and true label respectively

for a sample. E.g. if a DNN predicts a class “truck” for

an image with score 0.7, then a network is calibrated, if

the probability that the image actually contains a truck is

0.7. If the probability is lower, a network is said to be over-

confident, and under-confident if probability is higher. For

a pixel-wise prediction task like semantic segmentation, we

would like to calibrate prediction for each pixel. Similarly,

we would like calibration to hold not only for the predicted

label, i.e. ŷ = arg max
y∈Y

s[y], but for the whole vector s (all

labels), i.e., ∀y ∈ Y .

One of the main reasons for the miscalibration is the

specific training regimen used. Most modern DNNs, when

trained for classification in a supervised learning setting,

are trained using one-hot encoding that have all the prob-

ability mass centered in one class; the training labels are

thus zero-entropy signals that admit no uncertainty about

the input [48]. The DNN is thus trained to become over-

confident. Besides creating a general distrust in the model

predictions, the miscalibration is especially problematic in

safety critical applications, such as self-driving cars [13],

legal research [51] and healthcare [10, 46], where giving the

correct confidence for a predicted label is as important as the

correct label prediction itself.

Researchers have tried to address miscalibration by learn-

ing a post-hoc transformation of the output vector so that the

confidence of the predicted label matches with the likelihood

of the label for the sample [15, 17]. Since such techniques

focus on the predicted label only, they could end up calibrat-

ing only the label which has maximum confidence for each

sample. Hence, in a multi-class setting, the labels with non-

maximal confidence scores remain uncalibrated. This makes

any post-processing for label refinement, such as posterior

inference using MRF-MAP [4], ineffective.

In this paper we argue for the calibration at the train-time.

Unlike post-hoc calibration techniques that use limited pa-

rameters1, a train time strategy allows exploiting millions of

learnable parameters of DNN itself, thus providing a flexible

learning more suited to image and pixel specific transforma-

tion for model calibration. Our experiments under domain

shift, and for a dense predict task (semantic segmentation)

shows the strength of the approach.

Armed with the above insight, we propose a novel aux-

iliary loss function: Multi-class Difference in Confidence

and Accuracy (MDCA). The proposed loss function is de-

signed to be used during the training stage in conjunction

with other application specific loss functions, and overcomes

the non-differentiablity of the loss functions proposed in

earlier methods. Though we do not advocate it, the proposed

technique is complimentary to the post-hoc techniques which

may still be used after the training, if there is a separate hold-

out dataset available for exploitation. Since ours is a train

time calibration approach, it implies good regularization for

the predictions. We show that models trained using our loss

function remain calibrated even under domain shift.

Contributions: We make the following key contributions:

(1) A trainable DNN calibration method with inclusion of

a novel auxiliary loss function, termed MDCA, that takes

into account the entire confidence vector in a multi-class

setting. Our loss function is differentiable and can be used

in conjunction with any existing loss term. We show experi-

ments with Cross-Entropy, Label Smoothing [38], and Focal

Loss [32]. (2) Our approach is on par with post-hoc meth-

ods [14, 23] without the need for hold-out set making the

deployment more practical (See Tab. 6). (3) Our loss func-

tion is a powerful regularizer, maintaining calibration even

under domain/dataset drift and dataset imbalance which We

demonstrate on PACS [30], Rotated MNIST [29] and imbal-

anced CIFAR 10 datasets. (4) Although the focus is primarily

on image classification, our experiments on multi-class se-

mantic segmentation show that our technique outperforms

TS based calibration, and Focal Loss [32]. We also show the

effectiveness of our approach on natural language classifica-

tion task on 20Newsgroup dataset [27].

1For example, Temperature scaling (TS) calibrates uses a single global

scalar, T ; and Dirichlet Calibration (DC) uses O(K2) hyper-parameters for

K classes to calibrate the model output
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2. Related Work

Techniques for calibrating DNNs can be broadly classified

into train-time calibration, post-hoc calibration, and calibra-

tion through Out-Of-Distribution (OOD). Train-time calibra-

tion integrate model calibration during the training procedure

while a post-hoc calibration method utilizes a hold-out set

to tune the calibration measures. On the other hand,learning

to reject OOD samples (at train-time or post-hoc) mitigates

overconfidence and thus, calibrates DNNs.

Train-Time Calibration: One of the earliest train-time

methods proposes Brier Score for the calibrating binary

probabilistic forecast [2]. [14] show models trained with

Negative-Log-Likelihood (NLL) tend to be over-confident

and empirically show a disconnect between NLL and ac-

curacy. Specifically, the overconfident scores necessitates

re-calibration. A common calibration approach is to use ad-

ditional loss terms other than the NLL loss: [44] use entropy

as a regularization term whereas Müller et al. [38] propose

Label Smoothing (LS) [47] on soft-targets which aids in

improving calibration. Recently, [37] showed that focal

loss [32] can implicitly calibrate DNNs by reducing the KL-

divergence between predicted and target distribution whilst

increasing the entropy of the predicted distribution, thereby

preventing the model from becoming overconfident. Liang

et al. [31] have proposed an auxiliary loss term, DCA, which

is added with Cross-Entropy to help calibrate the model. The

DCA term penalizes the model when the cross-entropy loss

is reduced, but the accuracy remains the same, i.e., when

the over-fitting occurs. [26] propose to use MMCE, an auxil-

iary loss term for calibration, computed using a reproducing

kernel in a Hilbert space [12]. Maroñas et al. [33] analyse

MixUp [52] data augmentation for calibrating DNNs and

conclude Mixup does not necessarily improve calibration.

Post-Hoc Calibration: Post-hoc calibration techniques cali-

brate a model using a hold-out training set, which is usually

the validation set. Temperature scaling (TS) smoothes the

logits to calibrate a DNN. Specifically, TS is a variant of Platt

scaling [45] that works by dividing the logits by a scalar

T > 0, learnt on a hold-out training set, prior to taking a

softmax. The downside of using TS during calibration is

reduction in confidence of every prediction, including the

correct one. A more general version of TS transforms the

logits using a matrix scaling. The matrix M is learnt using

the hold-out set similar to TS. Dirichlet calibration (DC) uses

Dirichlet distributions to extend the Beta-calibration [24]

method for binary classification to a multi-class one. DC is

easy to implement as an extra layer in a neural network on

log-transformed class probabilities, which is learnt on a hold-

out set. Meta-calibration propose differentiable ECE-driven

calibration to obtain well-calibrated and high-accuracy mod-

els [1]. Islam et al. [18] propose class-distribution-aware

TS and LS that can be used as a post-hoc calibration. They

use a class-distribution aware vector for TS/LS to fix the

overconfidence. Ding et al. [9] propose a spatially localized

calibration approach for semantic segmentation.

Calibration Through OOD Detection: Hein et al. [34]

show that one of the main reasons behind the overconfidence

in DNNs is the usage of ReLu activation that gives high

confidence predictions when the input sample is far away

from the training data. They propose data augmentation

using adversarial training, which enforces low confidence

predictions for samples far away from the training data. Guo

et al. [14] analyze the effect of width, and depth of a DNN,

batch normalization, and weight decay on the calibration.

Karimi et al. [19] use spectral analysis on initial layers of a

CNN to determine OOD sample and calibrate the DNN. We

refer the reader to [8, 16, 35, 43] for other representative

works on calibrating a DNN through OOD detection.

3. Proposed Methodology

Calibration: A calibrated classifier outputs confidence

scores that matches the empirical frequency of correctness.

If a calibrated model predicts an event with 0.7 confidence,

then 70% of the times the event transpires. If the empirical

occurrence of the event is < 70% then the model is overcon-

fident, and if the empirical probability > 70% then the model

is under-confident. Formally, we define calibration in a clas-

sical supervised setting as follows. Let D = ⟨(xi, yi)⟩
N
i=1

denote a dataset consisting of N samples from a joint distri-

bution D(X ,Y), where for each sample xi ∈ X is the input

and y∗i ∈ Y = {1, 2, ...,K} is the ground-truth class label.

Let s ∈ R
K , and si[y] = fθ(xi) be the confidence that a

DNN, f , with model parameters θ predicts for a class y on a

given input xi. The class, ŷi, predicted by f for a sample xi

is computed as:

ŷi = arg max
y∈Y

si[y]. (2)

The confidence for the predicted class is correspondingly

computed as ŝi = maxy∈Y si[y]. A model is said to be

perfectly calibrated [14] when, for each sample (x, y) ∈ D:

P(y = y∗ | s[y] = s) = s. (3)

Note that the perfect calibration requires each score value

(and not only the ŝ ) to be calibrated. On the other hand,

most calibration techniques focus only on the predicted class.

That is, they only ensure that: P(ŷi = y∗i | ŝi) = ŝi.

Expected Calibration Error (ECE): ECE is calculated by

computing a weighted average of the differences in the confi-

dence of the predicted class, and the accuracy of the samples,

predicted with a particular confidence score [39]:

ECE =

M∑

i=1

Bi

N

∣∣∣Ai − Ci

∣∣∣. (4)
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Here N is the total number of samples, and the weighting

is done on the basis of the fraction of samples in a given

confidence bin/interval. Since the confidence values are

in a continuous interval, for the computation of ECE, we

divide the confidence range [0, 1] into M equidistant bins,

where ith bin is the interval ( i−1

M
, i
M
] in the confidence range,

and Bi, represents the number of samples in the ith bin.

Further, Ai = 1

|Bi|

∑
j∈Bi

I(ŷj = yj), denotes accuracy

for the samples in bin Bi, and Ci = 1

|Bi|

∑
j:ŝj∈Bi

ŝj , is

the average predicted confidence of the samples, such that

ŝj ∈ Bi. The evaluation of DNN calibration via ECE suffers

from the following shortcomings: (a) ECE does not measure

the calibration of all score values in the confidence vector,

and (b) the metric is not differentiable, and hence can not

be incorporated as a loss term during training procedure

itself. Specifically, non-differentiablity arises due to binning

samples into bins Bi.

Maximum Calibration Error (MCE): MCE is defined as the

maximum absolute difference between the average accuracy

and average confidence of each bin:

MCE = max
i∈1,...,M

∣∣Ai − Ci

∣∣.

The max operator ends up pruning a lot of useful information

about calibration, making the metric not-so-popular. How-

ever, it does represent a statistical value that can be used to

discriminate large differences in calibration.

Static Calibration Error (SCE): SCE is a recently proposed

metric to measure calibration by [41]:

SCE =
1

K

M∑

i=1

K∑

j=1

Bi,j

N

∣∣Ai,j − Ci,j

∣∣, (5)

where, K denotes the number of classes, and Bi,j de-

notes number of samples of the jth class in the ith bin.

Further, Ai,j = 1

Bi,j

∑
k∈Bi,j

I(j = yk) is the accuracy

for the samples of jth class in the ith bin, and Ci,j =
1

Bi,j

∑
k∈Bi,j

sk[j] or average confidence for the jth class in

the ith bin. Classwise-ECE [23] is another metric for mea-

suring calibration in a multi-class setting, but is identical to

Static Calibration Error (SCE). It is easy to see that SCE is

a simple class-wise extension to ECE. Since SCE takes into

account the whole confidence vector, it allows us to measure

calibration of the non-predicted classes as well. Note that,

similar to ECE, the metric SCE is also non-differentiable, and

can not be used as a loss term during training.

Class-j-ECE: [23] has proposed to evaluate calibration error

of each class independent of other classes. This allows one

to capture the contribution of a single class j to the overall

SCE (or classwise-ECE) error. We refer to this metric as

class-j-ECE in our results/discussion.

3.1. Proposed Auxiliary loss: MDCA

We propose a novel multi-class calibration technique us-

ing the proposed auxiliary loss function. The loss function is

inspired from SCE [41] but avoids the non-differentiability

caused due to binning Bi,j as shown in Eq. (5) [31]. Our cali-

bration technique is independent of the binning scheme/bins.

This is important, because as [50] and [25] have also high-

lighted, binning scheme leads to underestimated calibration

errors. We name our loss function, Multi-class Difference

of Confidence and Accuracy (MDCA), and apply it for each

mini-batch during training. The loss is defined as follows:

LMDCA =
1

K

K∑

j=1

∣∣∣ 1

Nb

M∑

i=1

si[j]−
1

Nb

M∑

i=1

qi[j]
∣∣∣, (6)

where qi[j] = 1 if label j is the ground truth label for sample

i, i.e. j = y∗i , else qi[j] = 0. Note the second term inside

| · | corresponds to average count of samples in a mini-batch

containing Nb training samples. Since the average count

is a constant value so learning gradients solely depends on

the first term representing confidence assigned by the DNN.

K denotes number of classes. LMDCA is computed on a

mini-batch, and the modulus operation (| · |) implies that

the summations are not interchangeable 2. Further, si[j]
represents the confidence score by a DNN for the jth class, of

ith sample in the mini-batch.

Note that LMDCA is differentiable, whereas, the loss given

by DCA [31] involves accuracy over the mini-batch, and is

non-differentiable. The differentiablity of our loss function

ensures that it can be easily used in conjunction with other

application specific loss functions as follows:

Ltotal = LC + β · LMDCA, (7)

where β is a hyperparameter to control the relative impor-

tance with respect to application specific losses, and is typi-

cally found using a validation set. LC is a standard classi-

fication loss, such as Cross Entropy, Label Smoothing [47],

or Focal loss [32]. Our experiments indicate that the pro-

posed MDCA loss in conjunction with focal loss gives best

calibration performance.

Ideally to achieve confidence calibration, we want the

average prediction confidence to be same as accuracy of the

model. However, in multiclass calibration, we want average

prediction confidence of every class ki to match with its

average occurrence in the data-distribution. In LMDCA,

we explicitly capture this idea for every mini-batch i.e. we

2Note that LMDCA may appear similar to L1 loss due to the usage of

the modulus in both. However, the two loss functions are very different.

Mathematically, L1 = 1

K·Nb

∑K
j=1

∑Nb
i=1

∣

∣

∣
si[j]−qi[j]

∣

∣

∣
whereas LMDCA

is as given in Eq. (6). The two terms inside the modulus of LMDCA loss

represent mean statistic for a particular class, j (motivated by our objective

of class-wise calibration), whereas, in the case of L1 the modulus operate

on a single sample.
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intuitively want that s̃[ki] ≈ q̃[ki] (where s̃[ki], q̃[ki] is the

average prediction confidence and the average count class ki
in a mini-batch respectively). Any deviation from this leads

DNN to be penalized by LMDCA.

4. Dataset and Evaluation

Datasets: We validate our technique on well-known bench-

mark datasets for image classification, semantic segmenta-

tion and natural language processing (NLP). For each of the

datasets: CIFAR10/100 [22], SVHN [40], Mendeley V2 [20],

Tiny-ImageNet [7] and 20-Newsgroups [28], we have a sep-

arate train and test set. The train set is further split into 2

mutually exclusive sets (a) training set containing 90% of

the samples, and (b) the validation set containing 10%. We

use validation set as the hold-out set for post-hoc calibration.

This division has been consistent throughout our experimen-

tation. See Supplementary material for detailed description

of datasets, DNN architectures, and training procedure.

Evaluation: We report calibration measures, SCE, ECE, and

class-j-ECE along with test error for studying calibration

performance. We observe that we achieve superior calibra-

tion using our technique without any significant drop in the

accuracy. We also visualize the calibration using reliability

diagrams (please see supplementary material for detailed

description of reliability diagrams).

Compared Techniques: We compare our method against

models trained with Cross-Entropy (NLL), Label Smooth-

ing (LS) [47], DCA [31], Focal Loss (FL) [32], Brier Score

(BS) [2], FLSD [37] as well as MMCE [26]. For details on

individual methods and their training specifics, please refer

to the supplementary.

5. Results

Experiments with Application Specific Loss Functions:

Our loss is meant to be used in conjunction with another

application specific loss function to help improve the calibra-

tion performance of a model. Common application specific

loss include cross entropy loss (NLL) which in turn mini-

mizes negative log likelihood score of the ground truth label

in the predicted confidence vector. Focal Loss (FL) [32]

has been proposed to improve training in the presence of

many easy negatives, and fewer hard negatives. Whereas

Label Smoothing (LS) [47] introduces another term in the

NLL to smoothen the prediction of a model. We add the

proposed MDCA with each of these loss terms, and mea-

sure the calibration performance of a model (in terms of

ECE, and SCE scores), before and after adding our loss.

Tab. 1 shows the result. We refer to configurations using

our technique as “*+MDCA”, where * refers to NLL/LS/FL.

For each of the combination we use relative weight of

β ∈ {1, 5, 10, 15, 20, 25} for LMDCA, and report the cali-

bration performance of the most accurate model on the val-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. First row shows Reliability diagrams (a,b) and confidence

histograms (c,d) of NLL trained model compared against MDCA

regularized version (NLL+MDCA). We use ResNet-32 trained on

CIFAR10 dataset for comparison. Second row shows corresponding

plots for ResNet-20 network trained with Label Smoothing(LS) vs.

MDCA regularized LS on SVHN dataset. Please refer to the text for

the interpretation of the plots. We show a similar comparison with

FL, and FL+DCA in the supplementary.

idation set. Our experiments suggest that setting β < 1
did not have strong regularizing effect). For LLS we use

α = 0.1, and for LFL we use γ ∈ {1, 2, 3}. Please refer

to [47] and [32] for interpretation of α, and γ respectively.

Tab. 1 shows that the proposed MDCA loss improves calibra-

tion performance of all the above application specific loss

functions, across multiple datasets, and architectures. We

also note that FL+MDCA gives best calibration performance.

We will use this loss configuration in our experiments here-

after.

Calibration Comparison with SOTA: Tab. 2 compares cal-

ibration performance of our method with all recent SOTA

methods. We note that calibration using our method im-

proves both SCE as well as ECE score on all the datasets, and

different architectures.

Class-Conditioned Calibration Error: Current state-of-

the-art focuses on calibrating the predicted label only, which

leaves some of the minority class un-calibrated. One of the

benefits of our calibration approach is better calibration for

all and not only the predicted class. To demonstrate the

effectiveness of our method, we report class-j-ECE % values

of all the competing methods against our method, using

ResNet-20 model trained on the SVHN dataset. Tab. 3 shows

the result. Our method gives best scores for all but 3 out

of 10 classes, where it is second-best. Class-wise reliability

diagrams (c.f. Fig. 1) reinforce a similar conclusion. We

show results on CIFAR 10 dataset in the supplementary.

Test Error: Tab. 2 also shows the Test Error (TE) obtained

by a model trained using our method and other SOTA ap-

proaches. We note that using our proposed loss, a model is

able to achieve best calibration performance without sacri-

ficing on the prediction accuracy (Test Error).
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NLL NLL+MDCA LS [38] LS+MDCA FL [32] FL+MDCA
Dataset Model

SCE(10−3) ECE (%) SCE(10−3) ECE (%) SCE(10−3) ECE (%) SCE(10−3) ECE (%) SCE(10−3) ECE (%) SCE(10−3) ECE (%)

CIFAR10
ResNet32 8.68 4.25 4.63 1.69 14.08 6.28 10.39 4.31 4.60 1.76 3.22 0.93

ResNet56 7.11 3.27 6.87 3.15 12.54 5.38 9.88 3.97 4.18 1.11 2.93 0.70

CIFAR100
ResNet32 3.03 12.45 2.59 9.94 1.99 2.09 1.74 2.29 1.83 1.62 1.72 1.49

ResNet56 2.50 9.32 2.41 8.95 1.73 8.94 1.68 1.48 1.66 2.29 1.60 0.72

SVHN
ResNet20 3.43 1.64 1.46 0.43 18.80 8.88 13.91 6.46 2.54 0.89 1.90 0.47

ResNet56 3.84 1.82 1.47 0.53 21.08 10.00 17.62 8.43 7.85 3.89 1.51 0.23

Mendeley V2 ResNet50 131.2 4.78 88.14 3.63 103.8 2.68 97.38 5.03 108.3 8.17 85.68 4.81

Tiny-ImageNet ResNet34 1.91 14.91 1.87 14.22 1.38 5.96 1.36 5.90 1.19 2.26 1.17 1.99

20 Newsgroups Global-Pool CNN 602.68 14.78 559.50 16.53 988.42 3.45 520.50 17.30 729.39 13.35 487.82 16.55

Table 1. Our loss is meant to be used in addition to another application specific loss. The table compares the calibration performance

improvement using MDCA over three commonly used loss functions (NLL/LS/FL). Our loss improves calibration performance across

multiple datasets and architectures.

BS [2] DCA [31] MMCE [26] FLSD [37] Ours (FL+MDCA)
Dataset Model

SCE ECE TE SCE ECE TE SCE ECE TE SCE ECE TE SCE ECE TE

CIFAR10
ResNet32 6.60 2.92 7.76 8.41 4.00 7.06 8.17 3.31 8.41 9.48 4.41 7.87 3.22 0.93 7.18

ResNet56 5.44 2.17 7.75 7.59 3.38 6.53 9.11 3.71 8.23 7.71 3.49 7.04 2.93 0.70 7.08

CIFAR100
ResNet32 1.97 5.32 33.53 2.82 11.31 29.67 2.79 11.09 31.62 1.77 1.69 32.15 1.72 1.49 31.58

ResNet56 1.86 4.69 30.72 2.77 9.29 43.43 2.35 8.61 28.75 1.71 1.90 29.11 1.60 0.72 29.8

SVHN
ResNet20 2.12 0.45 3.56 4.29 2.02 3.83 9.18 4.34 4.12 18.98 9.37 4.10 1.90 0.47 3.92

ResNet56 2.18 0.66 3.25 2.16 0.49 3.32 9.69 4.48 4.26 26.15 13.23 3.65 1.51 0.23 3.85

Mendeley V2 ResNet50 117.6 3.75 18.43 145.1 8.29 17.47 130.4 3.45 15.06 104.3 9.64 19.71 85.68 4.81 17.95

Tiny-ImageNet ResNet34 1.53 7.79 43.00 2.11 17.40 36.68 1.62 9.71 40.75 1.18 1.91 37.01 1.17 1.99 37.49

20 Newsgroups Global-Pool CNN 725.82 13.71 25.93 719.83 15.30 28.07 731.31 12.69 28.63 940.70 4.52 30.80 487.82 16.55 27.88

Table 2. Calibration measures SCE (10−3) and ECE (%) score) and Test Error (TE) (%) in comparison with various competing methods.

We use M = 15 bins for SCE and ECE calculation. We outperform all the baselines across various popular benchmark datasets, and

architectures in terms of calibration, while maintaining a similar accuracy.

Method
Classes

0 1 2 3 4 5 6 7 8 9

Cross Entropy 0.20 0.62 0.33 0.65 0.23 0.36 0.25 0.26 0.21 0.41

Focal Loss [32] 0.30 0.48 0.41 0.18 0.38 0.19 0.33 0.36 0.32 0.30

LS [38] 1.63 2.60 2.54 1.90 1.91 1.74 1.73 1.75 1.63 1.58

Brier Score [2] 0.23 0.28 0.40 0.45 0.25 0.26 0.25 0.27 0.21 0.37

MMCE [26] 1.78 2.35 2.12 2.00 1.74 1.87 1.65 1.76 1.70 1.84

DCA [31] 0.31 0.70 0.40 0.72 0.31 0.46 0.35 0.35 0.37 0.36

FLSD [37] 1.52 3.24 2.74 2.15 1.79 1.82 1.84 1.62 1.54 1.38

Ours (FL+MDCA) 0.22 0.16 0.24 0.25 0.22 0.16 0.16 0.17 0.25 0.20

Table 3. Class-j-ECE (%) score on all 10 classes for ResNet-

20 model trained on the SVHN dataset with different learnable

calibration methods. Our method gives best calibration for 7 out of

10 classes, and is second-best on 3 classes.

Mitigating Under/Over-Confidence: Tab. 1 and Tab. 2 al-

ready show that our method improves over SOTA in terms

of SCE, and ECE scores. However the tables do not high-

light whether they correct for over-confidence or under-

confidence. We show the reliability diagram (Fig. 2) for

a ResNet-32/20 model trained on CIFAR 10/SVHN. The

uncalibrated model is overconfident (Fig. 2a) which gets

rectified after calibrating with our method (Fig. 2b). We

also show confidence plots in the picture, and the colored

dashed lines to indicate average confidence of the predicted

label, and the accuracy. It can be seen that accuracy is lower

than average confidence in the uncalibrated confidence plot

(a) (b)

Figure 3. Confidence value histogram for misclassified predictions.

MDCA regularized NLL makes less confident incorrect predictions

as compared to the uncalibrated method trained using NLL.

(Fig. 2c), which indicates the overconfident model. After

calibrating with our method, the two dashed lines almost

overlap indicating the perfect calibration achieved (Fig. 2d).

Similarly, second row of Fig. 2 show that the model trained

with LS solely is under-confident; and a model trained with

LS along with MDCA is confident and calibrated.

Confidence Values for Incorrect Predictions: The focus

of the discussion so far has been on the fact that confidence

value for a class should be consistent with the likelihood

of the class for the sample. Here, we analyze our method

for the confidence values it gives when the prediction is

incorrect. Fig. 3 shows the confidence value histogram for
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Method Art Cartoon Sketch Average

NLL 6.33 17.95 15.01 13.10

LS [38] 7.80 11.95 10.88 10.21

FL [32] 8.61 16.62 10.94 12.06

Brier Score [2] 6.55 13.19 15.63 11.79

MMCE [26] 6.35 15.70 17.16 13.07

DCA [31] 7.49 18.01 14.99 13.49

FLSD [37] 8.35 13.39 13.86 11.87

Ours (FL+MDCA) 6.21 11.91 11.08 9.73

Table 4. Calibration performance (SCE (10−3)) under domain shift

on PACS dataset [30]. For each column we train on the other two

subsets, and then test on the subset listed as the column heading.

Method
CIFAR10 SVHN

IF-10 IF-50 IF-100 IF-2.7

NLL 18.44 32.21 31.04 3.43

FL [32] 14.65 29.67 28.89 2.54

LS [38] 14.88 26.30 20.79 18.80

BS [2] 15.74 33.57 29.01 2.12

MMCE [26] 15.10 29.05 21.56 9.18

FLSD [37] 16.05 31.35 30.28 18.98

DCA [31] 18.57 32.81 35.53 4.29

Ours (FL+MDCA) 11.83 22.97 26.89 1.90

Table 5. Our calibration technique works best even when there is

a significant class imbalance in the dataset. For this experiment

we created imbalance of various degrees in CIFAR 10 as suggested

in [6]. Original SVHN has a Imbalance Factor(IF) of 2.7. Hence we

show calibration performance (SCE (10−3)) on original SVHN.

all the incorrect predictions made by the ResNet-32 model

trained on CIFAR 10 dataset using NLL vs. MDCA regularized

NLL. It is clear that our calibration reduces the confidence

for the mis-prediction. The same is also evident from the

Fig. 1 shown earlier.

Calibration Performance under Dataset Drift: Tomani

et al. [49] show that DNNs are over-confident and highly

uncalibrated under dataset/domain shift. Our experiments

shows that a model trained with MDCA fairs well in terms

of calibration performance even under non-semantic/natural

domain shift. We use two datasets (a) PACS [30] and (b)

Rotated MNIST inspired from [42]. The datasets are bench-

marks for synthetic non-semantic shift and natural rotations

respectively. Dataset specifics and training procedure are

provided in the supplementary. Tab. 4 shows that our method

achieves the best average SCE value across all the domains in

PACS. A similar trend is observed on Rotated MNIST dataset

as well (see supplementary), where our method achieves the

least average SCE value across all rotation angles.

Calibration Performance on Imbalanced Datasets: The

real-world datasets are often skewed and exhibit long-tail

distributions, where a few classes dominate over the rare

classes. In order to study the effect of class imbalance on

the calibration quality, we conduct the following experiment,

where we introduce a deliberate imbalance on CIFAR 10

dataset to force a long-tail distribution as detailed in [6].

Method Post Hoc
SCE(10−3) ↓

CIFAR10 CIFAR100 SVHN

NLL

None 7.12 2.50 3.84

TS 3.25 1.49 4.16

DC 4.98 1.91 2.69

LS [38]

None 12.55 1.73 21.08

TS 4.49 1.67 3.12

DC 5.34 1.98 2.81

FL [32]

None 4.19 1.89 7.85

TS 4.19 1.62 2.72

DC 5.48 2.02 3.36

BS [2]

None 5.44 1.86 2.18

TS 3.94 1.68 3.88

DC 4.83 1.80 2.11

MMCE [26]

None 9.12 2.35 9.69

TS 4.05 1.61 3.74

DC 6.26 1.95 5.11

DCA [31]

None 7.60 2.87 2.16

TS 3.00 1.56 4.29

DC 4.20 2.06 2.95

FLSD [37]

None 7.71 1.71 26.15

TS 3.27 1.71 4.41

DC 5.62 2.01 4.31

Ours (FL+MDCA)

None 2.93 1.60 1.51

TS 2.93 1.60 5.00

DC 3.81 1.87 2.72

Table 6. Results after combining various trainable calibration meth-

ods including ours with two post-hoc calibration methods (TS:

Temperate scaling [45], and DC: Dirichlet Calibration [23]) on SCE

(10−3). We use ResNet56 model on CIFAR 10, CIFAR 100, and

SVHN datasets for this experiment. Though other methods benefit

by post-hoc calibration, our method outperforms them without us-

ing any post-hoc calibration.

Tab. 5 shows that a model trained with our method has best

calibration performance in terms of SCE score across all

imbalance factors. We observe that SVHN dataset already

has a imbalance factor of 2.7, and hence create no artificial

imbalance in the dataset for this experiment. The efficacy

of our approach on the imbalanced data is due to the regu-

larization provided by MDCA which penalizes the difference

between average confidence and average count even for the

non-predicted class, hence benefiting minority classes.

Our Approach + Post-hoc Calibration: We study the per-

formance of combined effect of post-hoc calibration meth-

ods, namely Temperature Scaling (TS) [45], and Dirichlet

Calibration (DC) [23], applied over various train-time cali-

bration methods including ours (FL+MDCA). Tab. 6 shows

the results. We observe that while TS, and DC improve the

performance of other competitive methods, our method out-

performs them even without using any of these methods.

On the other hand, the performance of our method seems

to either remain same or slightly decrease after application

of post-hoc methods. We speculate that this is because our

method already calibrates the model to near perfection. For

example, on performing TS, we observe the optimal temper-

ature values are T ≈ 1 implying that it leaves little scope

for the TS to improve on top of it. Thus, any further at-

tempt to over-spread the confidence prediction using TS or
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Method Pixel Acc. (%) mIoU (%) SCE (10−3) ECE (%)

NLL 94.81 79.49 6.4 7.77

NLL+TS 94.81 79.49 6.26 6.1

FL 92.85 77.22 11.8 7.69

Ours (FL+MDCA) 94.47 78.66 5.8 4.66

Table 7. Segmentation results on Xception65 [5] backbone

DeeplabV3+ model [3] on PASCAL-VOC 2012 validation dataset.

Figure 4. Effect of different batch sizes on Calibration perfor-

mance metrics (ECE/SCE/Accuracy) while training with MDCA on

a ResNet-32 model on CIFAR 10 dataset. The calibration perfor-

mance drops with larger batch size because SGD optimization is

more effective in a small-batch regime [21]. A larger batch results

in a degradation in the quality of the model, as measured by its abil-

ity to generalize. The performance degradation is also consistent

with the model trained using solely on FL on a large batch size.

DC negatively affects the confidence quality.

Calibration Results for Semantic Segmentation: One of

the major advantages of our technique is that it allows to use

billions of weights of a DNN model to be used for the calibra-

tion. This is in contrast to other calibration approaches which

are severely constrained in terms of parameters available for

tuning. For example in TS one has a single temperature pa-

rameter to tune. This makes it hard for TS to provide image

and pixel specific confidence transformation for calibration.

To highlight pixel specific calibration aspect of our technique

we have done experiments on semantic segmentation task,

which can be seen as pixel level classification. For the exper-

iment, we train a DeepLabV3+ [3] model with a pre-trained

Xception65 [5] backbone on the PASCAL-VOC 2012 [11]

dataset. We compare the performance of our method against

NLL, FL and TS (post-hoc calibration). Please refer to the sup-

plementary for more details on the training. Tab. 7 shows the

results. We see a significant drop in both SCE/ECE in case of

our method (FL+MDCA) as compared to FL (2× drop in SCE

and a 40% decrease in ECE). Our method also outperforms

TS (after training with NLL) by 23.6%.

6. Ablation Study

Effect of Batch Size: Fig. 4 shows the effect of different

batch sizes on the calibration performance. We vary the

batch sizes exponentially and observe that a model trained

with MDCA achieves best calibration performance around

batch size of 64 or 128. As we decrease (or increase) the

Zoomed

Zoomed

Figure 5. Comparison of ECE/SCE at various epochs for MDCA,

MMCE, and DCA. Though, MMCE, and DCA directly optimize

for ECE, their loss function is not differentiable and hence the

techniques are not able to reduce ECE as much as MDCA. Differen-

tiability of loss function allows MDCA to reduce ECE better even

when it does not directly optimize it. We use a learning rate decay

of 1/10 at epochs 50 and 70. Please refer to the supplementary for

the details of the experiment.

batch size, we see a degradation in calibration, though the

drop is not significant.

Comparison of ECE/SCE Convergence with SOTA: In

previous sections, we compared the ECE scores of MDCA

with other contemporary trainable calibration methods like

MMCE [26] and DCA [31]. Many of these methods explicitly

aim to reduce ECE scores. While MDCA does not directly

optimize ECE, yet we see in our experiments that MDCA

manages to get better ECE scores at convergence. We spec-

ulate that this is due to the differentiablity of MDCA loss

which helps optimize the loss better using backpropagation.

To verify the hypothesis, we plot the ECE convergence for

various methods in Fig. 5.

7. Conclusion & Future work

We have presented a train-time technique for calibrating

the predicted confidence values of a DNN based classifier.

Our approach combines standard classification loss functions

with our novel auxiliary loss named, Multi-class Difference

of Confidence and Accuracy (MDCA). Our proposed loss

function when combined with focal loss yields the least cali-

bration error among both trainable and post-hoc calibration

methods. We show promising results in case of long tail

datasets, natural/synthetic dataset drift, semantic segmenta-

tion and a natural language classification benchmark too. In

future we would like to investigate the role of class hierar-

chies to develop cost-sensitive calibration techniques.
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