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Figure 1. From IMU measurements to location estimates. Given inertial sensor data (left), our approach (center) uses a neural inertial
navigation technique to find a sequence of velocity vectors; then train a scene-specific transformer-based neural architecture, which maps
a velocity sequence to a location likelihood. The figure shows sample localization results from our office dataset. Color shows temporal
correspondence between input(left), intermediate representations(middle), and location (right).

Abstract

This paper proposes the inertial localization problem,
the task of estimating the absolute location from a sequence
of inertial sensor measurements. This is an exciting and
unexplored area of indoor localization research, where we
present a rich dataset with 53 hours of inertial sensor data
and the associated ground truth locations. We developed
a solution, dubbed neural inertial localization (NILoc)
which 1) uses a neural inertial navigation technique to turn
inertial sensor history to a sequence of velocity vectors;
then 2) employs a transformer-based neural architecture
to find the device location from the sequence of velocities.
We only use an IMU sensor, which is energy efficient and
privacy preserving compared to WiFi, cameras, and other
data sources. Our approach is significantly faster and
achieves competitive results even compared with state-of-
the-art methods that require a floorplan and run 20 to
30 times slower. We share our code, model and data at
https://sachini.github.io/niloc.

1. Introduction
Imagine one stands up, walks for 3 meters, turns right,

and opens a door in an office. This information might be
sufficient to identify the location of the individual. A recent

*Corresponding author sherath@sfu.ca. (This work was partially
done when Sachini was an intern at Meta.)

breakthrough in inertial navigation [10, 14, 22] allows us to
obtain such motion history using an inertial measurement
unit (IMU). What is missing is the technology that maps
a motion history to a location. This papers addresses this
gap, seeking to open a new paradigm in the localization
research, named “inertial localization”, whose task is to
infer the location from a sequence of IMU sensor data.

Indoor localization is a crucial technology for location-
aware services, such as mobile business applications for
consumers, entertainment (e.g., Pokemon Go) for casual
users, and industry verticals for professional operators
(e.g., maintenance at a factory). State-of-the-art indoor
localization systems [5] mostly rely on WiFi, whose
infrastructure is ubiquitous thanks to the demands on
Internet of Things (IoT). Nevertheless, accuracy of WiFi
based localization depends on infrastructure (i.e number of
access points) thus cannot scale easily to non-commercial
private spaces.

IMU is a powerful complementary modality to WiFi,
which has proven effective for the navigation task
recently [10,14,22]. IMU 1) works anytime anywhere (e.g.,
inside a pocket/bag/hand); 2) is energy efficient to be an
always-on sensor and 3) protects the privacy of bystanders.

This paper introduces a novel inertial localization
problem as a task of estimating the location from a history
of IMU measurements. The paper provides the first inertial
localization benchmark, consisting of 53 hours of motion
data and ground-truth locations over 3 buildings. The
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paper also proposes an effective solution to the problem,
dubbed neural inertial localization (NILoc). NILoc first
uses a neural inertial navigation technique [10] to turn IMU
sensor data into a sequence of velocity vectors, where the
remaining task is to map a velocity sequence to a location.
The high uncertainty in this remaining task is the challenge
of inertial localization. For instance, a stationary motion
can be anywhere, and a short forward motion can be at
any corridor. To overcome the uncertainty, our approach
employs a Transformer-based neural architecture [27]
(capable of encoding complex long sequential data) with
a Temporal Convolutional Network (further expanding
the temporal capacity by compressing the input sequence
length) and an auto-regressive decoder (handling arbitrarily
long sequential data).

The contributions of the paper are 3-fold: 1) a novel
inertial localization problem, 2) a new inertial localization
benchmark, and 3) an effective neural inertial localization
algorithm. We will share our code, models and data.

2. Related Work

2.1. Indoor localization

Outdoor navigation predominately uses satellite GPS.
Indoor localization often relies on multiple data sources
such as images, WiFi, magnet, or IMU. We review indoor
localization techniques based on the input modalities.

Image based localization estimates a camera’s 6DoF
pose from a query image. A classical approach is to
detect feature pixels, establish 2D-to-3D or 2D-to-2D
correspondences, and solve a Perspective-n-Point (PnP)
problem [23]. The surge of deep learning allows us
to learn these steps by an end-to-end network [30].
Another family of neural architectures directly regress
pose parameters [13]. InLoc [24], a system for image-
based indoor localization, reports localization error below
1 meter for 69.9% of queries. While being precise, the
image modality suffers from a few major drawbacks for
serving mobile applications: a camera needs a direct line of
sight, consumes significant amount of battery, and reveals
information about bystanders.

Wireless localization based on WiFi or Bluetooth is the
current main-stream modality for indoor localization [3,21,
29]. Wireless receivers work anytime anywhere and WiFi
infrastructure is ubiquitous thanks to the ever-growing IoT
market demands. The wireless modality is not as precise as
the image-based approach and reports a minimum 10 meter
error radius [9]. This paper studies inertial localization as
an effective complementary modality.

Activity and magnetic-fields are other modalities for
indoor localization. Activity recognition based on IMU
sensor data provides cues on the locations through

a predetermined mapping between activity types and
locations [12, 31]. Location specific magnetic-field
distortions can also be used to build a localization system
through a site survey [1, 18, 26].

IMU and floorplan fusion allows classical filtering
methods (e.g., particle filter) to perform localization [25]
by using inertial navigation to propagate particles and
the floorplan to re-weight particles. This approach is
sensitive to cumulative sensor errors in inertial navigation.
Correlation between a short motion history (five seconds)
and floorplan can provide additional prior to weigh
particles [16] but requires start location and orientation to
initialize the system. We employ a novel Transformer-based
neural architecture that regresses the location from long
motion history even under severe bending. Our approach
does not require a floorplan, which often misses transient
objects (e.g., chairs/desks) and needs occasional updates,
thus provide a compelling alternative.

2.2. Inertial navigation

Inertial navigation estimates relative motions from
IMU sensor data, that is, linear accelerations from an
accelerometer and angular velocities from a gyroscope.
Deep learning has made significant progress in recent
years, producing accurate 3DoF [10] and 6DoF [14, 22]
trajectories by learning repetitive human body motions
with Convolutional Neural Network (CNN) [8] or LSTM
[11]. The main source of error is the bias in consumer-
grade gyroscopes, accumulating into significant orientation
errors, which becomes as large as 20 degrees with 5
minutes of motions even after the calibration. Our
inertial localization algorithm first uses inertial navigation
to estimate a sequence of velocity vectors from IMU data.

3. Inertial Localization Problem
Inertial localization is the task of estimating the location

of a subject in an environment, solely from a history of
IMU sensor data. There is a training phase and a testing
phase i.e. without a use of a floorplan or external location
information. During testing, an input is a sequence of
acceleration (accelerometer), angular velocity (gyroscope),
and optionally magnetic field (compass) measurements,
each of which has 3 DoFs. An output is position estimations
for a given set of timestamps, when ground-truth positions
are available. During training, we have a set of input IMU
sensor data and output positions.

Metrics: The localization accuracy is measured by 1) the
ratio (%) of correct position estimations within a distance
threshold (1, 2, 4, or 6 meters) [24]; and 2) the ratio (%) of
correct velocity directions within an angular threshold (20
or 40 degrees). The position ratio is the main metric, while
the direction ratio measures the temporal consistency.
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Building
Environment Full Dataset Test set

Dimensions resolution #T (#S) duration length By sequence By length
[m2] [pixels/m] [h] [km] #T (avg. [min]) #T (100m)

University A 62.8× 84.4 2.5 151 (52) 25.57 65.35 25 (12.07) 75
University B 57.6×147.2 2.5 91 ( 3) 14.64 56.93 20 (12.28) 60
Office C 38.4× 11.2 10.0 81 ( 1) 12.91 21.36 12 (15.48) 36

Table 1. Inertial localization dataset consists of two university buildings and one office space. The table shows the number of trajectories
(#T), the number of subjects in data collection (#S) and the length statistics for full dataset and test sets.

Re-localization task extension: We propose an inertial
re-localization task, which is different from inertial
localization in that the position R2 (and optionally the
motion direction SE(2)) is known apriori. The task
represents a scenario where one uses WiFi to obtain a global
position once in a few minutes, while re-localizing oneself
in-between with an IMU sensor for energy efficiency.

4. Inertial Localization Dataset

We present the first inertial localization dataset,
containing 53 hours of motion/trajectory data from two
university buildings and one office space. Table 1
summarizes the dataset statistics, while Fig. 2 visualizes all
the ground-truth trajectories overlaid on a floorplan. Each
scene spans a flat floor and the position is given as a 2D
coordinate without the vertical displacement. If available,
a floorplan image is provided for a scene for qualitative
visualization, which depicts architectural structures (e.g.,
walls, doors, and windows) but does not contain transient
objects such as chairs, tables, and couches.

Data collection: We collect IMU sensor data and ground-
truth locations with smartphones. In the future, AR
devices (e.g., Aria glasses by Meta, Spectacles by Snap)
will allow collection of ego-centric datatsets with tightly
coupled IMU and camera data. We used two devices
in this work; 1) a handheld 3D tracking phone (Google
Tango, AsusZenfone AR) with built-in Visual Inertial
SLAM capability, producing ground-truth relative motions,
where the Z axis is aligned with the gravity; and 2) a
standard smartphone, recording IMU sensor data under
natural phone handling (e.g. in a pocket, hand or used for
calling etc.). We utilize Tango Area Description Files [6]
to align ground-truth trajectories to a common coordinate
frame then manually align with the floorplan. University A
contains data from RoNIN dataset [10] aligned manually
to a floorplan. Both IMU sensor data and ground-truth
positions are recorded at 200Hz.

Test sequences: We randomly select one sixth of the
trajectories as the testing data, whose average duration is
13.3 minutes. We also form a set of short fixed-length
sub-sequences for testing by randomly cropping three sub-
sequences (100 meters) from each testing sequence.

Figure 2. Inertial localization dataset contains IMU measurements
and ground-truth locations based on Visual Inertial SLAM in
three buildings. The ground-truth trajectories are shown here
with random colors, overlaid on the respective floorplans. (Image
dimensions are in meters).

NILoc dataset is de-identified to mask the identity of
subjects and does not contain any image or video data.

5. NILoc: Neural Inertial Localization

Instead of regressing locations from IMU measurements,
our system NILoc capitalizes on neural inertial navigation
technology [10] that turns a sequence of IMU sensor data to
a sequence of velocity vectors, where our core task will be
to turn velocity vectors into location estimations. 1

1RoNIN ResNet model estimates velocities at the frequency of IMU
data. To handle periods of no to little motions (e.g., sitting down), we
resample velocities based on the distance of travel. Concretely, we add-up
velocity vectors until its length is more than the distance equivalent to one
pixel in the location map, then sample one aggregated vector.
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Figure 3. Neural inertial localization system diagram. We use two branch transformer architecture to estimate location likelihood from
velocity input. The paths only used in training are shown as dashed lines.

High uncertainty is the challenge in the task. NILoc
employs a neural architecture with two Transformer-based
network branches [27], capable of using long history of
complex motion data to reduce uncertainty. The “velocity
branch” encodes a sequence of velocity vectors, where
a Temporal Convolutional Network compresses temporal
dimension to further augment the temporal receptive
field. The “auto-regressive location branch” encodes
a sequence of location likelihoods, capable of auto-
regressively producing location estimates on a long horizon.
The network is trained per scene given training data.

The section explains the two branches (Secs. 5.1
and 5.2), the training scheme (Sec. 5.3), and the data
augmentation process (Sec. 5.4), which proves effective in
the absence of sufficient training data.

5.1. Velocity branch

The branch estimates a location sequence using a
history of velocity data. It consists of three network
modules: TCN-based velocity compressor, Transformer
velocity encoder, and Translation-aware location decoder.
TCN-based velocity compressor: Transformer is powerful
but memory intensive. We use a temporal convolutional
network (TCN) [2] to compress a velocity sequence length
by a factor of 10, allowing us to process longer motion
history. In particular, we use a 2-layer TCN with a receptive
field of 10 to compress a sequence of 2D velocity vectors
{vt} of length T into a sequence of d-dimensional2 feature
vectors {v′t} of length T/10:

2Dimension d is set to 288, 470, and 448 for buildings A, B, and C,
respectively to be proportional to their floor-areas and resolution.

{v1, v2, · · · · · · vT } −→ {v′1, v′2, · · · v′T/10}.

Transformer encoder: Transformer architecture [27] takes
compressed velocity vectors {v′t} as tokens and initializes
each feature vector ft by concatenating the d/2 dimensional
trigonometric position encoding of the frame index:

ft = [v′t, {cos (wit)}, {sin (wit)}]

wi = exp
−log(10000) ∗ i

d′
(i = 1, 2, · · · d/4)

ft is of dimension d′(= 3
2d). An output embedding et per

token is also a d′ dimensional vector encoding the location
likelihood. The encoder has two blocks of self-attention
networks. Each block has 2 standard transformer encoder
layers with 8-way multi-head attention. Feature vectors
after the first block are also passed to the other branch (i.e.,
auto-regressive location branch).
Translation-aware location decoder: The last module
operates on each individual embedding et. First, et is
rearranged into an image feature volume (3D tensor 3) and
up-sampled via a 3-layer fully convolutional decoder with
transpose convolutions. The last layer is a “translation-
aware” 1× 1 convolution, whose parameters are not shared
across pixels. To account for uncertainty, the output
location is represented as a 2D likelihood map Lt of size
W×H: L(x, y). 4 This translation-aware layer allows the

3The dimensions (width,height,channels) are 24x18x1, 16x44x1, and
14x48x1 for the three scenes A, B, and C, respectively

4The map-extent is determined for each scene by the axis-aligned
bounding box of ground-truth locations. We choose the resolution (pixels
per meter) so that total number of pixels is around 3 million (See Table 1).
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network to easily learn translation-dependent information
such as “people never come to this location” or “one always
pass through this doorway”.

5.2. Auto-regressive location branch

The location branch combines the velocity features from
the velocity branch and prior location likelihoods, which
comes from its past inference or an external position
information such as WiFi.

The location branch has the same architecture as the
velocity branch with two differences. First, instead of
a TCN-based velocity compressor, we use a ConvNet to
convert each W×H likelihood map into a d′-dimensional
vector. We use the same trigonometric position encoding
(but with dimension d′ instead of d/2 to match the
dimension), which is added to the vector. Second, we
inject velocity features from the velocity branch via cross-
attention after every self-attention layer (i.e., before every
add-norm layer). The rest of the architecture is the same.
Note that both branches predict locations, and have different
trade-offs (See Sect. 6.4 for ablation study and discussion).

At inference time, we first evaluate the velocity branch
in a sliding window fashion to compute velocity feature
vectors. The location branch takes a history of location
likelihoods up to 20 frames: {Lt, Lt−1, · · ·Lt−19}. L0

encodes external initial location information (e.g., from
WiFi) or a uniform distribution if not available. At the
output, a node initialized with a likelihood at frame t′ will
have a likelihood estimate at frame t′ + 1. Therefore, we
infer a likelihood up to 20 times for one frame, where we
compute the weighted average as the final likelihood by
decreasing the weights from 1.0 down to 0.05 from the first
inference result to the last.

5.3. Training scheme

We use a cross entropy loss at both branches. The
ground-truth likelihood is a zero-intensity image, except for
one pixel at the ground-truth location whose value is 1.0.
We employ parallel scheduled sampling [17] to train the
auto-regressive location branch without unrolling recurrent
inferences. The process has two steps. First, we pass GT
likelihoods to all the input tokens and make predictions.
Second, we keep the GT likelihoods in the input tokens
with probability rteacher (known as a teacher-forcing ratio),
while replacing the remaining nodes with the predicted
likelihoods. The back-propagation is conducted only in the
second step. rteacher is set to 1.0 in the first 50 epochs, and
reduced by 0.01 after every 5 epochs.

5.4. Synthetic data generation

The Transformer architecture requires a large amount of
training data. 5 We crop data over different time windows

5The COVID pandemic further makes the data collection challenging.

to augment training samples. However, in the absence of
sufficient training data, we use the following three steps to
generate more training samples synthetically: 1) Compute
a likelihood map of training trajectories (i.e., where they
pass through); 2) Randomly pick a pair of locations from
high likelihood areas; and 3) Solve an optimization problem
to produce a trajectory that is smooth and pass through the
area of high likelihood. Given a synthesized trajectory, we
sample velocity vectors based on the distance of travel as
in our preprocessing step, which are directly passed to the
TCN-based velocity compressor during training. All the
steps are standard heuristics and we refer the details to the
supplementary.

6. Experimental Results

6.1. Baseline methods

To our knowledge, no prior work addresses indoor
localization from IMU data alone. Therefore, we compare
with the following three techniques that fuse IMU and
floorplan. 6 Note that our method is the only inertial
localization that uses IMU data alone without the floorplan
images. We briefly explain the three techniques.
• Particle Filter (PF) maintains a set of particles, each of
which stores the location, heading direction, and bias/scale
error correction terms. Starting from a Gaussian distribution
around the given initial location or a uniform distribution
otherwise, the system updates the states of the particles
based on the inertial navigation result and the floorplan
information (i.e., down-weight particles if outside the
walkable region). We take the particle closest to the
weighted median x/y coordinate as the location prediction.
• Learned Prior (LP) [16] is also a particle filter based
approach while using deep networks to help update particle
weights. A location likelihood, computed by the dot
product between floorplan features extracted by UNet [20]
and motion features extracted by LSTM [11], is used to
weight the particles. We use our local implementation as
the code is not available. Note that this method requires the
initial location and the orientation and is evaluated only for
the SE(2) re-localization task.
• Conditional Random Field (CRF) is based on a state-
of-the-art map-matching system [28], which computes a
reach-ability graph from a floorplan, uses inertial navigation
results to transition between graph nodes, and uses Viterbi
algorithm to backtrack and determine location. We
modified the system in a few ways to better adapt to our

6Movements are governed by architectural structures (e.g., walls and
rooms) in University A, where a building blueprint is used as a floorplan.
For University B and Office C, transient objects such as chairs and desks
play a greater role, but do not show up in blueprints. Therefore, we take the
likelihood maps from the synthetic data generation process (See Sect. 5.4)
and binary-threshold them as floorplans.
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Buil-
ding Meth.

Fixed short sequence (100 m) Full test sequence run time
cpu/gpu
(sec) ↓

SR(%) at distance ↑ SR(%) at A ↑ SR(%) at distance ↑ SR(%) at A ↑
1m 2m 4m 6m 20◦ 40◦ 1m 2m 4m 6m 20◦ 40◦

A
PF 1.8 6.7 11.9 15.4 21.3 32.2 6.5 16.8 22.8 26.2 31.5 42.5 0.6 / 7.7
CRF 15.0 32.5 46.3 53.6 61.7 70.5 14.2 31.9 47.0 54.7 53.0 61.0 9.5 / 3.7
Ours 16.7 28.9 38.8 44.6 46.8 54.1 23.4 44.8 62.6 69.5 65.6 74.8 0.3 / 0.1

B
PF 1.0 3.8 7.0 9.0 17.0 27.7 6.4 16.8 28.6 34.0 38.1 51.6 1.8 / 1.4
CRF 12.4 33.6 48.7 53.7 62.0 65.7 18.4 49.8 68.6 71.5 71.8 77.2 18.8 / 5.4
Ours 47.6 69.3 74.5 77.3 67.9 75.1 49.4 73.1 80.1 82.0 72.7 80.7 1.2 / 0.2

C
PF 19.7 30.9 46.0 58.6 21.8 38.2 18.3 28.9 43.8 55.2 21.0 38.0 4.3 / 4.2
CRF 26.3 36.2 43.7 52.1 31.3 46.3 44.3 60.5 72.1 80.5 44.4 64.9 38.1 / 16.8
Ours 69.9 78.1 83.4 87.2 51.8 67.4 72.9 80.5 85.2 89.1 53.4 69.7 2.4 / 0.7

(a) Inertial Localization

Task Meth.
Fixed short sequence (100 m) Full test sequence run time

cpu/gpu
(sec) ↓

SR(%) at distance ↑ SR(%) at A ↑ SR(%) at distance ↑ SR(%) at A ↑
1m 2m 4m 6m 20◦ 40◦ 1m 2m 4m 6m 20◦ 40◦

Reloc
R2

PF 21.4 40.5 60.3 69.9 48.9 64.1 19.7 39.6 57.0 63.8 48.7 63.0 4.7 / 6.7
CRF 33.2 59.7 78.9 87.7 71.7 83.8 31.7 60.3 79.4 86.7 71.7 84.3 21.3 / 8.8
Ours 50.9 69.3 77.7 82.0 65.0 74.9 50.8 69.3 78.7 82.6 65.5 76.2 1.3 / 0.3

Reloc
SE(2)

PF 22.9 41.5 62.8 73.7 51.5 68.2 15.1 30.8 47.0 54.9 41.8 56.0 2.1 / 6.7
LP 9.7 27.1 55.3 70.2 49.2 69.8 4.0 13.2 29.5 40.5 36.9 54.3 7 .0 / 2.7
CRF 36.5 64.4 82.7 90.6 74.2 86.6 31.9 61.0 79.8 86.9 72.1 85.1 21.4 / 8.8
Ours 52.8 71.1 79.4 83.4 66.7 76.6 51.4 70.1 79.6 83.8 66.5 77.4 1.3 / 0.3

(b) Inertial Re-Localization: average metrics across 3 buildings. (see supplementary for results per building)

Table 2. NILoc achieves competitive accuracy at significantly lower run time. We compare NILoc (ours) with a three methods that require
a floorplan as input: Particle Filter (PF), Learned Prior (LP) and Conditional Random Fields (CRF). We report success rate (SR) at a given
error distance threshold and angle (A) threshold. Run time is the average CPU or GPU time per 1 min of motion sequence. The best and
second best results per column are shown in orange and cyan, respectively.

Localization Reloc R2 Reloc SE(2) Model
param.sSR(%) at distance → 2m 4m 2m 4m 2m 4m

w/o NILoc (RoNIN [10] only) - - - - 10.5 25.7 -
w/o loss on the velocity branch 14.8 22.9 16.1 24.3 16.1 24.3 7.5M
w/o velocity compressor 3.6 7.6 6.7 12.3 7.2 12.0 10.2M
w/o TA-location decoder (FC) 5.3 10.4 6.8 13.3 8.6 14.7 211.0M
w/o TA-location decoder (CNN) 39.5 58.3 48.8 68.6 51.1 71.1 10.2M
Ours (velocity branch output) 52.5 72.1 - - - - 10.5M
Ours 44.8 62.6 54.1 70.4 56.0 73.0 10.5M

Table 3. Ablation study. The first row is a inertial navigation algorithm. Next four rows are results after dropping one technical component
from our full system. For the 4rd and the 5th rows, we dropped the translation-aware location decoder and replace by either a fully
connected layer (FC) or a fully convolutional decoder (CNN). The last two rows compare predictions by the velocity branch and the
location branch, where the latter is the default prediction reported as our result in the other places. The success rate (%) at two distance
thresholds (m) on building A are the metrics.

task: 1) use the RoNIN result as the velocity input; 2)
increasing the search neighborhood by a factor of 1.5 to
handle scale inaccuracies in inertial navigation; and 3) do
periodic back-propagation within a fixed window to be
comparable with other near-real time baselines.

6.2. Implementation details

We have implemented the proposed system in Pytorch-
Lightning [4]. For training, we have used AdamW
optimizer [15]. The learning rate has been initialized to
0.0001 with 30 epoch warm-up [7], and reduced by a
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Figure 4. Qualitative visualizations: For one trajectory from building A, we show results by the top three methods (columns) for one
localization and two re-localization tasks (rows). Particle filter and CRF require a floorplan in addition to IMU input. The color gradient
(blue → red → green) encodes time. We mark the physical dimension of each sequence and report success rate (%) at distance thresholds
2,4, and 6 meters. See the supplementary for more visualizations.

Figure 5. The figure plots the success rate metric for the three tasks, while varying the error distance threshold. All baseline except ours
require a floorplan as input in addition to IMU. The average score over the three buildings are reported.

factor of 0.75 after every 10 epochs when the validation
loss does not decrease. We use random one sixth of
the training trajectories as a hold-out validation. In the
main experiments we combine real and synthetic data for
training. Specifically, we train on the combined set until
convergence (700 epochs) and fine-tune only with real
dataset (400 epochs). The total training time is approx. 3
days on GeForce RTX 2080 Ti and 1 day on NVIDIA Tesla
V100 GPUs. For RoNIN software, we have downloaded
the trained model from the official website [10]. Note that
unless otherwise noted, our results indicate the predictions

by the auto-regressive location branch. 7

For the baseline methods, we use Pytorch [4] and CuPy
[19] to implement both on CPU and GPU. For being fair,
we use the same floorplan resolution and the same distance-
based sampling to extract velocities. A grid search is used
to find hyper parameters for all baselines.

7For the localization task, we initialize with uniform distribution of
particles or location likelihood. For the re-localization task with R2

(resp. SE(2)), we initialize particles from a Gaussian distribution
around ground truth location and uniform distribution for heading (resp.
Gaussian distribution around location and heading), or provide ground-
truth likelihood map of the first frame (resp. the first two input frames).
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6.3. Evaluation

Table 2a is our main result, quantitative evaluations
on the localization task for the three buildings separately.
NILoc achieves the best results in most entries. The
only exception is against CRF for building A for fixed
short sequences. Note that CRF uses floorplan information
while our input is only IMU. CRF is computationally
intensive, 30 times slower than our method, involving
even a dynamic programming to effectively search for all
possible alignments with a floorplan exhaustively.

Table 2b shows the results on the re-localization task,
averaged over the three buildings. All methods consistently
improves performance with more initialization information.
While NILoc achieves the best results for lower distance
thresholds (i.e., often extremely accurate), CRF performs
better overall at the sacrifice of its intensive computational
expenses and the requirement on the floorplan image.

Figure 5 observes the same results, plotting the distance-
based success rate over a range of thresholds (averaged
over the three buildings). Particle filter exhibits poor
performance, where the major limitation comes from
its inability to handle cumulative drifts in the inertial
navigation trajectories. Learned prior combines particle
filter and neural networks that learn to associate motions
with locations. However, they only encode 5 seconds of
motion data with LSTM and ConvNet, not long enough
to break the ambiguity. NILoc takes roughly a minute of
motion data with powerful Transformer based architecture,
overcoming the uncertainties. Another observation is that
all the baseline methods explicitly integrate velocities to
update the location information. NILoc does not bake-in
this integration formula and relies completely on learning
to relate velocities to locations, which could potentially
make our approach more robust against cumulative drifts
by inertial navigation.

Figure 4 provides qualitative visualizations of one
trajectory from building A. Particle filter and CRF estimate
locations at roughly 200Hz, while NILoc is roughly 20Hz.
We interpolate NILoc locations in plotting the trajectories,
where streaks of points in the figure are interpolation
artifacts at discontinuous predictions. As shown by the
inertial navigation trajectory at the bottom right, this is not
an easy task where the trajectory suffers from significant
cumulative drifts. Nonetheless, our system is capable of
inferring correct locations for most of the frames.

6.4. Ablation study

Table 3 is an ablation study, assessing the contributions
of various technical components in our system. The
first row compares against a state-of-art inertial navigation
method which ours and all baselines outperform (also see
Fig. 4). The next four rows show the distance-based success
rate while dropping four components one by one from our

main system. The table shows that it is important to train the
network with losses on both branches. The second row is
particularly interesting. Both the location and the (first half
of the) velocity branches are trained with the loss only at
the location branch, whose performance drops significantly.
The third row indicates the challenge of high uncertainty in
the inertial navigation task. The success rates even drop to
a single digit, when the input motion history becomes 10
times less without the TCN based compressor. The last two
rows compare the predictions by the velocity branch and
the location branch of our full system. The velocity branch
does not take previous location likelihoods and cannot solve
re-localization tasks. However, for the localization tasks, it
outperforms the location branch with a clear margin, while
being twice as computationally efficient.

7. Limitations and Future Work

There are two major failure modes in our approach.
First, in an open space (e.g., an atrium), human motions
tend not to follow patterns, where any location could be
an answer. Second, in the presence of symmetries or
repetitions, multiple locations would be equally likely. Our
method is designed not to use any future frame information
after the first input window so that it can be deployed as
a real-time system, where predictions may jump abruptly
under high uncertainties. Our future work is to exploit body
motion signals that are captured in IMU but are currently
discarded by inertial navigation and distance-based velocity
sampling to overcome the uncertainty. For instance, IMU
signals differ when one opens a door, washes hands, or
orders a coffee, which provides effective cues in localizing
the position. Please refer to the supplementary for more
qualitative visualizations (i.e., location trajectories as static
images and videos for more samples in more buildings)
and quantitative ablation studies (e.g., w/o synthetic data,
w/o scheduled sampling, or comparison against TCN as
a backbone instead of Transformer). We share our code,
models and data to promote further research in the space of
inertial localization.

Societal impact: Inertial localization could be a critical
component for indoor GPS. A mobile app might become
capable of recording location history 24/7 anywhere in
indoor spaces, which tend to be more private than outdoors
(e.g., inside a house or a rest room). A smartphone
developer should understand the impact of giving IMU
sensor data and define appropriate access controls for the
apps. On the positive side, the inertial location could
happen on-device, which would allow a higher degree of
privacy control compared to other data modalities.
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