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Figure 1. Our ORViT model incorporates object information into video transformer layers. The figure shows the standard (uniformly
spaced) transformer patch-tokens in blue, and object-regions corresponding to detections in orange. In ORViT any temporal patch-token
(e.g., the patch in black at time T ) attends to all patch tokens (blue) and region tokens (orange). This allows the new patch representation
to be informed by the objects. Our method shows strong performance improvement on multiple video understanding tasks and datasets,
demonstrating the value of a model that incorporates object representations into a transformer architecture.

Abstract
Recently, video transformers have shown great success

in video understanding, exceeding CNN performance; yet
existing video transformer models do not explicitly model
objects, although objects can be essential for recognizing
actions. In this work, we present Object-Region Video
Transformers (ORViT), an object-centric approach that ex-
tends video transformer layers with a block that directly
incorporates object representations. The key idea is to
fuse object-centric representations starting from early lay-
ers and propagate them into the transformer-layers, thus af-
fecting the spatio-temporal representations throughout the
network. Our ORViT block consists of two object-level
streams: appearance and dynamics. In the appearance
stream, an “Object-Region Attention” module applies self-
attention over the patches and object regions. In this way,
visual object regions interact with uniform patch tokens
and enrich them with contextualized object information.
We further model object dynamics via a separate “Object-
Dynamics Module”, which captures trajectory interactions,
and show how to integrate the two streams. We evalu-
ate our model on four tasks and five datasets: composi-
tional and few-shot action recognition on SomethingElse,
spatio-temporal action detection on AVA, and standard ac-
tion recognition on Something-Something V2, Diving48 and

Epic-Kitchen100. We show strong performance improve-
ment across all tasks and datasets considered, demonstrat-
ing the value of a model that incorporates object repre-
sentations into a transformer architecture. For code and
pretrained models, visit the project page at https://
roeiherz.github.io/ORViT/

1. Introduction

Consider the simple action of “Picking up a coffee cup”
in Figure 1. Intuitively, a human recognizing this action
would identify the hand, the coffee cup and the coaster,
and perceive the upward movement of the cup. This high-
lights three important cues needed for recognizing actions:
what/where are the objects? how do they interact? and how
do they move? The above perception process allows easy
generalization to different compositions of actions. For ex-
ample, the process of “picking up a knife” shares some of
the components with “picking up a coffee cup”, namely,
the way the object and hand move together. More broadly,
representing image semantics using objects facilitates com-
positional understanding, because many perceptual compo-
nents remain similar when one object is swapped for an-
other. Thus, a model that captures this compositional aspect
potentially requires less examples to train.

It seems intuitively clear that machine vision models
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should also benefit from such object-focused representa-
tions, and indeed this has been explored in the past [29, 69]
and more recently by [3,63,83], who utilize bounding boxes
for various video understanding tasks. However, the central
question of what is the best way to process objects informa-
tion still remains. Most object-centric methods to video un-
derstanding take a post-processing approach. Namely, they
compute object descriptors using a backbone and then re-
estimate those based on other objects via message passing
or graph networks without propagating the object informa-
tion into the backbone. Unlike these approaches, we argue
that objects should influence the spatio-temporal represen-
tations of the scene throughout the network, starting from
the early layers (i.e., closer to the input). We claim that
self-attention in video transformers is a natural architecture
to achieve this result by enabling the attention to incorporate
objects as well as salient image regions.

Video transformers have recently been introduced as
powerful video understanding models [2, 7, 30, 65], moti-
vated by the success of transformers in language [17] and
vision [10,19]. In these models, each video frame is divided
into patches, and a self-attention architecture obtains a con-
textualized representation for the patches. However, this
approach has no explicit representation of objects. Our key
observation is that self-attention can be applied jointly to
object representations and spatio-temporal representations,
thus offering an elegant and straightforward mechanism to
enhance the spatio-temporal representations by the objects.

Motivated by the above, our key goal in this paper
is to explicitly fuse object-centric representations into the
spatio-temporal representations of video-transformer archi-
tectures [2], and do so throughout the model layers, start-
ing from the earlier layers. We propose a general approach
for achieving this by adapting the self-attention block [19]
to incorporate object information. The challenge in build-
ing such an architecture is that it should have components
for modeling the appearance of objects as they move, the
interaction between objects, and the dynamics of the ob-
jects (irrespective of their visual appearance). An additional
desideratum is that video content outside the objects should
not be discarded, as it contains important contextual infor-
mation. In what follows, we show that a self-attention ar-
chitecture can be extended to address these aspects. Our
key idea is that object regions can be introduced into trans-
formers in a similar way to that of the regular patches, and
dynamics can also be integrated into this framework in a
natural way. We refer to our model as an “Object-Region
Video Transformer” (or ORViT).

We introduce a new ORViT block, which takes as input
bounding boxes and patch tokens (also referred to as spatio-
temporal representations) and outputs refined patch tokens
based on object information. Within the block, the infor-
mation is processed by two separate object-level streams:

an “Object-Region Attention” stream that models appear-
ance and an “Object-Dynamics Module” stream that models
trajectories.1 The appearance stream first extracts descrip-
tors for each object based on the object coordinates and the
patch tokens. Next, we append the object descriptors to the
patch tokens, and self-attention is applied to all these to-
kens jointly, thus incorporating object information into the
patch tokens (see Figure 1). The trajectory stream only uses
object coordinates to model the geometry of motion and
performs self-attention over those. Finally, we re-integrate
both streams into a set of refined patch tokens, which have
the same dimensionality as the input to our ORViT block.
This means that the ORViT block can be called repeatedly.
See Figure 2 and Figure 4 for visualizations.

We evaluate ORViT on several challenging video-
understanding tasks: compositional and few-shot action
recognition on SomethingElse [63], where bounding boxes
are given as part of the input; spatio-temporal action de-
tection on AVA [28], where the boxes are obtained via
an off-the-shelf detector that was provided by previous
methods; and in a standard action recognition task on
Something-Something V2 [26], Diving48 [54] and Epic-
Kitchen100 [16], where we use class-agnostic boxes from
an off-the-shelf detector. Through extensive empirical
study, we show that integrating the ORViT block into the
video transformer architecture leads to improved results on
all tasks. These results confirm our hypothesis that incorpo-
rating object representations starting from early layers and
propagating them into the spatio-temporal representations
throughout the network, leads to better performance.

2. Related Work

Object-centric models. Recently object-centric models
have been successfully applied in many computer vision ap-
plications: visual relational reasoning [5, 6, 35, 40, 49, 66,
89, 95], representation learning [91], video relation detec-
tion [55, 76], vision and language [13, 52, 53, 77], human-
object interactions [23, 45, 87], and even image genera-
tion [33, 42]. The advances and the success of object-
centric models in these domains inspired various video-
based tasks, such as action localization [64], video syn-
thesis [4], and action recognition [99]. The latter was the
focus of varied recent works that designed different ob-
ject interactions approaches for convolutional models. A
line of works [25, 70, 75] focused on capturing spatial ob-
ject interactions while ignoring the temporal interactions.
STRG [83] and ORN [5] used spatio-temporal interactions
with two consecutive frame interactions, while STAG [34]
considered long-range temporal interaction. Last, Uni-
fied [3] tried to generalize all these models and propose long

1Our focus is different from papers on two-stream models in vision,
that are not object-centric (see Sec. 2).
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spatio-temporal object interactions. While all these works
focused solely on interactions of visual appearance infor-
mation, recently STIN [63] introduced an object-centric
model based on object trajectories by modeling bounding
box movement. Our ORViT approach directly combines ob-
ject appearance, object trajectories, and the overall video,
by mapping all computations to spatio-temporal patch to-
kens. This is particularly natural to do in a transformer
framework, as we show here, and results in state-of-the-art
performance.
Transformers in action recognition. Ranging from the
early works that employ optical flow based features [20],
to recent transformer based approaches [30], a wide variety
of approaches have been proposed for action recognition. In
broad brushstrokes, the proposed approaches have evolved
from using temporal pooling for extracting features [44] to
using recurrent networks [18, 94], through to 3D spatio-
temporal kernels [11, 41, 56, 78, 80–82], and two-stream
networks that capture complementary signals (e.g., motion
and spatial cues [21, 22, 73]). Unlike these approaches,
our work uses two separate object-level streams to lever-
age object-centric information. In parallel to developments
in video understanding, Vision Transformers [19, 79] pro-
pose a new approach to image recognition by discarding the
convolutional inductive bias entirely and instead employing
self-attention operations. Specialized video models such
as TimeSformer [7], ViViT [2], Mformer (MF) [65] and
MViT [30] form the latest epoch in action recognition mod-
els. By generalizing the vision transformers to the tempo-
ral domain through the use of spatio-temporal attention, the
obtained video transformers are very competitive with their
convolutional counterparts both in terms of performance as
well scaling behaviour to large data. However, none of the
video transformer models leverage object cues, a persistent
shortcoming that we aim to address in ORViT.

We also note that [85] adopts a similar object-centric ap-
proach to video understanding. However, our work differs
conceptually since [85] models only the object parts, which
is similar to the STRG baselines we consider in the pa-
per. On the other hand, our work introduces objects into
transformer layers while keeping the entire spatio-temporal
representation. Also, [85] pretrains the transformer in a
self-supervised fashion on a large dataset (MovieClips), and
therefore its empirical results cannot be directly compared
to models that are not pretrained in this manner.
Spatio-temporal action detection. The task of action de-
tection requires temporally localizing the action start and
end times. A wide variety of methods have been pro-
posed for it, such as actions modeling [1, 61, 96], temporal
convolutions [51, 72], boundaries modeling [57, 58], atten-
tion [71, 92], structure utilization [93, 98], detection based
methods [12, 88], end-to-end approaches [9, 15, 24, 39], re-
current neural networks [62, 74, 90], and even using lan-
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Figure 2. An ORViT block. The input patch-tokens X and
boxes B are used as input to the “Object-Region Attention” and
“Object-Dynamics Module” components. Each component out-
puts a THW ×d tensor and the two tensors are summed to obtain
new patch tokens Y .

guage [68, 100]. Recently, the new MViT [30] model
showed promising results on action localization in the AVA
dataset [27]. However, it does not explicitly model objects,
and we show that an ORViT version of MViT indeed im-
proves performance.

3. The ORViT model
We next present the Object-Region Video Transformer

(ORViT) model, which explicitly models object appearance
and trajectories within the transformer architecture. We be-
gin by reviewing the video transformer architecture, which
our model extends upon, in Section 3.1, and present ORViT
in Section 3.2. A high-level overview of ORViT is shown
in Figure 2 and detailed in Figure 4. Briefly, ORViT repeat-
edly refines the patch token representations by using infor-
mation about both the appearance and movement of objects.

3.1. The Video Transformer Architecture

Video transformers [2, 7, 30] extend the Vision Trans-
former model to the temporal domain. Similar to vision
transformers, the input is first “patchified” but with tem-
porally extended 3-D patches instead of 2-D image patches
producing a down-sampled tensor X of size T×H×W×d.
Then, spatio-temporal position embeddings are added for
providing location information. Finally, a classification to-
ken (CLS) is appended to X , resulting in THW +1 tokens
in Rd, to which self-attention are applied repeatedly to pro-
duce the final contextualized CLS feature vector.2

3.2. The ORViT Block

There are two inputs to the ORViT block. The first is the
output of the preceding transformer block, represented as a
set of spatio-temporal tokens X ∈ RTHW×d. The second

2In what follows, we omit the count of the CLS feature for brevity.
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“Moving something and something away from each other”

Figure 3. We visualize the attention allocated to the object tokens
in the ORViT block (red, green, and blue) in each frame of a video
describing “moving two objects away from each other”. It can
be seen that each of the two “remote control” objects affects the
patch-tokens in its region, whereas the hand has a broader map.
For more visualizations, please see Section E in supplementary.

input is a set of bounding boxes for objects across time3,
denoted by B ∈ RTO×4. The output of the ORViT block is
a set of refined tokens Y ∈ RTHW×d contextualized with
object-centric information. Thus, the ORViT block can be
viewed as a token representation refining mechanism using
the object-level information.

As mentioned, we argue that the key cues for recogniz-
ing actions in videos are: the objects in the scene, their in-
teractions, and their movement. To capture these cues, we
design the ORViT block with the following two object-level
streams. The first stream models the appearance of objects,
and their interactions. We refer to it as “Object-Region At-
tention” and denote it by R. The second “Object-Dynamics
Module” stream (denoted by D) models the interactions be-
tween trajectories, independently of their appearance. Im-
portantly, the output of each of the streams is THW token
vectors, which can also be interpreted as refined patch rep-
resentations based on each source of information.

The D stream only models object dynamics, and thus
only uses bounding boxes B as input. We therefore denote
its output by D(B). The stream R models appearance and
thus depends on both the token representation X , and the
bounding boxes B, and produces R(X,B). The final output
of the ORViT block Y is simply formed by the sum of the
two streams and an input residual connection:

Y ′ := R(X,B) +D(B) +X

Y := Y ′ + MLP(LN(X))
(1)

where LN denotes a LayerNorm operation. Next, we elab-
orate on the two components separately.
Object-Region Attention. The goal of this module is to
extract information about each object and use it to refine
the patch tokens. This is done by using the object regions

3O represents the maximum number of objects in the training set. If a
clip has less than O boxes, we pad the remaining embeddings with zeros.

to extract descriptor vectors per region from the input to-
kens, resulting in TO vectors in Rd, which we refer to as
object tokens. These vectors are then concatenated with the
THW patch tokens and serve as the keys and values, while
the queries are only the patch tokens. Finally, the output
of the block is THW patch tokens. Thus, the key idea is
to fuse object-centric information into spatio-temporal rep-
resentations. Namely, inject the TO object region tokens
into THW patch tokens. An overview of our approach is
depicted in Figure 4. We provide further details below.

Given the patch token features X and the boxes B, our
first goal is to obtain vector descriptors in Rd per object and
frame. The natural way to do this is via an RoIAlign [31]
layer, which uses the patch tokens X and box coordinates
B to obtain object region crops. This is followed by max-
pooling and an MLP to obtain the final object representation
in Rd:

O := MLP(MaxPool(RoIAlign(X,B))) (2)

Since this is done per object and per frame, the result is
OT vectors in Rd (i.e., O ∈ RTO×d). Importantly, this
extraction procedure is performed in each instance of an
ORViT block, so that it will produce different object tokens
at each layer. We also add positional embeddings but leave
the details to Section B.1 in supplementary.

At this point, we would like to allow the object tokens to
refine the patch tokens. We concatenate the object tokens O
with the patch tokens X , resulting in C ∈ RT (HW+O)×d.
Next C and X are used to obtain queries, keys and values
as follows:

Q := XWq K := CWk V := CWv

Where Wq , Wk, Wv ∈ Rd×d
(3)

Finally, there are several ways to perform spatio-temporal
self-attention (e.g., joint and divided attention over space
and time, or the recently introduced trajectory atten-
tion [65]). We use trajectory attention because it performs
well empirically. We compare different self-attention ver-
sions in Table 5c in supplementary. Figure 3 also visualizes
the “Object-Region Attention” learned by our model.
Object-Dynamics Module. To model object dynamics, we
introduce a component that only considers the boxes B. We
first encode each box via its center coordinate, height and
width, and apply an MLP to this vector to obtain a vector
in Rd. Applying this to all boxes results in L̃ ∈ RTO×d.
Next we add a learnable object-time position embedding
P̃ ∈ RTO×d, resulting in B̃ := L̃ + P̃ . We refer to
this as the “Coordinate Embedding” step in Figure 4. Its
output can be viewed as TO tokens in Rd, and we apply
self-attention to those as follows: AttentionD(Q̃, K̃, Ṽ ) :=

Softmax
(

Q̃K̃T

√
dk

)
Ṽ , where: Q̃ := B̃Wq̃ , K̃ := B̃Wk̃,

Ṽ := B̃Wṽ and Wq̃,Wk̃,Wṽ ∈ Rd×d. The self-attention
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Figure 4. ORViT Block architecture. The block consists of two object-level streams: an “Object-Region Attention” that models appear-
ance, and an “Object-Dynamics Module” that models trajectories. The two are combined to produce new patch tokens. The “Box Position
Encoder” maps the output of the trajectory stream to the dimensional of patch tokens.

output is in RTO×d. Next, we would like to transform
the objects with a T × d vector into a spatial volume of
THW × d. This is done using the Box Position Encoder
described below.
Box Position Encoder. The returned features of the
ORViT model should have the same dimensions as the in-
put, namely THW × d. Thus, our main challenge is
to project the object embeddings into spatial dimensions,
namely TO×d into THW ×d. The naive approach would
be to ignore the boxes by expanding every object with vec-
tor T × d into THW × d. However, since the object trajec-
tories contain their space-time location, a potentially better
way to do it would consider the object locations. Hence, for
each object with corresponding T ×d tokens, we generate a
spatial feature HW ×d by placing the object representation
vector according to the matching bounding box coordinates
using a bilinear interpolation sampler operation [38, 42].4

Finally, the output in HW ×d is the sum of all objects from
all frames representing the coarse trajectory of the object
in spatial dimensions. The process is shown in Figure 4
(right). We show empirically that this approach is better
than the naive approach described above.

3.3. The ORViT model

We conclude by explaining how to integrate ORViT into
transformer-based video models. The advantage of ORViT
is that it takes as input the standard spatio-temporal tokens
in RTHW×d and outputs a refined version of those with
the same dimensions. Thus, it acts as a standard trans-
former layer in terms of input and output, and one can
take any transformer and simply add ORViT layers to it.
This is important since it highlights that ORViT can eas-

4Features outside of an object region are set to zeros.

ily leverage any video transformer pretrained model, obvi-
ating the need for pretraining ORViT. We experiment with
three video transformer models: TimeSformer [7], Mformer
(MF) [65], and MViT [30]. We show that for these, us-
ing ORViT layers improves performance. The only design
choice is which layers to apply ORViT to, while the train-
ing methodology remains. We found that it is very im-
portant to apply it in early layers while repeated applica-
tions keep propagating the information throughout the net-
work. Since the RoIAlign extracts object representations
from spatio-temporal representations in each ORViT layer,
multiple ORViT layers allow the model to consider different
object representations throughout the network. In our ex-
periments we apply it in layers 2, 7, 11, replacing the origi-
nal layers without adding depth to the baseline model.

4. Experiments
We evaluate our ORVIT block on several video under-

standing benchmarks. Specifically, we consider the follow-
ing tasks: Compositional Action Recognition (Section 4.1),
Spatio-Temporal Action Detection (Section 4.2) and Action
Recognition (Section 4.3).
Datasets. We experiment with the following datasets: (1)
Something-Something v2 (SSv2) [26] is a dataset contain-
ing 174 action categories of common human-object inter-
actions. (2) SomethingElse [63] exploits the compositional
structure of SSv2, where a combination of a verb and a noun
defines an action. We follow the official compositional split
from [63], which assumes the set of noun-verb pairs avail-
able for training is disjoint from the set given at test time.
(3) Atomic Visual Actions (AVA) [28] is a benchmark for
human action detection. We report Mean Average Precision
(mAP) on AVA-V2.2. (4) Epic Kitchens 100 (EK100) [16]
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Model Boxes Compositional Base Few-Shot
Top-1 Top-5 Top-1 Top-5 5-Shot 10-Shot

I3D [11] ✗ 42.8 71.3 73.6 92.2 21.8 26.7
SlowFast [21] ✗ 45.2 73.4 76.1 93.4 22.4 29.2
TimeSformer [7] ✗ 44.2 76.8 79.5 95.6 24.6 33.8
MF [65] ✗ 60.2 85.8 82.8 96.2 28.9 33.8

STRG (\w SF) [83] ✓ 52.3 78.3 75.4 92.7 24.8 29.9
STIN (\w SF) [63] ✓ 54.6 79.4 77.4 95.0 23.0 33.4
MF+STRG+STIN ✓ 62.3 86.0 83.7 96.8 29.8 36.5

ORViT MF(ours) ✓ 69.7 91.0 87.1 97.6 33.3 40.2

Table 1. Compositional and Few-Shot Action Recognition on
the “SomethingElse” dataset.

contains 700 egocentric videos of kitchen activities. This
dataset includes noun and verb classes, and we report verb,
noun, and action accuracy, where the highest-scoring verb
and noun pair constitutes an action label. (5) Diving48 [54]
contains 48 fine-grained categories of diving activities.
Baselines. In the experiments, we compare ORViT to sev-
eral models reported in previous work for the corresponding
datasets. These include non-transformer approaches (e.g.,
I3D [11] and SlowFast [21]) as well as state-of-the-art trans-
formers (TimeSformer, Mformer (MF), and MViT). We also
cite results for two object-centric models: STIN [63] which
uses boxes information, and the Space-Time Region Graph
(STRG) model [83] which extracts I3D features for objects
and runs a graph neural network on those. Both STIN and
STRG use the same input information as ORViT. Finally,
we implement an object-centric transformer baseline com-
bining STRG and STIN: we use the MF final patch tokens as
input to the STRG model, resulting in STRG feature vector,
and concatenate it to the STIN feature vector and the MF’s
CLS token. We refer to this as MF+STRG+STIN.
Implementation Details. ORViT is implemented in Py-
Torch, and the code will be released in our project page.
Our training recipes and code are based on the MViT, MF,
and TimeSformer code published by the authors. For all
tasks and datasets, we use SORT [8, 43] for multi-object
tracking to find correspondence between the objects in dif-
ferent frames (no training data is required), see Section A.1
in supp. We set the number of objects to 4 in SSv2 and
EK100, 6 in AVA, and 10 in Diving48. These numbers were
chosen by taking the max number of objects per video (as
induced by the tracker) across all videos in the training set.

4.1. Compositional & Few-Shot Action Recognition
Several video datasets define an action via a combina-

tion of a verb (action) and noun (object). In such cases,
it is more challenging to recognize combinations that were
not seen during training. This “compositional” setting was
explored in the “SomethingElse” dataset [63], where verb-
noun combinations in the test data do not occur in the train-
ing data. The split contains 174 classes with 54,919/54,876
videos for training/validation. This setting is of particular

Model Boxes Pretrain mAP

SlowFast [21], 4× 16, R50 ✓ K400 21.9
SlowFast [21], 8× 8, R50 ✓ K400 22.7
SlowFast [21], 8× 8, R101 ✓ K400 23.8
MViT-B [30], 16× 4 ✓ K400 25.5
MViT-B [30], 32× 3 ✓ K400 27.3
ORViT MViT-B, 16× 4 (Ours) ✓ K400 26.6 (+1.1)
ORViT MViT-B, 32× 3 (Ours) ✓ K400 28.0 (+0.7)

Table 2. Spatio-temporal Action Detection on AVA-V2.2.

relevance for object-centric models like ORViT, which can
potentially better handle compositional actions. The dataset
contains annotated bounding boxes that are commonly used
as additional input to the model; this allows us to perform
a fair comparison against previous methods [63]. We also
evaluate on the few-shot compositional action recognition
task in [63] (see Section A.6 in supplementary for details).

Table 1 reports the results for these tasks. ORViT outper-
forms all models for both the Compositional and Few-shot
task. Interestingly, the MF baseline is relatively strong com-
pared to the previous methods (STRG and STIN). ORViT
provides large improvement over both the previous meth-
ods and the baseline MF model. We also include results for
a strong combined version (MF+STRG+STIN) of the pre-
vious methods with MF as the backbone.

4.2. Spatio-temporal Action Detection
Next, we evaluate ORViT on the task of spatio-temporal

action detection on the AVA dataset. In the literature, the ac-
tion detection task on AVA is formulated as a two stage pre-
diction procedure. The first step is the detection of bound-
ing boxes, which are obtained through an off-the-shelf pre-
trained person detector. The second step involves predict-
ing the action being performed at each detected bounding
box. The performance is benchmarked on the end result of
these steps and is measured with the Mean Average Preci-
sion (MAP) metric. Typically, for fair comparison, the de-
tected person boxes are kept identical across approaches and
hence, the final performance depends directly on the ability
of the approach to utilize the video and box information.

We follow [21, 84], using their proposed procedure and
the bounding boxes they provided for both ORViT and
evaluation. This enables fair comparison with all previous
methods following this standard procedure.5

This task presents an ideal benchmark for evaluating the
benefit of ORViT since all baselines, as well as our model,
operate on the same boxes. We trained the MViT-B,16×4
and MViT-B,32×3 models on Kinetics-400 [46] and report
these results. Table 2 shows that ORViT-MViT achieves
+1.1, +0.7 MAP improvements over the MViT-B 16x4 and
MViT-B 32x3, thereby showcasing the power of our pro-
posed object-centric representation fusion scheme.

5Boxes are obtained by pre-training FasterRCNN with a ResNeXt101-
FPN [32, 59] on ImageNet and COCO human keypoint images as in [21].
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(a) Something–Something V2

Model Pretrain Top-1 Top-5

SlowFast, R101† K400 63.1 87.6
ViViT-L† IN+K400 65.4 89.8
MViT-B, 64† K600 68.7 91.5

MF† IN+K400 66.5 90.1
MF+STRG IN+K400 66.1 90.0
MF+STIN IN+K400 66.5 89.8
MF+STRG+STIN IN+K400 66.6 90.0
MF-L† IN+K400 68.1 91.2

ORViT MF(Ours) IN+K400 67.9 (+1.4) 90.5 (+0.4)
ORViT MF-L(Ours) IN+K400 69.5 (+1.4) 91.5 (+0.3)

(b) Diving48

Model Pretrain Frames Top-1

SlowFast, R101† K400 16 77.6
TimeSformer† IN 16 74.9
TimeSformer-L† IN 96 81.0
TQN† K400 ALL 81.8

TimeSformer† IN 32 80.0
TimeSformer + STRG IN 32 78.1
TimeSformer + STIN IN 32 81.0
TimeSformer + STRG + STIN IN 32 83.5

ORViT TimeSformer(Ours) IN 32 88.0
(+8.0)

(c) Epic-Kitchens100

Method Pretrain A V N

SlowFast, R50† K400 38.5 65.6 50.0
ViViT-L† IN+K400 44.0 66.4 56.8
MF† IN+K400 43.1 66.7 56.5
MF-L† IN+K400 44.1 67.1 57.6

MF-HR† IN+K400 44.5 67.0 58.5
MF-HR + STRG IN+K400 42.5 65.8 55.4
MF-HR + STIN IN+K400 44.2 67.0 57.9
MF-HR + STRG + STIN IN+K400 44.1 66.9 57.8

ORViT MF-HR(Ours) IN+K400 45.7 68.4 58.7
(+1.2) (+1.4) (+.2)

Table 3. Comparison to state-of-the-art on video action recognition. We report top-1 (%) and top-5 (%) accuracy on SSv2. On Epic-
Kitchens100 (EK100), we report top-1 (%) action (A), verb (V), and noun (N) accuracy. On Diving48 we report top-1 (%). Difference
between baselines and ORViT is denoted by (+X). IN refers to IN-21K. We denote methods that do not use bounding boxes with †. For
additional results and details, including the model size, see section D.2 in supplementary.

4.3. Action Recognition

Table 3 reports results on the standard action recognition
task for several datasets. In contrast to the other tasks pre-
sented in this paper, using bounding boxes in action recog-
nition is not part of the task definition. Thus, the compari-
son should be made carefully while differentiating between
non-box and box-based methods. For box-based methods,
we consider STIN, STRG and their combination on top of
the same backbone as ORViT. Next, we explain how the
boxes are extracted. For more details about datasets and
evaluation see Section A of Supplementary.
Box Input to ORViT. For SSv2, we finetune Faster-
RCNN [67] using the annotated boxes as in [63]. For
EK100 and Diving48 we use Faster-RCNN [67] pre-trained
on MS COCO [60]. We only use the detector bounding
boxes ignoring the object classes. There is no weight shar-
ing between the detector and our model.
SSv2. Table 3a shows that ORViT outperforms recent
methods. The improvement is 1.4% for both MF and MF-
L, while ORViT also outperforms other box-based methods,
such as MF+STIN, MF+STRG and their combination. We
note that these models do not improve over MF, suggesting
that using boxes is non-trivial on large datasets. We also
experimented with using manually annotated boxes (as op-
posed to those obtained by a detector) as an “oracle” upper
bound to see the potential with annotated box inputs. The
results for this oracle evaluation (see Section D.2 in supp)
are improvements of 7.3% and 6.7% over MF and MF-L
respectively. This indicates that future improvements in ob-
ject detectors will benefit object-centric approaches.
Diving48. Here we build ORViT on top of the TimeSformer
model, which was previously reported on this dataset (this
demonstrates the ease of adding ORViT to any trans-
former model). Table 3b shows that our ORViT TimeS-
former model outperforms the state-of-the-art methods, in-
cluding TQN [97] by a significant margin of 6.2%. We
obtain an improvement of 8.0% over the baseline TimeS-

former model to which ORViT blocks were added. This
again indicates the direct improvement due to the ORViT
block. We note that ORViT achieves these results us-
ing only 32 frames, significantly less than the previ-
ous best results, TimeSformer-L, which uses 96 frames.
ORViT outperforms box-based methods, including TimeS-
former+STIN+STRG (4.5%), TimeSformer+STIN (7.0%),
and TimeSformer+STRG (9.9%).
EK100. Table 3c reports results on EK100. Here we add
ORViT blocks to the MF-HR model (which is the best per-
forming model on EK100 in [65]). Results show that our
ORViT MF-HR model improves the accuracy for all three
sub-tasks (with a smaller improvement for nouns). We be-
lieve the improvements on EK100 are less impressive than
on the other datasets for two main reasons: (a) EK100 is an
ego-centric dataset, making the camera movement a signif-
icant challenge for our method to model meaningful object
interactions. (b) EK100 contains short 2-3 seconds videos,
thus temporal reasoning is less effective.

4.4. Ablations

We perform a comprehensive ablation study on the
compositional action recognition task [63] in the “Some-
thingElse” dataset to test the contribution of the different
ORViT components (Table 4). We use the MF as the base-
line architecture for ORViT. For more ablations, see Sec-
tion C in supplementary.
Components of the ORViT model. We consider the fol-
lowing versions of our model. (i) Single ORViT block (no
ODM stream6). We first consider a single application of the
ORViT block, but without the ODM stream. We also com-
pare different video transformer layers at which to apply
our ORViT block (namely, the video transformer layer from
which to extract the RoI descriptors). We refer to models
applied at layer X as ORViT[L:X]. (ii) Single ORViT block
(with ODM stream). Here we augment the single ORViT

6We refer to the “Object-Dynamics Module” as ODM stream.
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(a) Components

Layers Top-1 Top-5 GFLOP Param

MF 60.2 85.8 ×1(370) ×1(109)
ORViT [L:12] 63.9 87.6 ×1.01 ×1.01
ORViT [L:2] 66.7 89.2 ×1.01 ×1.01
ORViT [L:2]+ODM 68.8 90.5 ×1.03 ×1.12
ORViT [L:2,7,11]+ODM 69.7 91.0 ×1.09 ×1.36

(b) Object-centric Baselines

Model Top-1 Top-5

MF 60.2 85.8
MF + RoIAlign 59.6 84.5
MF + Boxes 63.7 86.9
ORViT (Ours) 69.7 91.0

(c) Boxes

Model Top-1 Top-5

Full boxes 60.9 84.5
Null boxes 60.4 84.2
Grid boxes 60.9 84.8
Random boxes 60.7 85.0
Object Regions (Ours) 69.7 91.0

(d) ODM Dimension

Dim. Top-1 Top-5 GFLOP Param

MF 60.2 85.8 ×1 (370) ×1 (109)
0 67.4 89.8 ×1.03 ×1.02
128 68.7 90.3 ×1.03 ×1.03
256 68.9 90.5 ×1.03 ×1.05
768 69.7 91.0 ×1.1 ×1.36

Table 4. Albations. We report top-1 and top-5 action accuracy on the SomethingElse split. We show (a) Contribution of ORViT components
(with parameters number in 106 and GFLOPS in 109). (b) Other Object-centric baselines. (c) ORViT with different boxes input, and (d)
The effect of “Object-Dynamics Module” (ODM) embedding dimension. More ablations are in Section C in supplementary.

block, with the ODM stream. We refer to these models
as ORViT[L:X]+ODM. (iii) Multiple ORViT blocks (with
ODM stream). This is the version of ORViT used in all our
experiments. It applies the ORViT block at multiple layers.
We chose layers 2,7 and 11 of the video transformer model
to apply ORViT block at. All the ablations were performed
on the compositional split in SomethingElse. In the ablation
table, we refer to this as ORViT[L:2,7,11]+ODM. In the rest
of the experiments this is simply referred to as ORViT.

The results are shown in Table 4a. It can be seen that a
single ORViT layer already results in considerable improve-
ment (66.7%), and that it is very important to apply it in the
earlier layers rather than at the end. This is in contrast to the
current practice in object-centric approaches (e.g., STRG
and STIN) that extract RoIs from the final layer. It can also
be seen that the ODM stream improves performance (by
2.1% from 66.7% to 68.8%). Finally, multiple applications
of the layer further improve performance to 69.7%.
Object-Centric Baselines. ORViT proposes an elegant
way to integrate object region information into a video
transformer. Here we consider two other candidate mod-
els to achieve this goal. (i) MF+RoIAlign uses RoIAlign
over the last video transformer layer to extract object fea-
tures. Then, it concatenates the CLS token with max-pooled
object features to classify the action using an MLP. (ii)
MF+Boxes uses coordinates and patch tokens. We use the
CLS token from the last layer of MF, concatenated with tra-
jectory embeddings. To obtain trajectory embeddings, we
use a standard self-attention over the coordinates similar to
our ODM stream. The first captures the appearance of ob-
jects with global context while the latter captures the trajec-
tory information with global context, both without fusing
the object information several times back to the backbone as
we do. The results are shown in Table 4b. MF+RoIAlign
does not improve over the baseline, while MF+Boxes im-
proves by 3.5%, which is still far from ORViT (69.7%).
How important are the object bounding boxes. Since
ORViT changes the architecture of the base video trans-
former model, we want to check whether the bounding
boxes are indeed the source of improvement. We consider
several variations where the object bounding boxes are re-
placed with other values. (i) All boxes: all boxes are given
the coordinates of the entire image ([0, 0, 1, 1]). (ii) Null

boxes: boxes are initialized to zeros. (iii) Grid boxes: each
of the 4 bounding boxes is one fourth of the image. (iv)
Random boxes - each box is chosen uniformly at random.
See Table 4c for results. We observe a large drop in perfor-
mance for all these baselines, which confirms the important
role of the object regions in ORViT. Finally, we ask whether
tracking information is important, as opposed to just detec-
tion. We find that this results in degradation from 69.7 to
68.2, indicating that the model can perform relatively well
with only detection information.
Decreasing Model Size. Next, we show that model size can
be significantly decreased, incurring a small performance
loss. Most the parameters added by ORViT over the base-
line MF are in the ODM, and thus it is possible to use
a smaller embedding dimension in ODM (see B̃ in Sec-
tion 3.2). Table 4d reports how the dimension affects the
performance, demonstrating that most of the performance
gains can be achieved with a model that is close in size to
the original MF. More in D.1&D.2 in supp. We would like
to highlight that “Object-Region Attention” alone (set di-
mension size to 0; thus ODM is not used) is the main reason
for the improvement with only 2% additional parameters.
5. Discussion and Limitations

Objects are a key element of human visual perception,
but their modeling is still a challenge for machine vision. In
this work, we demonstrated the value of an object-centric
approach that incorporates object representations starting
from early layers and propagates them into the transformer-
layers. Through extensive empirical study, we show that
integrating the ORViT block into video transformer archi-
tecture leads to improved results on four video understand-
ing tasks and five datasets. However, we did not put ef-
fort into the object detection and used externally provided
boxes, which is a limitation of our work. Replacing the ex-
ternally provided boxes with boxes that the model generates
without supervision will be interesting.
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