This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Dynamic Sparse R-CNN

Qinghang Hong; Fengming Liu; Dong Li, Ji Liu, Lu Tian, Y1 Shan
Advanced Micro Devices, Inc., Beijing, China

{d.1i, lu.tian, yi.shan}@amd.com

Abstract

Sparse R-CNN is a recent strong object detection base-
line by set prediction on sparse, learnable proposal boxes
and proposal features. In this work, we propose to improve
Sparse R-CNN with two dynamic designs. First, Sparse R-
CNN adopts a one-to-one label assignment scheme, where
the Hungarian algorithm is applied to match only one pos-
itive sample for each ground truth. Such one-to-one as-
signment may not be optimal for the matching between
the learned proposal boxes and ground truths. To ad-
dress this problem, we propose dynamic label assignment
(DLA) based on the optimal transport algorithm to assign
increasing positive samples in the iterative training stages
of Sparse R-CNN. We constrain the matching to be gradu-
ally looser in the sequential stages as the later stage pro-
duces the refined proposals with improved precision. Sec-
ond, the learned proposal boxes and features remain fixed
for different images in the inference process of Sparse R-
CNN. Motivated by dynamic convolution, we propose dy-
namic proposal generation (DPG) to assemble multiple pro-
posal experts dynamically for providing better initial pro-
posal boxes and features for the consecutive training stages.
DPG thereby can derive sample-dependent proposal boxes
and features for inference. Experiments demonstrate that
our method, named Dynamic Sparse R-CNN, can boost
the strong Sparse R-CNN baseline with different backbones
for object detection. Particularly, Dynamic Sparse R-CNN
reaches the state-of-the-art 47.2% AP on the COCO 2017
validation set, surpassing Sparse R-CNN by 2.2% AP with
the same ResNet-50 backbone.

1. Introduction

Object detection is a fundamental task in computer vi-
sion which aims at predicting a set of objects with loca-
tions and corresponding pre-defined categories in a given
image. It has been widely applied in multiple fields includ-
ing intelligent surveillance and autonomous driving. Ob-
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Figure 1. Performance vs. training epochs on the COCO 2017
validation set. All results are reported with single-scale infer-
ence using the ResNet-50 backbone. Our Dynamic Sparse R-CNN
achieves the state-of-the-art 47.2% AP with the same 36 training
epochs as Sparse R-CNN. Circles: Transformer-based methods.
Triangles: CNN-based methods.

ject detection has witnessed a rapid development in the
recent years, with varying feature extraction backbones
from convolutional neural network (CNN) [7,11,24,27] to
Transformer [6, 18] and varying detection pipeline designs
[2,17,22,23,25,28]. The detectors can mainly be divided
into one-stage, two-stage and multi-stage methods accord-
ing to the regression times. One-stage detectors [17,28] di-
rectly predict the regression targets and categories of objects
in a given image without the refinement step. Two-stage de-
tectors [4,9, 14,23] first generate a limited number of candi-
date proposals for foreground (e.g., region proposal network
(RPN)) and then pass the proposals to the detection network
to refine the location and category. Multi-stage detectors [ 1]
would refine the location and category multiple times with
improved performance but often require large computation
overhead. One-stage methods generally can be divided into
anchor-based and anchor-free detectors. Anchor-based de-
tectors [15, 17,22] design dense pre-defined anchors, tile
anchors across the image, and then directly predict category
and refine the coordinates of anchors. However, manual an-
chor configurations could be sub-optimal for the final per-
formance. Anchor-free detectors [13, 28] are proposed to
overcome this issue by removing the anchor design. They
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typically use center points or regions inside ground truth to
define positive proposals and predict offsets to obtain final
bounding boxes.

Recently, Transformer-based detectors [2, 20, 25, 29]
have been proposed by formulating object detection as a
set prediction problem using the Transformer encoder and
decoder architecture. These methods replace anchor mech-
anisms with a small number of learnable object queries,
which can model the relationships between objects and
global image context to output the final predictions. Hun-
garian algorithm is used to find a bipartite matching be-
tween ground truths and predictions based on the combined
loss of classification and regression. The label assignment
in these detectors is a one-to-one way where only one single
detection matches one ground truth during training.

Motivated by existing CNN-based methods using many-
to-one label assignment schemes [8, 1 5,28], We assume that
assigning multiple positives to a GT can optimize the pro-
posals more efficiently and can promote the detector train-
ing for better performance. Thus, we propose dynamic la-
bel assignment (DLA) with many-to-one matching based
on the optimal transport algorithm for the strong baseline of
Sparse R-CNN. We also adopt gradually increasing positive
samples assigned to GTs in the iterative stages of Sparse
R-CNN. Since each stage produces refined proposal boxes
and features for the next one, we expect to constrain the
matching between GTs and prediction boxes to be stricter
in the early stages and looser in the later stages owing
to the increasing precision of predictions in the sequential
stages. Moreover, in Sparse R-CNN, the object queries (i.e.,
proposal boxes and proposal features) are learnable during
training but remain fixed for different images during infer-
ence. Motivated by dynamic convolution [3], we propose
dynamic proposal generation (DPG) to provide better initial
proposal boxes and features in the first iterative stage. Com-
pared to fixed proposals, DPG can aggregate multiple paral-
lel proposal experts which are sample-dependent and output
dynamic proposals for inference. We name our method as
Dynamic Sparse R-CNN, which reaches the state-of-the-art
47.2% AP on the COCO 2017 validation set, surpassing the
Sparse R-CNN baseline by a large margin of 2.2% AP with
the same ResNet-50 backbone (Figure 1).

Our main contributions can be summarized as follows.
(1) We point out that many-to-one label assignment in
Transformer-based detection is more reasonable and effec-
tive than the one-to-one scheme. We apply the optimal
transport assignment method into Sparse R-CNN and as-
sign gradually increasing positive samples to GTs in the it-
erative stages. (2) We design a dynamic proposal generation
mechanism to learn multiple proposal experts and assemble
them for generating dynamic proposal boxes and features
for inference. (3) We integrate the two dynamic designs
into Sparse R-CNN and the resulting Dynamic Sparse R-

CNN detector obtains a large AP gain of 2.2%, reaching the
state-of-the-art 47.2% AP on the COCO validation set with
ResNet-50.

2. Related Work
2.1. General Object Detection

CNN-based detectors have achieved great progress ow-
ing to the development of various feature extraction back-
bones and pipeline designs. One-stage detectors directly
predict the location and associated categories of object in a
given image without region proposal and refinement com-
ponents, including anchor-based [15, 17, 22] and anchor-
free [13, 28] methods. Two-stage detectors [4, 14, 23] first
generate a fixed number of proposal for foreground with re-
gion proposal network (RPN) and then pass the proposals
to the detection network for refining the locations and cate-
gories of objects.

Recently, Transformer-based detectors [2,20,29,35] uti-
lizes Transformer encoder and decoder architecture to re-
formulate the object detection as a set prediction problem.
They design a small number of learnable object queries to
model the relations between objects and the global image
context, and have shown impressive performance. Object
queries in decoders are a required component of DETR [2]
(7.8% AP drops without them). Conditional DETR [20]
proposes a conditional spatial query for fast training conver-
gence. Anchor DETR [29] proposes a query design based
on anchor points and achieve near performance to DETR
with less training time. Sparse R-CNN [25] proposes learn-
able proposal boxes and proposal features, and pass the
Rol features extracted on the feature map (based on pro-
posal boxes) and associated proposal features to the iterative
structure (i.e., dynamic head) for prediction.

2.2. Label Assignment

Label Assignment plays a prominent part in modern ob-
ject detectors. Anchor-based detectors [15, 17, 23] usu-
ally adopt IoU at a certain threshold as the assigning cri-
terion. For example, RetinaNet defines the anchors hav-
ing IoU score higher than 0.5 as positive samples and oth-
ers as negative samples. YOLO detectors [21, 22] only
adopt the anchor having the max IoU score associated to
the ground-truth as the positive sample and such label as-
signment is a one-to-one matching method. Anchor-Free
detectors [13,28,34] define center points or shrinking cen-
ter regions of ground truth as positives and take others as
negatives. ATSS [32] indicates that the essential differ-
ence between anchor-based and anchor-free detectors is la-
bel assignment. It proposes an adaptive training sample
selection method which divides positive and negative sam-
ples according to statistical characteristics of object. PAA
[12] proposes a probabilistic anchor assignment method
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by modeling the distribution of joint loss for positive and
negative samples as the Gaussian distribution. OTA [§]
formulates the label assignment as an optiomal transport
problem by defining ground truths and background as sup-
plier and defining anchors as demander, and then employs
Sinkhorn-Knopp Iteration to efficiently optimize the prob-
lem. Transformer-based detectors [2, 20, 25,29, 35] formu-
late object detection as a set prediction problem and treat
label assignment between ground truths and object queries
as a bipartite matching. Hungarian algorithm is used to op-
timize the one-to-one matching between ground truths and
object queries by minimizing the global loss. In this paper,
we assume that one-to-one label assignment is sub-optimal
in Transformer-based detectors and explore a dynamic label
assignment with many-to-one matching for Sparse R-CNN
inspired by OTA [8].

2.3. Dynamic Convolution

Dynamic convolution [3] is a technique that dynami-
cally combines multiple convolution kernels with learnable
sample-dependent weights to enhance the representation ca-
pability of the model. Temperature annealing in softmax
can help improve both the training efficiency and final per-
formance. CondConv [31] proposes conditionally param-
eterized convolutions, which learn specialized convolution
kernels for each input image. It combines multiple con-
volution kernels with weights generated with sub-net using
sigmoid transformation to construct a image-specified con-
volution kernel. DyNet [33] designs several dynamic con-
volution neural networks based on dynamic convolution in-
cluding Dy-mobile, Dy-shuffle and Dy-ResNet, etc. In this
work, we analyze that the fixed proposal boxes and features
in Sparse R-CNN for different inputs during inference is
sub-optimal and inflexible. Motivated by dynamic convo-
lution, we improve Sparse R-CNN by generating dynamic
sample-dependent proposals during inference.

3. Proposed Approach
3.1. Revisit Sparse R-CNN

Sparse R-CNN [25] is a recent strong object detection
baseline by set prediction on a sparse set of learnable ob-
ject proposals. It uses an iterative structure (i.e., dynamic
head) to gradually produce and refine the predictions. The
input of each iterative stage consists of three parts: FPN
features extracted by the backbone, proposal boxes and pro-
posal features. The output includes the predicted boxes, the
corresponding classes and object features of the boxes. The
predicted boxes and object features output by one stage are
respectively used as the refined proposal boxes and proposal
features to the next stage. Proposal boxes are a small fixed
set of region proposals (N, x 4), indicating the potential lo-
cations of the objects. Proposal features are latent vectors

(N, x C) to encode the instance characteristics (e.g., pose
and shape). In Sparse R-CNN, proposal boxes are learned
during training and fixed for inference. Sparse R-CNN ap-
plies the set-based loss to produce a bipartite matching be-
tween predictions and ground truth objects, which uses one-
to-one matching with the Hungarian algorithm. Figure 2 (a)
illustrates the design of Sparse R-CNN.

We analyze two main limitations of Sparse R-CNN as
follows. First, Sparse R-CNN adopts one-to-one match-
ing between the detection predictions and the ground truths,
which is likely to sub-optimal and inefficient for training.
Second, the learned proposal boxes and proposal features
in Sparse R-CNN represent the statistics of the training set,
which are not adaptive for a specific test image. In our
work, we devise two modifications to improve Sparse R-
CNN. Figure 2 gives the overview of our method and we
introduce algorithm details in the following sections.

3.2. Dynamic Label Assignment

In Sparse R-CNN, the Hungarian algorithm is used for
one-to-one matching, where each ground truth is matched to
one predicted box. We assume that such one-to-one match-
ing is likely to be sub-optimal. Assigning multiple positives
to a GT can optimize the proposals more efficiently and pro-
mote the detector training.

To implement many-to-one matching, we follow the
CNN-based method [8] and apply the optimal transport as-
signment (OTA) in Transformer. Specifically, OTA is a
formulation that explores how the detection boxes should
be matched to ground truths. The formulation treats the
ground truths as suppliers to provide quota for assignment,
and treats detection boxes as demanders to seek for assign-
ments. The background class is also formulated as a sup-
plier that provides default assignment.

Mathematically, suppose that we have m ground truths
in an image and each provides s; = k assignments, which
are referred as units. Each of n detection boxes tries to get
an unit and a successful matching is referred as a positive
assignment. The background provides s; = n — k * m units
to fulfill detection boxes that are not assigned to any ground
truth, which is referred as negative assignments. The opti-
mization target can be defined as follows.

m n

min Y Y " O(i,4) * (i, ),
i=1j5=1

n

m m
sty w(i, ) =1, Y w(i,5) =si, Yy _si=n,
i=1 j=1 i=1 (1)
m(i,5) > 0,6 =1,2,...,m,j =1,2,...,n,
Ci, ) L¢1s(%,7) + o % Lyeg(4, j), positive assignment
,7) = . . .
J L s (background, j), negative assignment

where i is the index of ground truth, 5 is the index of de-
tection boxes (5 = 1,...n), « is a coefficient balancing the
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Figure 2. Comparisons with (a) the Sparse R-CNN baseline and (b) our Dynamic Sparse R-CNN. Sparse R-CNN uses one-to-one label
assignment optimized by Hungarian algorithm and fixed proposal boxes / features during inference. Dynamic Sparse R-CNN improve
Sparse R-CNN with two dynamic designs. First, we adopt dynamic many-to-one label assignment optimized by the optimal transport
algorithm with unit increasing strategy. Second, we propose dynamic proposal generation to generate sample-dependent proposal boxes

and features.

classification and regression losses. The cost of each posi-
tive assignment is the sum of the classification loss L.;s and
regression loss L,.4, while the cost of each negative assign-
ment is only the classification loss. 7(i,j) represents the
matching result to be optimized between ground truth ¢ and
detection box j.

The number of units k offered by each supplier can
be fixed or dynamic. Following the Dynamic %k Estima-
tion method in [8], our work dynamically estimates the k
value based on the IoU between the predictions and the
ground-truth boxes. In this strategy, top ¢ IoU values for
each ground truth are selected and summed up (and con-
verted to an integer) as the estimation for the k value.
Based on the optimal transport theory for label assignment
(>, m(4,7) = 1in Eq. 1), each proposal (i.e., demander)
only needs one unit of label provided by GT (i.e., supplier).
Thus, one proposal will not be assigned to different GTs.
The Dynamic k Estimation method generally holds k& < g.
Suppose that 1 is the number of GTs and N, is the number
of total proposals, if m x k > 80% x N, we will reduce k
by a same scaling factor for each GT to ensure at least 20%
negative assignments.

Unit Increasing Strategy. Sparse R-CNN adopts an it-
erative architecture to gradually increase the precision of

predictions. We present a simple unit increasing strategy
to promote the training of iterative structure. When the pre-
dictions of dynamic head are not correct enough in the early
stage, we expect the suppliers (GT) to provide a small num-
ber of units, which constrain the matching to be stricter.
When the predictions of dynamic head become more cor-
rect in the later stage, we gradually relax the constraints to
let the suppliers (GT) provide a larger number of units for
matching. The simple unit increasing strategy can be de-
fined as follows.

K =k—05%(T—t),t=1,2.T )

where we use the default number of iteration stages (1" = 6)
in our method.

3.3. Dynamic Proposal Generation

In Sparse R-CNN, a set of IV, proposal boxes and N,
proposal features are fed into the dynamic head together
with the features extracted from the FPN backbone (P, to
P5). These proposals are learnable during training but fixed
for different images during inference. Motivated by dy-
namic convolution, we propose to generate dynamic pro-
posal boxes and features with respect to the input image to
improve performance. In our design (Figure 3 (a)), proposal
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Figure 3. Illustrations of the proposed (a) Dynamic Proposal Gen-
eration (DPG) module and (b) staircase structure in DPG to pro-
duce expert weights.

boxes / features are a linear combination of NV, distinct sets
of proposal boxes / features, and each set is referred to as
an expert. The coefficients ( referred to as expert weights)
to combine the experts are generated by an expert weight
generation network (Figure 3 (b)). Our DPG module can be
formulated as follows.

3
PJZva;lpf*Wi @

(Wi, Wa, ... Wn.) = G(F)

where P? indicates the output dynamic proposal boxes, Pz-f
indicates the output dynamic proposal features, W; is the
proposal expert weight learned by the expert weight gen-
eration network GG, F indicates the features extracted from
the FPN backbone (P» to Ps).

Staircase Structure. Our expert weight generation net-
work follows the basic design of dynamic convolution struc-
ture, as shown in Figure 3 (b). We also use the tempera-
ture annealing operation (tao) in softmax to control the ex-
pert weights and make the training process more effective.
We build a staircase architecture to aggregate the features
from different pyramid levels. The P, to P; features de-

scend in scale: the width and height of P; is 1/2 of that of
P;_1. Depth-wise convolution with 3 x 3 kernel and stride
of 2 is applied to the concatenation of P; and the output by
the previous level, which keeps the number of channels and
downscales the intermediate features. Finally, the concate-
nated data is interpolated into a 4C x 30 x 30 feature map
(C = 256 for each pyramid level). Then, the 4C' channels
are fused by summation and the resulting 30 x 30 feature
map is flattened to two FC layers. The size of the first FC
is 900 x 1500 and the second is 1500 x (N.N,). We build
N, = 4 experts and use N, = 300 proposal boxes / features
in our method.

All experts as well as the expert weight generation net-
work are trained. During inference, the weight generation
network takes the FPN features as input and generates the
weight for each expert. Then the final proposal boxes and
features are obtained by linear combinations of experts.

4. Experiments

Datasets. All experiments are conducted on the COCO
2017 dataset [16]. The training split contains about 118k
samples and the validation split contains about 5k samples.
This dataset labels 80 different categories of objects, which
are collected from natural scenarios. We use the standard
MS COCO AP as the main evaluation criterion.

Training Details. The basic training setting follows
Sparse R-CNN. We use the pre-trained networks (e.g.,
ResNet-50 [11]) on ImageNet [5] with 5 FPN levels as
backbone. During training, we use AdamW optimizer [19]
and the weight decay is set to 0.0001. We train the model
with batch size of 16 for 36 epochs. The initial learning
rate is 2.5 x 107° and scaled with 0.1 at 27-th and 33-th
epoch. Xavier initialization [10] is applied to newly added
layers. We follow Sparse R-CNN to adopt the same multi-
scale training procedure by resizing the input images such
that the shortest side is at least 480 and at most 800 pixels
while the longest at most 1333. Following Sparse R-CNN,
we adopt the iterative structure with 6 stages for training.
Our experiments are conducted on 4 Nvidia A100 GPUs
and training of Dynamic Sparse R-CNN takes around 37
hours with the ResNet-50 backbone.

Inference Details. For inference, 300 boxes and the
associated scores are output as predictions. The score of
each box is the probability that the box contains an object.
No post-processing on these boxes is needed during infer-
ence. In our dynamic label assignment based on OTA, non-
maximum suppression (NMS) is applied with threshold of
0.7.

4.1. Comparisons to the State-of-the-Arts

Comparisons to Transformer-based Detectors. Table
1 compares our Dynamic Sparse R-CNN with the state-of-
the-art Transformer-based object detection methods which
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Methods Backbone Train Epochs | AP | APso | APrs | APs | APy | APL
CNN-based Detectors:

Faster R-CNN [30] ResNet-50 36 40.2 | 61.0 | 438 | 242 | 435 | 520
Faster R-CNN [30] ResNet-101 36 420 | 625 | 459 | 252 | 456 | 54.6
RetinaNet [30] ResNet-50 36 387 | 58.0 | 41.5 | 233 | 423 | 503
RetinaNet [30] ResNet-101 36 404 | 602 | 432 | 24.0 | 443 | 522
Cascade R-CNN [30] ResNet-50 36 443 | 622 | 48.0 | 26.6 | 47.7 | 577
ATSS [32] ResNet-101 24 435 - - - - -
PAA[12] ResNet-101 24 44.6 - - - - -
OTA [¢] ResNet-50 12 40.7 | 584 | 443 | 232 | 450 | 53.6
Transformer-based Detectors:

DETR [2] ResNet-50 500 420 | 624 | 442 | 205 | 458 | 61.1
DETR [2] ResNet-101 500 435 | 63.8 | 464 | 219 | 480 | 61.8
DETR [2] ResNet-101-DC5 500 449 | 647 | 477 | 23.7 | 495 | 623
Conditional DETR [20] ResNet-50 108 43.0 | 64.0 | 457 | 22.7 | 46.7 | 615
Conditional DETR [20] ResNet-101 108 445 | 656 | 475 | 23.6 | 484 | 63.6
Conditional DETR [20] ResNet-101-DC5 108 459 | 66.8 | 495 | 27.2 | 503 | 63.3
Anchor DETR [29] ResNet-50 50 42.1 | 63.1 | 449 | 223 | 462 | 60.0
Anchor DETR [29] ResNet-101 50 435 | 643 | 466 | 232 | 477 | 614
Anchor DETR [29] ResNet-101-DC5 50 45.1 | 65.7 | 488 | 258 | 494 | 61.6
Sparse_R-CNN [25] ResNet-50 36 450 | 634 | 482 | 269 | 472 | 595
Sparse_R-CNN [25] ResNet-101 36 464 | 646 | 495 | 283 | 483 | 61.6
TSP-RCNN [26] ResNet-50 96 450 | 645 | 49.6 | 29.7 | 477 | 58.0
TSP-RCNN [26] ResNet-101 96 46.5 | 66.0 | 51.2 | 299 | 49.7 | 59.2
Ours:

Dynamic Sparse R-CNN ResNet-50 36 472 | 66.5 512 | 30.1 | 504 | 61.7
Dynamic Sparse R-CNN ResNet-101 36 478 | 67.0 52.0 | 31.0 | 51.1 | 62.2
Table 1. Detection performance comparisons (%) on the COCO 2017 validation set.

Setting ‘ AP ‘ AP50 ‘ AP75 ‘ APb ‘ APm ‘ AP[
Baseline 450 | 634 482 | 269 | 472 | 59.5
+ DPG, w/o staircase 453 | 63.2 495 | 28.8 | 482 | 59.1
+ DPG, w/ staircase 457 | 639 50.0 | 28.8 | 482 | 59.8
+ DPG, + DLA, dynamic ¢=8, w/o unit increasing strategy | 46.0 | 65.0 | 49.9 | 28.7 | 49.2 | 61.1
+ DPG, + DLA, dynamic ¢=8, w/ unit increasing strategy | 47.2 | 66.5 513 | 30.1 | 504 | 61.7

Table 2. Effect of each algorithmic component of our method.

are mostly related to our method. The results show that
Dynamic Sparse R-CNN outperforms not only the original
Sparse R-CNN, but also the other improved DETR meth-
ods, such as Conditional DETR and Anchor DETR. For ex-
ample, with the same ResNet-50 backbone, our work sur-
passes Conditional DETR by 4.2% AP and Anchor DETR
by 5.1% AP. Equipped with a larger ResNet-101 back-
bone, we also obtain improved performance compared to
prior methods by a large margin. On the other hand,
we only train the network for 36 epochs (same as the
Sparse R-CNN baseline), which are significantly shorter
than other Transformer-based detectors. We also evalu-

ate our method on the COCO test-dev set. Our Dynamic
Sparse R-CNN achieves 47.2% AP with ResNet-50 and
47.9% with ResNet-101, which surpasses TSP-RCNN with
ResNet-101 (46.6%).

Comparisons to CNN-based Detectors. We also com-
pare our Dynamic Sparse R-CNN with the state-of-the-art
CNN-based methods. With the same 3 x training scheduler
(i.e., 36 epochs), our method outperforms Faster R-CNN,
RetinaNet and Cascade R-CNN. The methods of ATSS,
PAA and OTA also explore improved many-to-one label
assignment schemes which are related to our DLA. Our
Dynamic Sparse R-CNN obtain superior performance com-
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Backbone | Matcher unit loss unit increasing AP | APso | APss | APs | AP, | AP,
strategy
R50 Hungarian X X X 450 | 634 482 | 269 | 472 | 595
R50 OTA fixed k=1 X X 447 | 649 48.0 | 282 | 469 | 593
R50 OTA fixed k=2 X X 459 | 65.1 49.8 | 28.8 | 48.6 | 60.9
R50 OTA fixed k=3 X X 459 | 652 500 | 28.6 | 48.6 | 61.0
R50 OTA dynamic ¢=8 X X 46.1 | 64.6 50.1 | 279 | 492 | 619
R50 OTA dynamic ¢=8 | two losses X 46.1 65.2 50.0 | 294 | 49.7 | 60.9
R50 OTA dynamic g=8 | two losses v 46.7 | 659 509 | 298 | 49.8 | 613

Table 3. Effect of different matchers. Dynamic proposal generation is not used in this ablation experiment.

Figure 4. Visualization of sampled detection results by Dynamic
Sparse R-CNN with the ResNet-50 backbone.

pared to these methods with the same backbone, e.g., sur-
passing OTA by 6.5% AP with ResNet-50 and PAA by 3.2%
AP with ResNet-101 on the COCO validation set.

Qualitative Results. Figure 4 visualizes sampled detec-
tion results by our Dynamic Sparse R-CNN. Our method
can detect objects correctly with varying scales, appear-
ances, etc.

4.2. Ablation Study

Contributions from Algorithmic Components. We
conduct ablation experiments to examine the contributions
from each algorithmic components. As shown in Table 2,
the dynamic proposal generation design boosts AP by 0.7
points with the staircase structure to aggregate features from
multiple pyramid levels. In particular, both the AP;5 and
AP; values witness an enhance for nearly 2 points, demon-
strating that that DPG helps the model to perform better in
a more strict IoU criterion and detecting small objects. The
intuition behind this improvement is that the DPG helps to
provide a more diverse range of proposal boxes and features
to the dynamic head for better predictions. Our staircase
structure can better utilize the FPN features for generating
expert weights. Without staircase structure, the FPN fea-

| AP | APy | APrs | AP, | AP, | AR,

46.7 | 66.0 | 51.1 | 31.5 | 50.1 | 60.5
46.7 | 66.2 | 509 | 30.6 | 49.8 | 61.1
46.7 | 66.0 | 509 | 30.2 | 50.0 | 60.7
46.4 | 657 | 504 | 30.2 | 49.5 | 60.7
472 665 | 513 | 30.1 | 504 | 61.7
46.1 | 652 | 50.1 | 29.0 | 49.5 | 60.6

O 0NN AR

Table 4. Effect of ¢ in Dynamic k Estimation with unit increasing
strategy and dynamic proposal generation.

tures are directly interpolated into the 30 x 30 feature maps
and concatenated to be fed into the first FC layer. The re-
sults show that this staircase structure brings 0.4% AP gain.
By applying many-to-one label assignment based on OTA,
we can boost the performance from 45.7% to 46.0%. In this
setting, the units are set based on the same Dynamic k Esti-
mation method for all the iteration stages. We find that our
simple unit increasing strategy can further improve the per-
formance, reaching 47.2% AP with a single model. These
results demonstrate the effectivenss of our designs of DLA
and DPG.

Effect of Different Matchers. As shown in Table 3,
OTA matchers with fixed k values (kK = 2, 3) gives a 0.9-
point lift of AP compared to the baseline. The OTA matcher
with ¢ = 8 in Dynamic % Estimation brings a higher in-
crease of 1.1 points, which demonstrates the effectiveness
of using dynamic k. The unit increasing strategy further en-
hances AP to 46.7%, indicating that this simple design is
effective. In addition, the OTA matcher with ¢ = 8 and the
unit increasing strategy brings a nearly 3-point increase in
terms of both APr5 and AP;. The intuition behind the sig-
nificant increase is that our dynamic many-to-one matching
scheme produces more diverse options of prediction boxes
to match a ground truth. This scheme especially favors the
detection of small objects.

Effect of q. As shown in Table 4, we try different choices
of ¢ in Dynamic k Estimation and find ¢ = 8 works best. It
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#Experts ‘ AP ‘ AP50 ‘ AP75 ‘ APS ‘ APm ‘ APl

3 454 | 634 | 50.0 | 28.6 | 48.4 | 59.6
4 457 | 639 | 50.0 | 28.8 | 48.2 | 59.8
5 453 | 632 | 495 | 27.6 | 47.8 | 60.0

Table 5. Effect of the number of experts. Dynamic label assign-
ment is not used in this ablation experiment.

is noted that all the results in Table 4 outperforms the one-
to-one matching baseline (45.0%), which validate the effec-
tiveness of our dynamic many-to-one matching scheme.

Effect of Number of Experts. As shown in Table 5 , we
try different numbers of experts and use 4 experts as default
in our method.

5. More Analysis

Figure 5 compares the detailed training curve of the AP
values between Sparse R-CNN and Dynamic Sparse R-
CNN. We observe that our Dynamic Sparse R-CNN outper-
forms the baseline throughout the training iterations. The
results further validate the non-trivial design of DLA and
DPG.

Figure 6 compares the per-stage AP values between
Sparse R-CNN and Dynamic Sparse R-CNN. The AP value
of each stage is improved by at least 2 points using our
method. This indicates that DLA and DPG actually con-
tribute to the training of each iteration stage. We note that
DPG is imposed for the first stage only, it helps produce bet-
ter initial proposal boxes and features and could benefit the
consecutive stages. Moreover, we find that Dynamic Sparse
R-CNN already can achieve 46.4% AP using 4 stages, out-
performing the baseline (45.0%) using 6 stages. The results
show that our method can accelerate the convergence in the
iterative structure.

6. Limitations

The parameter size and computation cost of our detector
are slightly larger than the Sparse R-CNN baseline. Sparse
R-CNN has 77.8M parameters and costs 23.28 GFLOPs,
while our Dynamic Sparse R-CNN has 81.0M parameters
and costs 23.30 GFLOPs. It indicates that our expert weight
generation network just introduces marginal memory and
computation overhead. Our Dynamic Sparse R-CNN takes
37 hours on 4 A100 GPUs for training, whereas Sparse R-
CNN takes 29 hours on the same devices. The training time
could be optimized further.

7. Conclusion

In this work, we propose Dynamic Sparse R-CNN by in-
troducing two dynamic designs to improve Sparse R-CNN.

AP curve

| — Baseline Jl pmm———
uH— Ours R PR —f

Figure 5. Comparisons of AP curves between Sparse R-CNN and
Dynamic Sparse R-CNN.
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Figure 6. Comparisons of per-stage results between Sparse R-
CNN and Dynamic Sparse R-CNN.

We point out that one-to-one label assignment method
is sub-optimal for matching between object queries and
ground truths in Transformer-based detectors. Based on op-
timal transport algorithm, we implement many-to-one la-
bel assignment and design a simple but effective unit in-
creasing strategy for performance boost. We also pro-
pose a dynamic proposal generation mechanism to aggre-
gate multiple learned experts to derive better initial proposal
boxes and features. Such mechanism is motivated by dy-
namic convolution and produces dynamic input-dependent
proposals for better detection performance. Our Dynamic
Sparse R-CNN is well-motivated and reaches the state-of-
the-art 47.2% AP with ResNet-50 on COCO. We expect our
method can inspire new insights for object detection and
consider applying our idea to more Transformer-based de-
tectors as future work.
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