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Figure 1. We introduce FIXIT, a dataset that requires machines to fix malfunctional objects based on functionality. Each malfunctional
object is paired with a video presenting how the object is interacted. Functionality of fixed objects can be evaluated via physical simulation.

Abstract

This paper studies the problem of fixing malfunctional
3D objects. While previous works focus on building passive
perception models to learn the functionality from static 3D
objects, we argue that functionality is reckoned with respect
to the physical interactions between the object and the user.
Given a malfunctional object, humans can perform mental
simulations to reason about its functionality and figure out
how to fix it. Inspired by this, we propose FIXIT, a dataset
that contains about 5k poorly-designed 3D physical objects
paired with choices to fix them. To mimic humans’ mental
simulation process, we present FixNet, a novel framework
that seamlessly incorporates perception and physical dy-
namics. Specifically, FixNet consists of a perception module
to extract the structured representation from the 3D point

cloud, a physical dynamics prediction module to simulate
the results of interactions on 3D objects, and a functionality
prediction module to evaluate the functionality and choose
the correct fix. Experimental results show that our frame-
work outperforms baseline models by a large margin, and
can generalize well to objects with similar interaction types.
Code and dataset are publicly available1.

1. Introduction
What defines a good 3D object shape? Aspects like aes-

thetics, comfort and fun etc play critical roles in shape de-
sign. However, these perspectives are all rendered mean-
ingless without the utmost consideration of an object for

1http://fixing-malfunctional.csail.mit.edu
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everyday use - its functionality. Functionality is a relation
between the goal of users’ interaction and the behavior of
the object. Each part of the object relates its behavior to the
functionality of the entire object shape. For example, the
third column in Figure 1 shows the notorious “Coffeepot
for Masochists” by the French artist Jacques Carelman [4],
in which the rotation of the spout affects the functionality
of the coffeepot. There have been recent efforts on learning
the functionality of 3D object shapes [33–35,52,53]. These
works usually treat the functionality as a property of the 3D
objects, and use perception systems to predict the property.

This practice is consistent with the early “ecological the-
ory of perception” which claims that people could simply
pick up clues from the world through direct perception and
make predictions about functionality [19]. However, a more
widely-accepted notion is that to evaluate functionality, we
need to involve physics which are sometimes unperceiv-
able [25, 58]. In fact, functionality is reckoned with respect
to the physical interactions between the object and the user,
instead of being a property associated with the shape only.
For example, in Figure 1, a person has to interact with the
USB to find that the shell fails to protect the chip.

Fixing designs based on functionality is termed as “func-
tional reasoning in design” [68]. Specifically, to fix an ob-
ject, one has to modify a part and interact with the object
to verify whether the fixed object exhibits the desired func-
tion [66]. However, in real-life scenarios, it is unrealistic
to try out all possible fixes and interact with all the fixed
object shapes. Therefore, humans are inclined to perform
mental simulation to simulate the effects of interaction [9].
For example, once we have seen how the USB can be in-
teracted, we come up with some fixing ideas and mentally
simulate the interaction of the fixed USB. Similar mecha-
nisms have been achieved for machines via dynamics mod-
els [2, 5, 45, 46]. These models are able to simulate future
states for a given object and interaction. Equipping ma-
chines with the ability to fix objects based on physical dy-
namics and functionality benefits many real-world applica-
tions. For example, it helps predict the outcome of interac-
tions on the objects and recommend fixes to malfunctional
objects. When 3D models are designed for virtual reality
(VR), it helps guarantee that these 3D models function well.

Inspired by the above ideas, we propose a novel task that
requires machines to fix malfunctional objects. To study
this problem, we have created a new 3D synthetic dataset,
FIXIT, which contains approximately 5k synthetic point
cloud videos of 3D objects. The point cloud videos present
the simulations of how the 3D objects are interacted. Most
of the interactions are not successful, indicating that the
objects do not function well, while a small set of videos
demonstrate successful interactions. We pair each video
with five choices indicating how to fix the 3D objects. Only
one of the five choices is correct.

As a first attempt at this challenging task, we propose
FixNet, a framework that could learn physical dynamics and
functional prediction from 3D point cloud videos. Since
previous physical dynamics models require full access to
particle states and groupings [43], a major challenge to ap-
ply them for this new task is how to predict physical dy-
namics from raw point cloud videos. Our idea is that the
point cloud in 3D objects, after going through perception
system that provides structured representations and point
correspondences, can be compatible with the particles (i.e.,
small localized objects to which can be ascribed physical
properties) in the physical dynamics system. Specifically,
FixNet is composed of three modules: the perception mod-
ule, the physical dynamics prediction module and the func-
tionality prediction module. The perception module has
two parts: a) a flow prediction network that takes a point
cloud video as inputs, and proposes the flows of the points,
which are used as pseudo-labels for training the dynam-
ics module; and b) a segmentation network that takes the
point cloud and the predicted flows, and proposes the parts
of the objects, which are used for fixing. The point clouds
of the parts are modified according to the fixing choices.
The dynamics prediction module then takes the fixed point
clouds, performs physical simulation and outputs an inter-
acting video. Finally, the last step of the simulated video
is fed into the functionality prediction module to evaluate
whether the fixed object functions well.

Experiments on the FIXIT dataset suggest that our
FixNet outperforms several baseline models by a large mar-
gin. Moreover, it can generalize well to novel categories
with the same interaction type. Model diagnosis and qual-
itative examples show that the challenge of FIXIT lies in
providing the accurate segmentations for dynamics predic-
tion. Our contributions can be summarized as follows:
• We propose a novel task of fixing 3D object shapes based

on functionality that involves 3D perception, physical
and functionality reasoning.

• We propose a new dataset, FIXIT, which contains around
5k object shapes across seven categories for fixing.

• We propose a modular framework, FixNet, which in-
corporates perception, physical dynamics and functional
prediction for fixing.

• Experimental results show that our FixNet outperforms
baseline models by a large margin.

2. Related Work
Functionality Modeling. The rich space of 3D object
shapes, especially man-made ones in our daily lives, re-
sults from the diverse functionalities they need to provide
for accomplishing various downstream tasks. It is there-
fore an important yet challenging research topic to study
shape functionality [32] and affordance [20, 26] as a highly
relevant concept. Previous works have explored learning
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shape functionality and affordance from human annota-
tions [10, 13, 67], by watching videos or human demonstra-
tions [16, 39, 55, 57, 76], and learning from interaction by
humans [21,33–35,38,59] or robot agents [17,52,53,56,61].
Many works [22,31,51,72] have also demonstrated the im-
portance of parts and structures for well-functional shapes.
However, these works mostly focus on perceiving, model-
ing, and generating shapes with functionalities. Our work
instead proposes a new problem formulation of diagnosing
and fixing malfunctional objects.
Physical Scene Understanding. Physical Reasoning is an
important aspect of cognitive reasoning [8, 27–29]. Re-
cently, researchers have focused on using neural networks
to predict physical dynamics [2,5–7,12,30,42,43,46,47,54,
71]. Particle-based dynamic systems have been applied to
simulate objects of various materials [36, 37, 43, 50, 54, 69].
However, these works usually assume that they have access
to all states, clusters and physical properties of the physi-
cal systems, which presents a gap between perception and
physics. More often, we are presented with raw, irregularly
sampled and variant point clouds. There are also dynamic
models over latent representations [1, 18, 23, 24, 73]. How-
ever, these implicit models fail to capture the complex phys-
ical properties and thus do not show good performances in
predicting future states. [44] proposes to learn visual pri-
ors from images. In contrast, we propose to learn percep-
tion from 3D point clouds, and use physical dynamics to fix
malfunctional 3D object shapes.

3. The FIXIT dataset

Cat. ShapesFunc. Success Definition
Fridge 1290 Close No Collision; No interior exposed
Bucket 624 Lift Height Change; No Water Out
USB 1096 Sheild Chip is not exposed
Kettle 213 Pour Water can be poured out
Cart 654 Move Move forward without rotation
Pot 751 Lift Height Change; No Water Out
Box 327 Close No interior exposed

Table 1. Statistics and characteristics of the object categories cov-
ered by the FIXIT dataset.

We create a new dataset which contains 4,955 3D object
instances represented as point clouds, called FIXIT. Each
object is composed of various parts that can be modified.
The objects are paired with point cloud videos showing
how the objects are interacted and the dynamic outcomes.
Choices indicating possible fixes to the parts of the objects
are represented as Domain-Specific Language (DSL).

3.1. Dataset Design

Object Categories. Our dataset contains 7 object cate-
gories: Refrigerator, Bucket, USB, Kettle, Cart,
KitchenPot, Box. The 3D models are from the PartNet-
Mobility [74] dataset. We choose these categories since

they either have rich articulated parts to interact with (e.g.,
Refrigerator, Box, USB) or the physical interactions
are complex (e.g., Bucket, Kettle, kitchenPot). We
purposely break some of the objects by scaling, translating
or rotating the parts to make them malfunctional. In Table
1, we define the functionality of each object category. In
Figure 1, we show some exemplar objects in our dataset.
For more examples and details about each category, please
refer to the supplementary material.
Point Cloud Video Generation. We use PyBullet 2 to sim-
ulate the physical interactions for our video dataset, as well
as to verify the functionality of the objects. For each ob-
ject, we use an end effector to interact with the objects (for
kitchenpot, we use two because there are two handles). We
hard code a pre-defined trajectory of the end effector. We
use small balls to replace the water in the buckets, kettles
and kitchenpots. After the simulation is done, we check
the position and rotation change of each object to evalu-
ate whether the object is functional. We finally extract 10
frames out of all the simulation steps to construct the videos.
We use furthest-point-sampling to sample a point cloud of
size 2048 of each frame. We extract 16 interacting points
between the end effector and the object, serving as an extra
input to tell machines how we can interact with the object.
Domain-Specific Language. Each fixing choice is repre-
sented as a 4-tuple domain-specific language (Type, Part,
Axis, Value). There are three fixing types: “scale”, “trans-
late” and “rotate”; and six axes: “+x”, “-x”, “+y”, “-y”,
“+z”, “-z”. The value is uniformly sampled within a range
given the object shape. For each part of the object, we use
one root point to represent this part and give it an index. A
choice refers to the part to be fixed by specifying the index.
A choice can also be “functional” indicating the object is
already functional and does not need a fix. Figure 2 shows
an example of choices in dataset.

3.2. Problem Formulation

For an original point cloud P1 of the 3D object to be
fixed, our framework takes as input a simulated point cloud
video P = {P1,P2, ...,PT }, where T denotes the num-
ber of frames in the video, which is 10 for our dataset.
The point cloud in the t-th frame Pi can be represented
as a set of points Pi = {pt1, pt2, ..., ptN} where N equals
2048. We also take in an additional set of interacting points
IPt = {ipt1, ipt2, ..., iptK} (K = 16) indicating where the
end effector operates on the initial point cloud, and IP =
{IP1, ..., IPT }. For an original point cloud P1 of L parts,
we define a set of root point indices R = {r1, r2, ..., rL},
where each root is the index in P1 representing the indicator
to a part of the object. Our framework also takes as inputs
a set of five choices C = {c1, c2, ..., c5} to fix the original

2https://pybullet.org/
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A. Translate ① +z 0.25
B. Scale ② +z 0.5
C. Translate ① +z 0.43
D. Scale ① -y 1.5
E. Translate ① +z 0.6

②

①𝑡!

𝑡" 𝑡# 𝑡$ 𝑡% 𝑡&

𝑡' 𝑡( 𝑡) 𝑡!*
Figure 2. An example of our FIXIT dataset. It has several com-
ponents: 1) 3D point cloud of the shape to be fixed; 2) a point
cloud video showing the interaction of this object; 3) root points
representing the parts and part indexes; 4) interacting points (the
red points); 5) a set of five choices to fix it. Each choice refers to
one of the parts via the part index.

object P1. Each choice refers to the part to be fixed using
one of the root points.

4. FixNet

Inspired by humans’ mental simulation process, we aim
to design AI models that can perform physical simulation
of interactions on objects and evaluate the functionality of
the fixed objects. There have been works that could predict
the dynamics of physical objects accurately [2, 5, 45, 46].
However, they require full access to the particle representa-
tions, point correspondences and groupings, which are of-
ten unobtainable in real-world scenarios. The major chal-
lenge resides in learning particle-based dynamics models
from raw point cloud videos. Our idea to tackle this chal-
lenge is to use the perception module to provide structured
representations and point correspondences for the physical
dynamics prediction module. Therefore, we present FixNet,
a framework that seamlessly bridges the gap between 3D
point cloud videos and physical dynamics. As shown in
Figure 3, our proposed FixNet consists of three modules:
a perception module, a physical dynamics prediction mod-
ule and a functionality prediction module. The perception
module consists of two networks: a flow proposal network
to extract the flows from the point cloud video of the ob-
ject, and an instance segmentation network to estimate the
parts of the object based on the flow. The physical dynamics
prediction module takes a segmented object as an input and
learns to approximate the physical simulations of its inter-
actions. Finally, the functionality prediction module takes
the outcome of simulation and measures if a modified object
is well functional or not.

4.1. 3D Visual Perception

The perception module aims to provide perceptual cues
crucial for training the physical dynamics prediction mod-
ule. It contains two networks: the flow proposal network
and the instance segmentation network.
Flow Proposal Network. Since the points in each frame
are irregularly sampled, we are unaware of the point cor-
respondences between two frames, thus restricting us from
both training the physics simulation module and improving
the segmentation network. Therefore, we propose to learn
the flow of the points from scratch.

We leverage the scene flow estimation methods [3,11,64,
70] to recover flow. Specifically, our flow proposal network
is based on FlowNet3D [48], which consists of a Point-
Net++ to learn embedding, an embedding layer for point
mixture and set upconv layers to predict the scene flows.

We re-organize the input point cloud video P =
{P1,P2, ...,PT } into pairs of source points Pt and target
points Pt+1, where t = 1, 2, ..., T − 1. The flow proposal
network fT outputs the estimated flow for the source point
cloud : ∆P̃t = {(∆xti,∆yti,∆zti)}Ni=1 = fT (Pt,Pt+1).

Note that the estimated flow here is not the actual flow,
since (Pt +∆P̃t) ̸= Pt+1. To rectify the flow, we compute
a N ×N × 3 disparity matrix ∆Di = {djkt }Nj,k=1 for each
pair of points between the t-th frame and t + 1-th frame,
where djkt = p(t+1)k − ptj . We expand ∆P̃t (N × 1 × 3)
to [∆P̃t] (N × N × 3), which have the same dim as ∆Dt,
and compute the cost matrix Ct = ||[∆P̃t] − Dt||2. We
apply hungarian algorithm [41] on the cost matrix C to find
a bipartite matching Mp : {i → Mp(i) | i = 1, 2, · · · , N}
between the source points Pt and target points Pt+1. This
is to minimize the overall error between the estimated flow
and the actual flow. We then calculate the rectified flow ∆P̂t

from point correspondences:∆P̂t = {p(t+1)M(i) − pti}Ni=1.
Instance Segmentation Network. The instance segmenta-
tion network proposes part instance segmentations for the
succeeding modules. As suggested by [65, 75], the co-
segmentation methods which leverage motion flows of ar-
ticulated objects achieve good performances. Thus, we de-
vise an instance segmentation network that takes perception
information and motion information as inputs and outputs
the part instances. We first sum up the flows of all frames as
the accumulated flow: ∆P̂ =

∑T−1
t=1 ∆P̂t. We concatenate

the point cloud of the original object P1, the accumulated
flow to construct the N×6 inputs for our instance segmenta-
tion network fI . Our instance segmentation network applies
a PointNet++ with multi-scale grouping [60] as backbone
network for extracting features and predicting L instance
segmentation masks over the input point cloud of size L:
Ŝ = {ŝl ∈ [0, 1]N |l = 1, 2, ..., L} = fI([P1,∆P̂]). A soft-
max activation layer is applied such that ŝ1+ ŝ2+ ...+ ŝL =
1. We use Hungarian algorithm to find a bipartite match-
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Figure 3. Our proposed FixNet. The point cloud videos are first fed into the flow proposal network which outputs the flows of the points.
The flows, and the point cloud of the malfunctional object (which is also the first frame of the video) are input to the segmentation network
to produce part instances. Given a choice represented as domain-specific language (DSL), the part referred to in the choice is retrieved via
the root point, and modified according to the DSL. The point cloud of the fixed object is then fed into the physical dynamics prediction
module, together with the part instances, to predict the future states of the object. The physical dynamics module is trained on the pseudo
labels provided by the flows. The last state is input to a functionality prediction module which outputs a functionality score.

ing Ms : {l → Ms(l) | l = 1, 2, · · · , L} between the
predicted masks {ŝl | l = 1, 2, · · · , L} and the ground-truth
masks {sl | l = 1, 2, · · · , L}. For the metric of Hungarian
algorithm, we use a relaxed IOU [40].

4.2. Physical and Functionality Prediction

Physical Dynamics Prediction Module. We introduce
how we utilize the perception prior to simulate physics
below. The perception module provides point flows and
segmentations that are compatible with particle-based dy-
namics model [45, 62, 63], and the point clouds of the
parts referred in the choices to be fixed. There have been
numerous dynamics prediction models proposed recently
[2, 5, 46]. We chose DPI-Net [45], since the particle-based
physical dynamics system can naturally leverage the points
from the perception systems, and the hierarchical modeling
paradigm suits the 3D objects of multiple parts.

The interactions within the physics model can be repre-
sented as a directed graph, G = (⟨P, E⟩), where P is the
set of points, which are called particles in the physics world,
and E is a set of relations between the points. The edges E
between particles are dynamically generated over time.

Three types of edges are defined in DPI-Net. The first is
to establish relationships among neighbors within a prede-
fined distance. The second type is called hierarchical mod-
eling, where the particles are clustered into non-overlapping
clusters, and a random particle in the cluster is selected as
root, and other particles are leaf nodes. Directed edges in-
clude ELeafToRoot, ERootToLeaf and ERootToLeaf . DPI-
Net employs a multi-stage propagation paradigm: propa-
gation among leaf nodes ϕLeafToLeaf ; from leaf nodes to
roots ϕLeafToRoot; between roots ϕRootToRoot and root to
leaf ϕRootToLeaf . We use the segmentation results Ŝ as our

clusters and use our root points R as the root particles. The
third type of edges is designed for control. We follow the
implementation of [45], in which the control inputs are also
vertices of the interaction graph, and have directed edges to
the points controlled (in real implementation, they choose
the points that are close to the positions of the controlling
objects as points to be controlled). The dynamics of the in-
teracting points are pre-defined, and only the dynamics of
the particles P are predicted.

We input the point cloud P1, together with the interact-
ing points IP for control and the segmentations Ŝ for hi-
erarchical modeling. DPI-Net fP predicts future trajectory
of the physical interaction, P̂ = {P̂2, ..., P̂T } step by step
given an initial object: P̂ = fP (P1, Ŝ, IP).
Functionality Prediction Module. The functionality pre-
diction module finally takes in the last frame output by the
physical dynamics prediction module and predicts its func-
tionality score by examining whether the goal of the inter-
action has been achieved.

4.3. Training and Inference

Training. The flow proposal network is pretrained on the
Flyingthings3D dataset (as suggested by [48]) and finetuned
on 10% ground-truth flows of videos in the training set.
The instance segmentation network is trained on 20% of the
ground-truth segmentations of the training set using an IoU
loss and a l2,1-norm regularization loss. The physical dy-
namics prediction module is trained with the pseudo-labels
from the flows of the videos predicted by the flow proposal
network. The functionality prediction module is trained on
the last frame of the simulated video of each choice, and
supervised on the correctness of the five choices.
Inference. Given a malfunctional object and its interaction
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Refrigerator Bucket USB Kettle Cart KitchenPot Box All
DSL-only 24.1 22.5 16.7 18.8 21.4 18.7 20.4 20.6
PointNet++ 21.3 23.5 20.1 26.6 24.0 24.4 20.4 22.3
MeteorNet 33.1 37.4 25.5 35.9 27.0 33.8 30.3 30.6
PST-Net 20.8 21.9 36.8 28.1 31.1 26.2 23.5 27.1
P4-Transformer 29.2 41.2 41.0 31.3 31.6 34.2 29.6 34.5
Fix+PointNet++ 54.6 52.4 40.1 51.6 49.5 40.0 46.9 47.6
FixNet 67.4 61.0 56.2 56.3 69.4 52.4 71.4 62.3

Table 2. The accuracies of different models on FIXIT. Our FixNet outperforms all baselines by a large margin.

video, we first feed the video into the flow proposal network
to get the flow. Then we input the point cloud and the pre-
dicted flow into the instance segmentation network to get
the instance segmentation.

We then try to fix the object. Each choice in our choice
set specifies a part index indicating the part to be modified.
Retrieving from the root points, we get the root point index,
and find its instance from the segmentation. We can then
reconstruct the whole point cloud by selecting the points
that are assigned the same instance as the root point in the
choice. The DSL in each choice can be translated into a
transformation matrix and applied on the part point cloud,
which together with other parts constitute the fixed point
cloud. With the object modified, the interacting points also
need to be modified. However, the set of points to be con-
trolled stay the same. We get a position offset as the average
position change of the controlled points, and apply the same
offset to our interacting points to get the revised interacting
points. The revised point cloud, the segmentation and the
revised interacting points are fed into the physical dynamics
prediction module to output the simulated video. We take
the point cloud of the last frame and input it to the function-
ality prediction module to get the functionality score. The
choice with the maximum score is selected.

5. Experiments

5.1. Experimental Setup

Setup. The train/val/test split is approximately 6:1:3. All
models select one choice out of the five candidates based on
their scores. The evaluation metric is to calculate the per-
centage of the object instances correctly fixed by selecting
the right choice.
Baselines. We implement several baselines for this task.
• DSL-only The DSL-only baseline takes only the choices

written in domain-specific language (DSL) indicating the
object after fixing is functional or not. And functionality
scores are predicted based on the DSL features.

• PointNet++ [60] works on the single frame point cloud,
which is used to examine whether the dynamics data in
video assists in finding the correct fix.

• MeteorNet [49] adds a temporal dimension to Point-
Net++ to process 4D points and use chain-flow grouping.

• PSTNet [15] uses a point spatio-temporal (PST) convo-

Fridge Bucket Kettle USB Cart KitchenPot Box
EPE 0.01 0.09 0.13 0.06 0.03 0.11 0.02

LIOU (-) 92.1 43.7 47.9 73.2 53.5 56.5 79.8

Table 3. Validation EPE of the flow proposal network, and IOU
loss of the instance segmentation network.

lution to represent point cloud sequences.
• Point 4D Transformer (P4-Transformer) [14] uses a

point 4D convolution to embed the spatio-temporal local
structures along with a transformer to capture the appear-
ance and motion information.

• Fix+PointNet++ Directly inputs the fixed object into
PointNet++ to predict functionality.

For the baselines taking 3D point cloud inputs (except
Fix+PointNet++), we concatenate the feature of point cloud
and DSL to output the functionality score of each fix.
Implementation Details. For a fair comparison, all the
point-cloud baselines use the segmentations from the per-
ception module in Section 4. In addition to the 3 dims repre-
senting the point positions, we add a mask dim which spec-
ifies the points to be fixed and other points, and another dim
for specifying interacting points. All the baselines use the
same parameters described in the original papers, and are
trained for 100 epochs. The training parameters in the indi-
vidual modules of FixNet are listed in the supplementary.

5.2. Results and Analysis

Main Results. We show the multiple-choice accuracy in
Table 2. As we can see, our model outperforms all base-
lines on point cloud video processing by a large margin. It
excels in categories that involve multiple articulated parts,
such as refrigerator and box. We also notice that for objects
that are more complex in terms of physics and interactions
(e.g., buckets, kettles and kitchenpots), the results are lower
than objects with more uncomplicated physics in general.
However, neural networks such as P4-Transformer and Me-
teorNet seem to achieve better results in these objects. The
reason for this might be that the structures are more fixed for
these types than others (e.g., the box can have arbitrary lids,
but the bucket only has one handle), thus easier for neural
models to memorize. FixNet is superior to Fix+PointNet++,
demonstrating that physical dynamics is essential.

To get more insights about our model, we present some
intermediate results on the validation set of the flow pro-
posal network and the instance segmentation network, as in
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Malfunctional Shape Videos Instance 
Segmentation

Fix Choice 1 
Physical Dynamics Prediction

Fix Choice 2
Physical Dynamics Prediction

Figure 4. Qualitative examples by FixNet. Red crosses indicate unchosen fixes and green marks represent chosen fixes. As can be seen,
our FixNet achieves satisfying segmentation and simulation performances.

Table 3. We can see that objects with more complex physi-
cal interactions have larger errors for the flow proposal net-
work, probably because they experience more drastic mo-
tion changes. Since the instance segmentation network is
based on the flow proposal network, larger errors in the flow
result in worse performances of the instance segmentation
network. The inaccuracies of the perception module lead to
the underperformances of the subsequent modules. How to
extract precise structured representations for complex phys-
ical objects remains to be solved.
Qualitative Examples. Figure 4 shows per-module visu-
alization results of FixNet. We can see that the perception
module achieves satisfying results on segmentation for rigid
body parts. However, for the kichenpot full of water, FixNet
has trouble separating the water particles and the kichenpot.
For the physical dynamics prediction module, FixNet can
simulate different dynamics for various fixes and thus dis-
tinguishes functional fixed objects from malfunctional ob-
jects. Although the simulated dynamics are not perfect (e.g.,
some of the water leaks out of the pot, and the wheel of the
cart rotates too much ), it does not prevent the functionality
prediction module from predicting the right choice.

5.3. Discussions

Failure Cases and Challenges. In Fig. 5, we show two
failure cases. We discuss the limitations of our FixNet and
indicate future directions for improvements below. The first
weakness lies in the inaccuracy of the perception module.
Specifically, DPI-Net requires the particles of different clus-
ters to be non-overlapping. However, this is not always
the case when it comes to the segmentations provided by
neural networks. When two parts are close enough, over-
lapping inevitably occurs. Moreover, some parts are in-
herently embedded in others in articulated objects, making
the non-overlapping requirement unrealizable. For exam-

Ground-truth 
Fix

Instance 
Segmentation

Malfunctional 
Shapes

Physical 
Dynamics 
Prediction

Figure 5. Failure cases by FixNet. For the bucket, the instance
segmentation network cannot segment water from the bucket, and
the dynamics prediction module disjoints the parts. For the USB,
the overlapping of parts result in inaccurate physical simulation.
ple, the shell of the USB in Figure 5 is embedded in its
body, making the segmentation extremely hard. Since the
hierarchical modeling in DPI-Net forces the particles in an
instance to have similar dynamics, one part can be blocked
by another static part due to intermediate overlapping parti-
cles. Therefore, the USB shell that is embedded in the body
fails to rotate, while some USBs with separating shell and
body manage to function well. In another case, we show the
bucket full of water. It’s hard to tell the water apart from the
bucket body. We find that a large amount of the water parti-
cles are segmented into the body part. Since DPI-Net tends
to unify the transformations within an instance, the bucket
body might be dragged by the water when it spreads out,
making the functionality prediction incorrect. As we can
see, the fixed bucket should be lifted vertically, but it leans
away. The second weakness is that the physical dynamics
predictor fails to simulate articulated parts very well. For
example, the handle of the bucket is disjointed. This also
happens to the cart wheel in the qualitative examples. How
to adjust dynamics model for articulated objects and objects
with multiple parts is worth delving into.
Model Diagnosis. Benefiting from our modular design, we
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Figure 6. Model Diagnosis. Y-axis represents test accuracy.
Adding ground-truth perception can boost the accuracy of FixNet
to some extent, especially for categories with low accuracies.

can easily diagnose the model by replacing individual com-
ponents with the ground truth data from the simulation. In
Figure 6, we show the results where we use the ground-
truth flows (+F) instead of flows predicted by the flow pro-
posal network, or ground-truth instances (+I) instead of the
segmentations provided by the instance segmentation net-
work. We can see that for categories with low accuracies
by FixNet, adding the ground-truth flows or segmentations
significantly improve the results. However, for categories
with high accuracies, adding additional ground truths does
not lead to much improvement. This suggests that the un-
derperformances of some categories are probably due to the
perception module. We notice that adding ground-truth in-
stances leads to better performances than adding ground-
truth flows. Therefore, the major challenge of this dataset
might be to predict dynamics based on inaccurate segmen-
tations. This provides insights for future explorations: im-
proving the segmentation performances or designing a dy-
namics model that can take noisy perception inputs are cru-
cial for the object-fixing task.

5.4. Generalization

In order to evaluate our model’s ability to generalize to
novel categories, we conduct experiments on three unseen
categories using models trained on categories with similar
functionalities. Table 4 shows the generalization results.
Figure 7 shows some examples of the unseen objects.

Overall, our model achieves satisfying results, outper-
forming P4-Transformer by a large margin. This might be
credited to the generalization ability of particle-based dy-
namics model. Like the mental simulation of humans, the
physical dynamics predictor does not simply memorize pat-
terns, but takes into account the physical interactions among
particles. Therefore, when presented with a novel object, it
is able to imagine its physical states regardless of what the
object looks like. The perception module, however, does
not exhibit the same generalization ability. In Figure 7, the
segmentations are incorrect for all the three objects. For the
first door, the incorrect perception poses great negative im-

Door Kettle (Revolute Handle) Knife

Train Category Fridge Bucket USB

P4-Transformer 21.3 24.5 23.0
FixNet 60.4 48.9 36.5

Table 4. Generalization Results. Training categories denote the
categories that the models are trained on. Our FixNet shows satis-
fying accuracies.

Ground-truth 
Fix

Malfunctional 
Shapes

Instance 
Segmentation

Physical 
Dynamics 
Prediction

Figure 7. Examples of generalization. For the first door, both seg-
mentation and simulation are incorrect. For the second the door,
the segmentation is incorrect but the simulation is right. For the
USB, the segmentation is wrong and the simulation is half-right.
pacts on the physics module. For the second door, although
the segmentation is also incorrect, the physical dynamics
predictor manages to simulate the perfect results. For the
USB, the model simulates the first half of the trajectory ac-
curately, but then stops. This might be due to the slightly
different interaction ways of USBs and knives.

6. Conclusions
We study a novel problem of learning to fix malfunc-

tional 3D objects and create a large-scale dataset FIXIT to
benchmark seven types of object functionality. We design
a novel framework FixNet that incorporates perception and
physical dynamics to tackle the task. Experiments show that
our method outperforms several baseline methods.
Limitations and Future Works. We observe some failure
cases when the articulated part is not well-segmented or the
dynamic simulation for the articulated part and joint is inac-
curate. Future works shall propose better part segmentation
and dynamic models.
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