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Abstract

Modeling in computer vision has long been dominated
by convolutional neural networks (CNNs). Recently, in
light of the excellent performances of self-attention mech-
anism in the language field, transformers tailored for vi-
sual data have drawn numerous attention and triumphed
CNNs in various vision tasks. These vision transformers
heavily rely on large-scale pre-training to achieve competi-
tive accuracy, which not only hinders the freedom of archi-
tectural design in downstream tasks like object detection,
but also causes learning bias and domain mismatch in the
fine-tuning stages. To this end, we aim to get rid of the
“pre-train & fine-tune” paradigm of vision transformer and
train transformer based object detector from scratch. Some
earlier work in the CNNs era have successfully trained
CNNs based detectors without pre-training, unfortunately,
their findings do not generalize well when the backbone is
switched from CNNs to vision transformer.

Instead of proposing a specific vision transformer based
detector, in this work, our goal is to reveal the insights of
training vision transformer based detectors from scratch.
In particular, we expect those insights can help other re-
searchers and practitioners, and inspire more interesting
research in other fields, such as semantic segmentation,
visual-linguistic pre-training, etc. One of the key findings is
that both architectural changes and more epochs play criti-
cal roles in training vision transformer based detectors from
scratch. Experiments on MS COCO datasets demonstrate
that vision transformer based detectors trained from scratch
can also achieve similar performances to their counterparts
with ImageNet pre-training.

1. Introduction

The extraordinary performance of AlexNet [25] on the
ImageNet image classification challenge has sparked the
passion in convolutional neural networks (CNNs), and led
to a variety of powerful CNN backbones through greater
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(a) Swin-T based FCOS [43].
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(b) Swin-T based Faster R-CNN [36].

Figure 1. We train and evaluate Swin-T [30] based detectors
(FCOS [43] and Faster R-CNN [36]) on the COCO dataset. We
observe that: 1). Swin-T based detectors trained from scratch do
not achieve comparable mAP to their ImageNet pre-trained coun-
terpart, even if more epochs of training are conducted following
He et al. [14]. 2). The results of Swin-T based FCOS will in-
crease if its architecture is modified following DSOD [39], which
is originally proposed to boost the proposal-free CNNs based de-
tector when pre-training is unavailable. However, the performance
of “Swin-T + FCOS +DSOD” detector trained from scratch is still
not as good as the ImageNet pre-trained one. 3). With suitable ar-
chitectural changes and sufficient training epochs, the proposed vi-
sion transformer based detectors without pre-training demonstrate
competitive mAP to their ImageNet pre-trained counterparts.

scale [17], more extensive connections [24], and more so-
phisticated forms of convolution [6]. Consequently, model-
ing in computer vision has long been dominated by CNNs,
until the Transformer architecture [8] is recently adapted
from natural language processing (NLP) to vision commu-
nity. A group of transformers tailored for visual data have
triumphed numerous CNN-based methods in many vision
tasks (e.g. , image classification [9], object detection [2],
semantic segmentation [5], etc). Among them, object de-
tection is one of the fastest moving areas due to its wide
applications in surveillance, autonomous driving, etc.

Most of the advanced object detectors require initializa-
tion from large-scale pre-training to achieve good perfor-
mances, no matter whether their backbones are CNNs or
vision transformers [30, 36]. Typically, these methods first
pre-train the backbone model on ImageNet [38] dataset,
then fine-tune the pre-trained weights on the specific object
detection task. Fine-tuning from pre-trained models has at
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Figure 2. Qualitative comparisons between naively trained-from-scratch Faster R-CNN, and ours.

least two advantages. First, it is convenient to reuse vari-
ous state-of-the-art deep models that are publicly available.
Second, fine-tuning can quickly generate the final model
and requires much fewer annotated training samples than
the classification task. The fine-tuning process can also be
viewed as an instance of transfer learning [33].

However, there are also critical limitations when adopt-
ing the pre-trained networks in object detection: 1). Lim-
ited structure design space [39]. The pre-trained mod-
els are usually cumbersome (containing a huge number of
parameters) for performing well on the ImageNet classi-
fication task. Existing object detectors directly adopt the
pre-trained networks, resulting in little flexibility to con-
trol/adjust the network structures. The requirement of com-
puting resources is also boosted by the complex network
structures. 2). Learning bias [48]. Both the loss functions
and category distributions differ between classification and
detection tasks, leading to different searching/optimization
spaces. Thus, learning may be biased towards a local min-
imum for detection tasks. 3). Domain mismatch [12].
Though fine-tuning can mitigate the gap of different target
category distributions, it is still a severe problem when the
source domain (ImageNet) has a huge mismatch with the
target domain such as depth images, medical images, etc.

Some earlier work have studied on training CNNs based
object detection networks from scratch [14, 39]. Specifi-
cally, DSOD [39] argues that only proposal-free detectors
can be trained from scratch, though proposal-based methods
like Faster R-CNN [36] often have superior performances
than proposal-free ones. In detail, DSOD [39] augments the
original detector by deep supervision, stem block and dense
prediction, etc., to achieve ideal detection performances.
In contrast, He et al. [14] points out that no architectural
change is required for training from scratch. As long as
sufficient training iterations are executed, detectors trained
from scratch can converge to similar accuracy to their Ima-
geNet pre-training counterparts.

Given the fact that vision transformers have outper-
formed CNNs in numerous computer vision tasks, we are
motivated to raise the following two questions: 1). Do the
findings [14, 39] obtained on CNNs based detectors remain
effective, in the era of vision transformer? 2). If not, is it
still possible to train vision transformer based object detec-
tors from scratch?

In this work, we experimentally answer the two ques-
tions above in Section 3 and Section 4. Specifically, we first
show that naively applying the experiences from [14, 39] to
vision transformer is not enough. As illustrated in Figure 1,
if either architectural changes or more training epochs are
solely applied, vision transformer based detectors that are
trained from scratch will achieve inferior results compared
to their pre-trained counterparts. Then, instead of propos-
ing a specific vision transformer based detector, we aim
to reveal the insights of training vision transformer based
detector from scratch. In particular, we find that both ar-
chitectural changes and more epochs are important in train
vision transformer based detectors from scratch. Together
with several other techniques, we manage to train trans-
former based detectors from scratch and achieve compet-
itive results to the ImageNet pre-trained counterpart. We
expect those insights can help other researchers and practi-
tioners, and inspire more interesting research in other fields,
such as semantic segmentation [21], visual-linguistic pre-
training [19], etc.

Our main findings are summarized as follows:

1. From RoIPooling to RoIAlign. We observe that
proposal-based and proposal-free detectors exhibit dis-
tinct behavior when trained from scratch, that is,
proposal-free detectors degrade less than proposal-
based ones compared to their pre-trained counter-
parts. We find out this phenomenon is essentially
caused by RoIPooling, i.e., it hinders the gradient
from being smoothly back-propagated to backbone
layers. We address this problem by replacing RoIPool-
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ing with RoIAlign, and achieve consistencies between
proposal-based and proposal-free detectors.

2. From T-T-T-T to C-C-T-T. Recent studies have re-
vealed that large-scale pre-training essentially makes
lower attention layers to learn inductive bias and “act
like convolutions” [35]. Thus, we replace the first two
stages of vision transformers with convolution blocks,
namely, from T-T-T-T to C-C-T-T, where T and C stand
for transformer and convolution block, respectively.
Such a replacement directly introduces the inductive
prior of convolution into the backbone model, making
it less dependent on ImageNet pre-training.

3. Gradient Calibration. In C-C-T-T architecture, we
observe that the convolution and self-attention layers
exhibit significant differences in terms of the scale of
gradient. Since it is better to adjust all of the layers
a little rather than to adjust just a few layers a large
amount [49], we propose to calibrate the gradients of
our model, and achieve better convergence property.

4. More Training Epochs. As argued by He et al. [14],
it is unrealistic and unfair to expect models trained
from random initialization to converge as fast as those
initialized from ImageNet pre-training. Typical Ima-
geNet pre-training can learn not only semantic infor-
mation, but also low-level features (e.g., edges, tex-
tures) that do not need to be re-learned during fine-
tuning. Therefore, models trained from scratch must
be trained for more epochs than typical fine-tuning
schedules.

2. Related Work
2.1. Vision Transformer

Inspired by the recent success of self-attention mecha-
nism [45] in natural language field, there are growing inter-
ests in exploiting transformer architecture for vision tasks.
The pioneering work ViT [9] directly applies a Transformer
architecture on non-overlapping image patches for image
classification. It achieves an impressive speed-accuracy
trade-off on image classification compared to CNNs. Later
work such as [13, 30, 44] have made significant progress
in modifying the ViT architecture for better performances.
Particularly, Swin Tranformer [30] achieves state-of-the-art
results on various tasks, including object detection, seman-
tic segmentation, etc. Our analysis on training vision trans-
former based detector will be based on Swin Transformer.

2.2. Combining Vision Transformer & Convolution

Generally speaking, convolutional layers tend to have
faster converging rate thanks to their strong prior of induc-
tive bias, while attention layers exhibit higher model ca-
pacity that can benefit from large-scale pre-training [35].

To achieve the balance of inductive prior and model capac-
ity, some pioneer work have attempted to combine convolu-
tional and attention layers. For example, Conformer [34]
proposes a feature coupling unit to fuse the features ex-
tracted by convolutional and self-attention layers, Con-
ViT [7] introduces gated positional self-attention to equip
vision transformer with a “soft” convolutional inductive
bias. CvT [46] designs a hierarchy of transformers contain-
ing a convolutional token embedding, and a convolutional
self-attention block leveraging a convolutional projection.

2.3. Train Object Detection from Scratch

Earlier object detection methods were trained with no
pre-training [32, 37, 41]. Given the success of pre-training
in the R-CNN [11], the “pre-training and fine-tuning”
paradigm becomes a conventional wisdom in modern CNNs
based detectors. Nevertheless, due to the limitations caused
by pre-training, research efforts have been continuously de-
voted to train CNNs based detector from scratch [14,26,27,
39]. Specifically, DetNet [27] and CornerNet [26] concen-
trate on designing detection-specific architectures, which is
not the focus of this work. DSOD [39] contributes a set of
principles for enabling detectors to train from scratch, but it
only works for proposal-free methods. He et al. [14] does
not require any specific architectural change, instead, they
advocate that training from scratch only requires more iter-
ations to sufficiently converge.

3. Do the findings obtained on CNNs based de-
tectors remain effective?

In this section, we experimentally investigate whether
DSOD [39] and He et al. [14] generalize well to vision
transformer based detectors.
Backbone. Without loss of generality, we choose the rep-
resentative work Swin Transformer [30] to investigate the
generality of [14, 39] to vision transformer. To be specific,
we use Swin-T, an instance of Swin Transformer, as the
backbone for all detectors in this section. The complexity
of Swin-T is similar to that of ResNet-50 [30].
Detectors. Modern object detectors can be roughly clas-
sified into two categories: proposal-based and proposal-
free, depending on whether object proposals are utilized
as intermediate results. We choose Faster R-CNN [36]
and FCOS [43] as representative of proposal-based and
proposal-free detectors. Faster R-CNN [36] is the semi-
nal work that innovatively addresses object detection in an
end-to-end manner. It first generates a set of region propos-
als based on pre-defined anchors, then classifies and refines
those proposals to obtain final bounding boxes. Thus, Faster
R-CNN is also regarded as a two-stage detector. In contrast,
FCOS [43] is a one-stage proposal-free method, which con-
tributes a significantly simplified detection framework. The
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(a) Train FCOS [43] following DSOD [39].
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(b) Train Faster R-CNN following [14].
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(c) Train FCOS following [14].

Figure 3. Train Swin-T based detectors on COCO dataset following [14, 39]. In Figure 3a, the orange, blue and green curves stand
for vanilla architecture without pre-training, vanilla architecture with pre-training and modified architecture following DSOD [39]. The
modifications do improve the detection performances when trained from scratch, but the gap to the pre-trained baseline is still significant.
In Figure 3b and 3c, we train Faster R-CNN [36] and FCOS [43] for more epochs following He et al. [14]. The extended training
epochs significantly boost the detector trained from scratch, unluckily, the final detection mAP is still inferior to the ImageNet pre-trained
counterpart.

bounding boxes are directly regressed from the feature map,
without involving anchors and proposals.
Dataset. All experiments are conducted on the challenging
MS COCO [28] dataset that includes 80 object classes. Fol-
lowing the common practice [29], all 115K images in the
trainval 35k split are used for training, and all 5K images
in the minival split are used as validation for analysis study.
Training and Inference. During training, we resize the in-
put images to keep their shorter side being 800 and their
longer side less or equal to 1, 333. The whole network is
initialized with He initialization [16] and trained using the
AdamW [31] optimizer with batch size as 16. During the in-
ference phase, we resize the input image in the same way as
in the training phase, and forward it through the whole net-
work to output the predicted bounding boxes with predicted
classes. Then, the Non-Maximum Suppression (NMS) [11]
is applied with the IoU threshold 0.6 per class to generate
final top 100 confident detections per image.

3.1. Train FCOS Following [39]

DSOD [39] advocates 4 principles for training detec-
tors from scratch, i.e., 1). Proposal-free; 2). Deep super-
vision; 3). Stem block; 4). Dense prediction. Accord-
ing to these principles, we made the following modifica-
tions to our Swin-T + FCOS detector: 1). FCOS is natu-
rally proposal-free; 2). We add dense connections between
stages of Swin-T following [39]; 3). We change the patchify
stem to Inception [42] style. Note that [47] has also empha-
sized the importance of stem block in vision transformer;
4). For each scale, we only learn half of new feature maps
and reuse the remaining half of the previous ones. Besides,
we also train the vanilla Swin-T + FCOS, with and without
initialization from ImageNet pre-training, so as to provide
comparison baselines. All three models are trained for 24
epochs, with the learning rate decay once at the 22nd epoch
following [3].

The experimental results are shown in Figure 3a. The

blue and orange curves denote the vanilla Swin-T + FCOS,
with/without ImageNet pre-training. As expected, the
one with pre-training significantly outperforms the counter-
part that is trained from scratch, in terms of both conver-
gence rate and final detection mAP. Also, as shown by the
green curve in Figure 3a, the variant modified according to
DSOD [39] demonstrated improved performances than the
vanilla Swin-T + FCOS architecture. Unfortunately, it still
has a large gap to the pre-trained version.

3.2. Train FCOS and Faster-RCNN Following [14]

Different from DSOD [39], He et al. [14] argues that
training from scratch on target dataset is feasible without
architectural changes, and the resulting detection perfor-
mance is no worse than its ImageNet pre-training coun-
terparts. Since there is no constraint on proposal-based or
proposal-free detectors in [14], we extend the training iter-
ations of both FCOS and Faster R-CNN, with Swin-T as
their backbones.

Specifically, we train both two detectors with the initial
learning rate and monitor the validation set mAP at each
epoch. When the mAP reaches saturation, we decay the
learning rate and continue to train it until convergence. The
experimental results are shown in Figure 3b and 3c. The
extended training epochs significantly boost the detector
trained from scratch, unluckily, the final detection mAP is
still inferior to the ImageNet pre-trained counterpart. Also,
one can compare the gaps of final mAP between ImageNet
pre-trained version and train-from-scratch one, and observe
that Faster R-CNN degrades more than FCOS.

3.3. Discussion

The results in Figure 3 indicate that the findings in CNNs
era, either architectural changes [39] or long epochs [14],
do not generalize well enough on vision transformer based
detectors. However, given the improvement by solely ap-
plying [39] or [14], it is natural to consider combining the
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mAP mAPS mAPM mAPL

Train from Scratch RoIPooling 26.6 13.0 29.0 37.7
RoIAlign 30.3 15.5 33.0 41.6

Pre-train & Fine-tune RoIPooling 42.1 21.3 40.2 49.2
RoIAlign 42.5 21.6 40.6 49.7

Table 1. From RoIPooling to RoIAlign. RoIAlign enables
smooth gradient back-propagation and boosts detection mAP by
3.7 points in “Train from Scratch” setting. When it moves to the
“Pre-train & Fine-tune” case where the weights are properly ini-
tialized, the improvement of RoIAlign is not so significant.

best of two worlds, as is elaborated in the next section.

4. Method
In this section, we present the step-by-step modifications

to FCOS and Faster R-CNN, so as to train both proposal-
based and proposal-free detectors from scratch.

4.1. From RoIPooling to RoIAlign

We first investigate the distinct behaviors of proposal-
free and proposal-based detectors observed in Section 3.2,
i.e., Faster R-CNN degrades more than FCOS when
switched from “Pre-train & Fine-tune” to “Train from
Scratch”. We find that the unsatisfactory performances of
Faster R-CNN [36] are essentially caused by the internal
information loss in RoIPooling [10]. Specifically, RoIPool-
ing involves max pooling on a region of feature maps. It re-
quires to execute quantization or padding, if the coordinates
of RoI are float, or the size of region cannot be exactly di-
vided by the size of RoIPooling operator. The quantization
or padding inevitably causes information distortion [15],
hence hinders the gradients from being smoothly back-
propagated from region-level to backbone. The proposal-
based methods work well with pre-trained network mod-
els because they are well initialized by pre-trained weights,
while this is not true for training from scratch.

We empirically find that Faster R-CNN [36] can
also converge well if we replace RoIPooing [10] with
RoIAlign [15], in which any quantizations of the RoI
boundaries or bins are avoided. Instead, bilinear interpo-
lation is exploited to compute the exact values of the out-
put features. We train Swin-T based Faster R-CNN on
the COCO dataset, and show the experimental results in
Table 1. In the case of “Train from Scratch”, RoIAlign
achieves 3.7 points higher mAP than RoIPooling. While
in the “Pre-Train & Fine-tune” setting, the improvement is
relatively tiny, which validates our interpretations above.

4.2. From T-T-T-T to C-C-T-T

The convolution operations inherently have the inductive
bias towards local processing, which is replaced in vision
transformers by global processing performed by multi-head

mAP #param. FLOPs Memory

Faster R-CNN
T2-T2-T6-T2 30.3 68.93M 246.3G 15.1G
C2-C2-T6-T2 26.6 44.08M 188.31G 10.6G
C2-C2-T12-T4 37.9 72.63M 250.68G 15.8G

FCOS
T2-T2-T6-T2 23.6 35.73M 211.56G 14.2G
C2-C2-T6-T2 18.8 24.67M 187.16G 9.8G
C2-C2-T12-T4 29.5 39.51M 227.15G 14.4G

Table 2. From T-T-T-T to C-C-T-T. All experiments are trained
from scratch in this table, the results of “Pre-Train & Fine-tune”
setting are presented in ablation studies (Table 3). The C-C-T-T
architecture significantly boosts the mAP of both Faster R-CNN
and FCOS without consuming more resources.

self-attention [45]. Intuitively, it seems not so necessary
to conduct long-range attention modeling in pixel-level or
lower stages of backbones. Recent studies have also re-
vealed that large-scale pre-training essentially makes lower
attention layers to learn inductive bias and “act like convo-
lutions” [35]. Therefore, a natural idea is to replace early
self-attention layers with convolution, so as to directly in-
troduce the inductive prior of convolution into the model
and mitigate the dependence on large-scale pre-training.

Similar to ResNet [17], Swin Transformer also has four
stages, each of which consists of multiple stacked trans-
former blocks. We dub such an architecture as T-T-T-T,
where T stands for transformer. We replace the first two
T block with residual convolutional blocks (termed as C) to
introduce the inductive prior of convolution into the model.
As shown in Table 2, though such replacement is efficient
in resource (e.g., parameters, FLOPs and memories), the
resulting detection mAPs of both Faster R-CNN and FCOS
degrade, possibly due to the reduced model capacity.

Fortunately, thanks to the removal of high-resolution
self-attention operators in lower layers, we are feasible to
enhance the model capacity by heuristically stacking more
self-attention blocks to the latter two T blocks. As shown
in Table 2, the C-C-T-T architecture significantly boosts
the detection mAP of both Faster R-CNN and FCOS when
trained from scratch, without consuming more resources
than the vanilla T-T-T-T architecture 1. More variants of
architectures such as C-C-C-C and C-T-T-T are ablated in
Section 5.1.1.

4.3. Gradient Calibration

The heterogeneous C-C-T-T architecture introduces the
hybrid of convolution and self-attention layer. We observe
that they exhibit significant differences in terms of the norm
of layer gradient (defined below). The norm of layer gra-

1Strictly speaking, the C-C-T-T based detector cannot be called a vision
transformer based detector. However, for the simplicity of presentation, we
do not explicitly distinguish C-C-T-T and T-T-T-T architectures in concept,
and still refer the process of training both of them as training vision trans-
former based detectors.
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(c) More epochs with pre-training.

Figure 4. (a). Gradient calibration not only improves the final detection mAP, but also accelerates the convergence rate. (b). Detectors
trained from scratch require more epochs than those with pre-trained weights to reach convergence. (c). Under the long epochs training
schedules, C-C-T-T architecture trained from scratch converges to a solution that is no worse than the pre-trained T-T-T-T counterpart.

dient of self-attention layers can be up to 10 times as that
of convolution layers. Existing research has found that it is
better to adjust all of the layers a little rather than to adjust
just a few layers a large amount [49]. Therefore, we propose
to calibrate the gradients of our model, so as to achieve bet-
ter convergence property.

Definition 1 (Norm of gradient.). Given a N -layer neural
network, we define Ci,j to be the expected norm of the gra-
dient w.r.t. weights Wi(j) of layer i:

Ci,j = Ez0∈D

[(
zi−1(j)yi(j)

)2]
, (1)

where D is the set of training data, zi−1 is the activation of
layer i− 1, and yi is the backpropagated error of layer i.

Definition 2 (Norm of layer gradient.). Given norm of gra-
dient, the norm of layer gradient is defined as:

Ci = Ej

[
Ci,j

]
. (2)

The proposed gradient calibration works by adjusting
the scale of weights in each layer in initialization, so that
they are all equal to their geometry average. Specifically,
we first compose a batch with randomly selected samples
from the training set. Next, we forward and backward this
batch through our model to obtain the norm of layer gradi-
ent. Then, we compute the geometry average of all norms
of layer gradient, and find out the scale correction multi-
plier of each layer. Finally, we multiply the weights with
the scale correction multiplier so that they have the same
norm of layer gradient. The entire process is summarized in
Algorithm 1, where α in Line 4 is a hyper-parameter (0.25
in this work) against oscillatory behavior. As illustrated in
Figure 4a, the training curves of Faster R-CNN and FCOS,
with and without gradient calibration. The proposed gradi-
ent calibration not only improves the final detection mAP,
but also accelerates the convergence rate.

Here we also present another perspective to intuitively
interpret the benefits of gradient calibration. Typically,
Transformer models require a small learning rate to con-
verge, for example, 0.0005 in BERT [8], 0.001 in Swin

Algorithm 1 Gradient calibration.
1. Draw a batch of samples from training set
2. Compute the norm of layer gradient Ci = Ej

[
Ci,j

]
3. Compute the average ratio C̄ = (

∏
i Ci)

1
N

4. Compute scale calibration multiplier rk = (Ck/C̄)α

5. Calibrate the weights of each layer as Wk ← rkWk

Transformer [30]. In contrast, the learning rate for CNNs
is much larger, i.e., 0.1 for ResNet [17]. Though the opti-
mizers for vision transformer and CNNs are usually differ-
ent (e.g., AdamW vs. SGD), the significant gap in learning
rate suggests that it might be sub-optimal to naively train a
hybrid model of convolution and self-attention without any
adjustment.

4.4. More Training Epochs

Though gradient calibration accelerates the convergence
and improves final mAP, it is still unrealistic and unfair
to expect models trained from random initialization like
[16] to converge as well as those initialized from ImageNet
pre-training. Typical ImageNet pre-training can learn not
only semantic information, but also low-level features (e.g.,
edges, textures) that do not need to be re-learned during
fine-tuning.

Similar to the settings in Section 3.2, we train our de-
tectors with the initial learning rate and monitor the val-
idation set mAP at each epoch. When the mAP reaches
saturation, we decay the learning rate and continue to train
it until convergence. In consideration of the scale of the
COCO and ImageNet dataset, the iterations of “more train-
ing epochs” setting are still much less than the “pre-train &
fine-tune” pipeline (See Figure 2 of [14]). The experimen-
tal results are shown in Figure 4b. As expected, detectors
trained from scratch require more epochs than those with
pre-trained weights to reach convergence. Particularly, the
final mAP of both Faster R-CNN and FCOS are 45.8 and
38.9, which is superior or similar to their ImageNet pre-
trained counterpart, i.e., 42.5 and 38.8 as shown in Table 1
and Figure 3a, respectively. The qualitative comparisons of
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several samples are shown in Figure 2.
Moreover, we train T-T-T-T models initialized by Ima-

geNet pre-trained weights for long epochs, and explore dif-
ferent training schedules by varying the epochs at which the
learning rate is reduced (where the mAP leaps). As illus-
trated in Figure 4c, the C-C-T-T model trained from random
initialization needs more iterations to converge, but the final
mAP is no worse than of the fine-tuning counterpart.

5. Experiments
We conduct experiments on the MS COCO datasets and

measure detection performances by mean Average Preci-
sion (mAP). All codes and trained models will be made
public in future.

5.1. Ablation Studies

We first investigate the effectiveness of different archi-
tecture designs and different scale of backbone model. All
ablation studies are based on the Faster R-CNN detec-
tor [36]. The performance achieved by different variants
and backbones settings are reported in the following.

5.1.1 On the design of architecture

Based on the findings that lower attention layers to learn
inductive bias and “act like convolutions” [35], we propose
4 variants with increasingly more Transformer stages, i.e.,
C-C-C-C, C-C-C-T, C-C-T-T and C-T-T-T, where C and T
represent Convolution and Transformer respectively. For
the purpose of conducting fair comparisons of the 4 designs,
we will heuristically adjust the number of layers in each
stage, to make each of them consumes similar GPU memory
to that of T2-T2-T6-T2 (roughly 16G in this ablation study).

To systematically study the design choices, we evalu-
ate their performances in two different settings, i.e., “Pre-
train & Fine-tune”, “Train from Scratch”. For “pre-train &
fine-tune”, we pre-train the model on ImageNet dataset, and
fine-tune the weights on the COCO dataset for object detec-
tion, following the setting of Swin Transformer [30]; For
“train from scratch”, we conducted the training following
our proposed methods in Section 4.

The experimental results are shown in Table 3. On one
hand, under the “Pre-train & Fine-tune” paradigm, the full
transformer architecture T-T-T-T, which is exactly Swin-
T [30], achieves the highest mAP at 45.4. Also, we can ob-
serve that the performance monotonically grows during the
change from C-C-C-C to T-T-T-T, even if the total number
of layers is decreasing. Such a phenomenon demonstrates
the great modeling capacity of the self-attention operator.
On the other hand, when it moves to “Train from Scratch”
setting, C-C-T-T architecture shows the best detection per-
formance at 45.8, which reveals the good trade-off between
model capacity and inductive prior. Notably, under the same

Pre-train & Fine-tune Train from Scratch

C2-C2-C16-C6 43.5 42.3
C2-C2-C14-T5 44.1 43.8
C2-C2-T12-T4 45.3 45.8
C2-T2-T8-T3 45.4 44.8
T2-T2-T6-T2 45.5 43.4

Table 3. Different designs of backbone. The experimental results
validate the rationale of our choice of C-C-T-T architecture.

PT mAP mAPS mAPM mAPL

T2-T2-T6-T2 (Swin-T) ✓ 45.5 30.0 49.0 58.7
C2-C2-T12-T4 45.8 30.5 49.2 59.3

T2-T2-T18-T2, #Channel=96 (Swin-S) ✓ 48.2 32.9 52.2 62.2
C2-C2-T36-T4 (#Channel=96) 48.6 33.4 52.9 62.8

T2-T2-T18-T2, #Channel=128 (Swin-B) ✓ 51.0 35.5 54.8 64.4
C2-C2-T36-T4 (#Channel=128) 51.2 35.8 55.1 64.8

T2-T2-T18-T2, #Channel=192 (Swin-L) ✓ 52.9 37.0 56.7 66.5
C2-C2-T36-T4 (#Channel=192) 53.0 37.2 56.9 66.8

Table 4. Different scales of backbones. The proposed method
works well for various instances of Swin Transformer [30]. PT
stands for Pre-Training, the detectors initialized with ImageNet
pre-training are labeled by checkmarks.

consumption of memory, the C-C-T-T architecture trained
from scratch achieves 0.3 point higher mAP than the T-T-
T-T variant initialized from ImageNet pre-trained weights.
Several qualitative results are shown in Figure 5.

5.1.2 On the variants of Swin Transformer

We study the generability of the proposed method to other
Swin Transformer variants, namely, Swin-T, Swin-S, Swin-
B and Swin-L. Similar to previous settings, we adjust the
number of layers in the latter two stages, to make T-T-T-T
and C-C-T-T architectures consume similar resources.

The experimental results are shown in Table 4. The
#Channels denotes the channel number of the hidden layers
in the first stage for T-T-T-T architecture, and the channel
number of the residual unit in the first stage for C-C-T-T
architecture. The proposed method, trained from scratch,
consistently performs favorably against the vanilla Swin
Transformer counterpart that is initialized with ImageNet
pre-training, validating the efficacy of our work.

5.2. Working with State-of-the-Art Detectors

In this section, we train several state-of-the-art detec-
tors from scratch, including Cascade Mask R-CNN [1],
ATSS [55], RepPointsV2 [4] and Sparse R-CNN [40]. We
adopt the implementation provided by mmdetection [3].
There are 3 types of backbones for each of the 4 detec-
tors, i.e., 1). The C-C-C-C architecture, which is essentially
ResNet-50 [17]; 2). The T-T-T-T architecture, which is es-
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Figure 5. Results obtained by our vision transformer based detector, trained from scratch on COCO dataset.

Method Backbone PT mAP mAP50 mAP75 #params FLOPs FPS

Cascade
Mask R-CNN

C3-C4-C6-C3 (ResNet-50) ✓ 46.3 64.3 50.5 82M 739G 18.0
T2-T2-T6-T2 (Swin-T) ✓ 50.5 69.3 54.9 86M 745G 15.3
C2-C2-T12-T4 51.0 69.8 55.3 90M 725G 19.2

ATSS
C3-C4-C6-C3 (ResNet-50) ✓ 43.5 61.9 47.0 32M 205G 28.3
T2-T2-T6-T2 (Swin-T) ✓ 47.2 66.5 51.3 36M 215G 22.3
C2-C2-T12-T4 47.5 66.7 51.6 37M 217G 26.1

RepPointsV2
C3-C4-C6-C3 (ResNet-50) ✓ 46.5 64.6 50.3 42M 274G 13.6
T2-T2-T6-T2 (Swin-T) ✓ 50.0 68.5 54.2 45M 283G 12.0
C2-C2-T12-T4 50.4 68.9 54.5 48M 279G 14.6

Sparse
R-CNN

C3-C4-C6-C3 (ResNet-50) ✓ 44.5 63.4 48.2 106M 166G 21.0
T2-T2-T6-T2 (Swin-T) ✓ 47.9 67.3 52.3 110M 172G 18.4
C2-C2-T12-T4 48.2 67.4 52.6 113M 170G 22.3

Table 5. Working with sota detectors. The proposed methods demonstrate promising results than both C-C-C-C and T-T-T-T architectures.
PT stands for Pre-Training, the detectors initialized with ImageNet pre-training are labeled by checkmarks.

sentially Swin-T [30]; 3). The proposed C-C-T-T architec-
ture with gradient calibration. Note that the C-C-C-C and
T-T-T-T models are pre-trained on ImageNet, while ours is
randomly initialized. All combinations are trained on the
COCO dataset with multi-scale learning (resizing the input
such that the shorter side is between 480 and 800 while the
longer side is at most 1333), AdamW [31] optimizer (initial
learning rate of 0.0001, weight decay of 0.05, and batch size
of 16) and sufficiently long training epochs. The results are
shown in Table 5, the proposed C-C-T-T design with gra-
dient calibration demonstrates competitive performances in
all experiments.

6. Conclusion
The domination of convolutional neural networks

(CNNs) in various vision tasks has recently been challenged
by transformer models, which heavily depend on large-
scale pre-training to achieve competitive accuracy. The de-
pendence on pre-training not only hinders the freedom of
architectural design in downstream tasks like object detec-

tion, but also causes learning bias and domain mismatch
in the fine-tuning stages. In this work, we first show that
naively applying the experiences from training CNNs based
detectors to vision transformer based ones results in unsatis-
factory performances. Then, we demonstrate the feasibility
of training vision transformer based detectors from scratch,
and contribute a set of principles for realizing this goal. Par-
ticularly, the purpose of this work is not to propose a spe-
cific vision transformer based detector. Instead, we aim to
reveal the insights of training vision transformer based de-
tector from scratch, and expect those insights can help other
researchers and practitioners, and inspire more interesting
research in other fields, such as semantic segmentation [18],
image search [20, 22, 23, 50–54], etc. By introducing a se-
ries of effective modifications such as C-C-T-T and gradient
calibration, the proposed detectors demonstrate competitive
mAP to their pre-trained variants, under the same long train-
ing epochs schedule. Extensive experiments demonstrate
the merits and advantages of the proposed method.
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