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Figure 3. Average mask intensity and adversarial loss in training.

masks to Gy, and Gy, to emphasize the dominant plane,
and compute Lgy;g, by:
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where M; are the warped masks and 7 is the pixel index.

The second term is a feature identity loss Ly, that lets
the feature projector F be warp-equivalent [35], which is
written as:

Lrrr =|WMHap, F(1a)) — FOWVMHap, L)) ||, +

€)
IW(Hpa, F (1)) = F OV (Hea, 1))l
It forces F to filter luminance variations while keeping the
geometric transformation.
Finally, the overall loss function is written as:

Ltotal = Lalign + LFIL + Lplane- (9)

To achieve the best performance, we adopt a two-stage
strategy for network training. We first leave out the GAN
part and only train the remaining parts because we em-
pirically find that abnormal homography predictions in the
early stage may lead to unstable adversarial training. In this
stage, the masks in Eq. (7) and Lyjqne in Eq. (9) are tem-
porarily disabled. When the first stage converges, we add
the coplanarity-aware GAN back to the model, and enable
all loss terms to start the second stage training.

Discussion When constructing real pairs in the GAN, we
do not apply the predicted mask to them to avoid degener-
ate solutions, i.e., G simply generates all-zero masks. One
may question that the appearance discrepancy between real
and fake pairs will distract D from discriminating the copla-
narity. However, the GAN is not trained standalone, but as a
regularization of the transformer. If D simply discriminates
by appearance discrepancy, G will output all-one masks,
then it has zero impact on the main objective Lyign. To
reach the global optimum, the optimizer will guide D to
discriminate geometric discrepancy, so that G can output
masks of coplanar regions. To justify it, we visualize the
average mask intensity and the adversarial loss in training
in Fig. 3. We can see that the mask intensity first boosts
to ~1, and then falls to 0.2-0.4, which means that G is first
biased to all-one masks, but then corrected to output plane
masks. Meanwhile, the adversarial loss keeps declining, in-
dicating the effectiveness of our training strategy.

4. Experiments

Dataset Following [35] and [39], we evaluate our method
on a natural image dataset [39] with 75.8k training pairs
and 4.2k testing pairs of image size 320 x 640. In both sub-
sets, the image pairs are roughly evenly categorized into five
types of scenes, respectively are regular (RE), low texture
(LT), low light (LL), small foreground (SF), and large fore-
ground (LF), where the last four are challenging scenes for
homography estimation. For evaluation, 6 pairs of ground-
truth matching points are provided on each testing image.
We employ the average L2 distance from the predicted
points to the ground-truth points on the target image as the
evaluation metric.

Implementation Details In training, we randomly crop
patches of size 384 x 512 near the center of the original im-
ages as input to avoid out-of-bound coordinates after warp-
ing. The number of scale levels is set to & = 3. Our network
is implemented with PyTorch, and the training is performed
on four NVIDIA RTX 2080Ti GPUs. We employ the Adam
optimizer [17] with an initial learning rate of 1 x 10~ for
model optimization, and it decays by a factor of 0.8 every
epoch. The batch size is 8. The two stages of training take
10 and 2 epochs, respectively. We reinitialize the learning
rate to 1 x 10~° in the second stage.

4.1. Comparison with Existing Methods

Comparison methods We compare with three categories
of existing homography estimation methods: 1) Traditional
feature-based methods including SIFT [22], ORB [26] and
BEBLID [29]; 2) Learned feature-based methods includ-
ing LIFT [36], SOSNet [32] and SuperPoint [9]; 3) Deep
learning-based methods including Supervised [8], Unsuper-
vised [25], CA-Unsupervised [39] and BasesHomo [35].
For all traditional and learned feature-based methods, we
test them with two different outlier rejection algorithms
RANSAC [10] and MAGSAC [1], respectively. Besides,
SuperPoint is also tested with two customized rejection al-
gorithms SuperGlue-RANSAC (SG-RAN) and SuperGlue-
MAGSAC (SG-MAG) [27].

Qualitative comparison We first compare the qualitative
results of HomoGAN with other methods. In Fig. 4, we vi-
sualize the results of our method and four most related com-
parison methods, namely the deep learning-based methods,
on three images with challenging scenes. Fig. 4(a) is chal-
lenging because the plane of interest occupies a relatively
small portion of the image, and it contains moving and still
vehicles. In Fig. 4(b), the large fountain results in signifi-
cant depth disparity from the foreground to the background.
And Fig. 4(c) is a scene with low light and buildings in the
distance. As highlighted in the red and yellow boxes, exist-
ing methods cannot align these images as well as ours. The
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Figure 4. Qualitative results of our method and four other deep learning-based methods. Images are generated by superimposing the
warped source images on the target image. Error-prone regions are highlighted with red and yellow boxes. Best viewed with zooming in.

1) RE LT LL SF LF Avg

2)  Taxs 775(+2572.41%)  7.65(+1316.67%) 7.21(+1009.23%) 7.53(+1134.43%) 3.39(+726.83%)  6.70(+1240.00%)
3)  SIFT [22] + RANSAC [10] 0.30(+3.45%) 1.34(+148.15%)  4.03(+520.00%)  0.81(+32.79%)  0.57(+39.02%)  1.41(+182.00%)
4)  SIFT [22] + MAGSAC [1] 0.31(+6.90%) 1.72(+218.52%)  3.39(+421.54%)  0.80(+31.15%)  047(+14.63%)  1.34(+168.00%)
5)  ORB [26] + RANSAC [10] 0.85(+193.10%)  2.59(+379.63%)  1.67(+156.92%)  1.10(+80.33%)  1.24(+202.44%)  1.48(+196.00%)
6) ORB[26] + MAGSAC[!] 0.97(+234.48%)  3.34(+518.52%)  1.58(+143.08%)  1.15(+88.52%)  14(+241.46%)  1.69(+238.00%)
7)  BEBLID [29] + RANSAC [10] 0.78(+168.97%)  2.83(+424.07%)  138(+112.31%)  1.04(+70.49%)  1.33(+224.39%)  1.47(+194.00%)
8) BEBLID [29] + MAGSAC [1] 0.94(+224.14%)  3.73(+590.74%)  3.49(+436.92%)  1.17(+91.80%)  1.25(+204.88%)  2.12(+324.00%)
9)  LIFT [36] + RANSAC [10] 0.40(+37.93%)  2.01(+272.22%)  1.14(+75.38%)  0.77(+26.23%)  0.68(+65.85%)  1.00(+100.00%)
10) LIFT [36] + MAGSAC [ 1] 0.35(+20.69%)  1.85(+242.59%)  0.96(+47.69%)  0.72(+18.03%)  0.50(+21.95%)  0.88(+76.00%)
11)  SOSNet [32] + RANSAC [10] 0.29(+0.00%) 242(+348.15%)  3.71(+470.77%)  0.77(+2623%)  0.59(+43.90%)  1.56(+212.00%)
12)  SOSNet [32] + MAGSAC [1] 0.30(+3.45%) 3.00(+455.56%)  3.66(+463.08%)  0.87(+42.62%)  0.49(+1951%)  1.67(+234.00%)
13)  SuperPoint [9] + RANSAC [10] 0.43(+48.28%)  0.85(+57.41%)  0.77(+18.46%)  0.84(+37.70%)  0.8(+95.12%) 0.74(+48.00%)
14)  SuperPoint [9] + MAGSAC [1] 0.45(+55.17%)  0.90(+66.67%)  0.77(+18.46%)  0.76(+24.59%)  0.67(+63.41%)  0.71(+42.00%)
15)  SuperPoint [)]+SG-RAN [27][10] 0.41(+41.38%)  0.87(+61.11%)  0.72(+10.77%)  0.80(+31.15%)  0.75(+82.93%)  0.71(+42.00%)
16)  SuperPoint [9]+SG-MAG [27][1] 0.36(+24.14%)  0.79(+46.30%)  0.70(+7.69%) 0.71(+16.39%)  0.70(+70.73%)  0.63(+26.00%)
17)  Supervised [8] 1.51(+420.69%)  4.48(+729.63%)  2.76(+324.62%)  2.62(+329.51%)  3.00(+631.71%)  2.87(+474.00%)
18)  Unsupervised [25] 0.79(+172.41%)  2.45(+353.70%)  1.48(+127.69%)  1.11(+81.97%)  1.10(+168.29%)  1.39(+178.00%)
19) CA-Unsupervised [39] 0.73(+151.72%)  1.01(+87.04%)  1.03(+58.46%)  0.92(+50.82%)  0.70(+70.73%)  0.88(+76.00%)
20) BasesHomo [35] 0.29(+0.00%) 0.54(+0.00%) 0.65(+0.00%) 0.61(+0.00%) 0.41(+0.00%) 0.50(+0.00%)

21)  HomoGAN (Ours) 0.22(-24.14%) 0.41(-24.07%)

0.57(-12.31%) 0.44(-27.87%) 0.31(-24.39%) 0.39(-22.00%)

Table 1. The point matching errors of our method and all comparison methods. Red indicates the best result and blue indicates the second
best result. The percentages in the parentheses indicate the relative change in comparison to the second best result.

Supervised [8] method fails because it is trained on syn-
thetic pairs without real depth disparity and dynamic con-
tents, while the Unsupervised [8] method predicts homo-
graphies based on the entire image, thus leading to inferior
accuracy on the dominant plane. CA-Unsupervised [39],
and BasesHomo [35] implicitly suppress undesired regions
in their methods, but their performance is still limited by
the lack of explicit guidance. In contrast, our method could
automatically focus on the dominant plane.

In Fig. 5, we also compare with feature-based meth-
ods. These feature methods are supposed to be robust to
the plane-induced parallax with the help of outlier rejection
algorithms. However, they still struggle in scenarios with
blurry boundaries or low texture, such as the mountain and
the sea in the 1st and 3rd columns of Fig. 5. Without relying
on keypoints, our method remains robust in these scenes.

Quantitative comparison We report the quantitative re-
sults of all comparison methods in Table 1, where rows 3-8
are traditional feature-based methods, rows 9-16 are learned
feature-based methods, and rows 17-20 are deep learning-
based methods. Z3x3 in the 1st row refers to the identity
transformation, of which the error reflects the original dis-
tance between point pairs.

From Table 1, we can see that our method achieves the
state-of-the-art performance on all categories of the dataset
and outperforms the best existing method BasesHomo by
22%, with the matching error reduced from 0.50 to 0.39.
In regular (RE) scenes, feature-based methods usually per-
form well as these images are with high signal-noise ra-
tio and provide sufficient features. But our model still re-
duces the error on this category by 24.14% compared to
SOSNet+RANSAC. In low light (LL) and low texture (LT)
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1)  Modification RE LT

LL SF LF Avg

2)  Change to BasesHomo backbone 0.29(+31.82%)

3)  w/o weight token 0.23(+4.55%)
4)  w/o multi-scale 0.43(+95.45%)
5)  w/o plane mask 0.26(+18.18%)
6)  w/o coplanarity constraint 0.24(+9.09%)
7)  Change to CA mask 0.25(+13.64%)

0.50(+21.95%)
0.47(+14.63%)
1.01(+146.34%)
0.59(+43.90%)
0.50(+21.95%)
0.66(+60.98%)

0.63(+10.53%)  0.54(+22.73%)  0.36(+16.13%)  0.46(+17.95%)
0.66(+15.79%)  0.56(+27.27%)  0.37(+19.35%)  0.46(+17.95%)

1.25(+119.30%) 1.13(+156.82%) 0.61(+96.77%)  0.89(+128.21%)
0.59(+3.51%)  0.63(+43.18%)  0.40(+29.03%)  0.49(+25.64%)
0.64(+12.28%)  0.59(+34.09%)  0.36(+16.13%)  0.44(+12.82%)
0.57(+0.00%)  0.54(+22.73%)  0.38(+22.58%)  0.48(+23.08%)

8) Ours 0.22(+0.00%)

0.41(+0.00%)

0.57(+0.00%) 0.44(+0.00%) 0.31(+0.00%) 0.39(+0.00%)

Table 2. Results of ablation studies. Each row is the result of our method with a specific modification. Please refer to the text for details.

Input images CA masks
Figure 8. Masks predicted by CA-Unsupervised [39] and our
method. With the coplanarity constraint, our masks are able to

focus on a dominant plane. Best viewed in color.

Our masks

Multi-scale architecture In the transformer network, we
use three consecutive transformer modules to predict the
homography from coarse to fine. In this experiment, we
change to using only one module to directly predict the final
homography to validate the effectiveness of the multi-scale
architecture. From row 4 of Table 2, we find that when
using only one transformer module, the average error in-
creases to 0.89, which is significantly higher than the error
of 0.39 when using three modules. This result shows that
bridging the rich-semantic features at the high level with
high-resolution features at the low level in a coarse-to-fine
fashion is beneficial for homography estimation. Besides,
we visualize the alignment results after each transformer
module in Fig. 7. It illustrates how the predicted homo-
graphies at different levels progressively align two images.

Plane mask To validate the usefulness of the generated
plane mask, we remove all mask related operations from
our network and check the performance, which is exactly
the result of the first stage of training. With only the first
stage training, the average error of our network is 0.49, as
reported in row 5 of Table 2, which is already better than the
previous SOTA, but can still be reduced. After adding the
mask related operations back to the network and fine-tuning
for 2 more epochs, we further reduce the average error to
0.39. It clearly shows the usefulness of our plane mask.

Coplanarity constraint Mask prediction for unsuper-
vised homography estimation has been introduced by [39].
But in this work, we propose to impose the coplanarity
constraint to the mask to make it focus on the dominant

plane, which is realized by the coplanarity-aware GAN. In
this experiment, we try to use different methods to gener-
ate the mask to validate the necessity of coplanarity con-
straint. First, we remove the discriminator and the adver-
sarial loss from our network training, such that the mask
is generated without coplanarity constraint. Second, we
change the mask generation method to be the same as [39],
in which the masks are generated from the output of the fea-
ture projector and then applied to the extracted features and
the triplet loss. It also lacks the coplanarity constraint. The
results of our method with these two mask generation ap-
proaches are reported in row 6 and row 7 of Table 2. Com-
paring rows 6, 7, and 8, we can see that the mask gener-
ated by our coplanarity-aware GAN achieves the best per-
formance among the three. It indicates that imposing an ex-
plicit coplanarity constraint is more effective than implicit
mask generation in homography estimation. Moreover, we
display the masks generated by [39] and our method on
three representative images in Fig. 8. The visualizations
show that our method could generate masks that focus on
the dominant plane without interferences from foreground
objects in various scenes.

5. Conclusion

We have presented HomoGAN for unsupervised homog-
raphy estimation. We noticed the problem of plane-induced
parallax when learning homography without constraints,
and proposed a coplanarity-aware GAN to solve it. Com-
pared to previous methods, our method could generate a
dominant plane mask with explicit coplanarity constraint,
thus guiding the homography estimator to focus on the dom-
inant plane. Besides, a multi-scale transformer network has
been proposed to estimate the homography from coarse to
fine, which has gained improvement over previous CNN-
based estimators. With these two designs, we have achieved
the SOTA performance on the standard benchmark.
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