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Abstract

Explaining the generalization characteristics of deep
learning is an emerging topic in advanced machine learning.
There are several unanswered questions about how learning
under stochastic optimization really works and why certain
strategies are better than others. In this paper, we address
the following question: can we probe intermediate layers of
a deep neural network to identify and quantify the learning
quality of each layer? With this question in mind, we pro-
pose new explainability metrics that measure the redundant
information in a network’s layers using a low-rank factor-
ization framework and quantify a complexity measure that
is highly correlated with the generalization performance of
a given optimizer, network, and dataset. We subsequently
exploit these metrics to augment the Stochastic Gradient De-
scent (SGD) optimizer by adaptively adjusting the learning
rate in each layer to improve in generalization performance.
Our augmented SGD – dubbed RMSGD – introduces min-
imal computational overhead compared to SOTA methods
and outperforms them by exhibiting strong generalization
characteristics across application, architecture, and dataset.

1. Introduction

The task of predicting network generalization perfor-
mance using some measure of complexity based on training
data is an emerging topic in the field of machine learning.
Development of such “explainability” metrics is vitally im-
portant in order to understand and better explain the learn-
ing mechanisms involved in training of a given optimizer,
network, and dataset. Identifying the causal relationship
between some metric and generalization gap (or even testing
accuracy directly) in order to select optimal network topolo-
gies or tune hyper-parameters is an important problem and
actively researched today [10, 22, 23, 29, 36].

While the field of metric development for predicting gen-
eralization performance is growing (see related works in

*Equally major contribution

section 2), our interest in this work is to exploit such ex-
plainability metrics to augment the training of deep neural
networks (DNNS). We achieve this by defining new metrics
– stable rank, condition number, and a quality measure – de-
rived from the intermediate layers of DNNS during training
to access the true knowledge in the underlying weights and
express how well the network layers are functioning as high-
quality autoencoders for knowledge representation. Using
these metrics, we exploit their ability to quantify learning
in order to augment stochastic gradient descent (SGD) by
dynamically adjusting the learning rate.

From a different lens, this work also sheds light on the be-
haviour of commonly practiced hyper-parameter tuning tech-
niques like learning rate scheduling through decay methods
[12, 14, 17, 32, 33, 57] or functional methods [16, 32, 41, 42].
Little is understood about such methods and why they really
work and their use becomes more like alchemy rather than
analytical/empirical reasoning. We highlight how our met-
rics provide reasonable explanation to these strategies and
also how they can be used in a simple optimization frame-
work to augment SGD and gain performance. Our main
contributions are as follows:

[C1] We introduce new explainability metrics derived
using training data that quantify layer-level learning of neural
networks and are robust to the randomness of initialization.

[C2] We use these metrics to explain the training mecha-
nisms of neural networks for various optimizers and datasets,
and predict generalization characteristics in deep learning.

[C3] We exploit these metrics to augment SGD and intro-
duce our new RMSGD optimizer, which gains considerable
performance improvements at minimal computational cost
and generalizes well across experimental configuration.

2. Related Works
A variety of complexity measures have been recently

introduced for predicting network generalization such as
ℓp-norm signatures from network weights in [36], margin
distribution by measuring the distance between network
training and decision bounds [22], and a gradient signal-to-
noise-ratio (GSNR) measure from the evolution of training
weights [29]. A more comprehensive analysis of related
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measures and exploring their dependencies to a variety of
topological structures and datasets can be found in [10, 23].
A few other works also take further steps to train an estima-
tor on pairs of signature and test accuracy using a regression
model or fully-connected layers for high accuracy prediction
of generalization gap [5,52] and test accuracy [47]. A variant
of such studies also utilizes a neural complexity measure
as an additional regularizer to the loss function to acceler-
ate training and attempts at improving the generalization
gap [28]. While the above-mentioned metrics show strength
in predicting the network generalization, they are either (a)
defined as a function of overall network performance that
cannot be probed in intermediate layers of deep network for
performance measurement; or (b) are sensitive to the noise
perturbations of the weight structures which can potentially
lead to inconsistent behaviours as well as low correlation
accuracy measures. Our proposed methods do not suffer
from these drawbacks.

The field of stochastic optimization has grown consid-
erably for training DNNS. Families of stochastic gradi-
ent descent (SGD) based optimizers have been introduced
in [2, 3, 31, 37, 45, 55]. More advanced methods to increase
the generalization of SGD are also studied in [12, 17]. De-
spite good generalization characteristics of the SGD based
optimizers, tuning their associated hyper-parameters (such
as learning rate) are the main bottlenecks to their use in
practice. A variety of adaptive optimization algorithms are
also introduced to leverage an adaptive stochastic minimiza-
tion framework such as Adam [25], AdaBound [33] and
AdamP [17]. While adaptive based optimizers are shown
to work well across different applications such as computer
vision (CV) and natural language processing, they generalize
poorly to test data in CV applications [50]. Improvements
are made in [1, 8, 30, 33, 48] to overcome this issue however,
they still lack in performance when compared to SGD-based
methods. Our proposed work builds on top of SGD and
inherits its performance.

3. On Explainability Metrics

3.1. Low-Rank Factorization of Matrix Weights

We argue that it is useful to decompose the weight matri-
ces of the network being studied by low-rank factorization.
This will allow us to analyze the underlying information that
is learned during training. We first note that the weight ma-
trices to be decomposed can be obtained in one of two forms:
In the first form, if the weight matrix is part of a convolution
layer (i.e. it is 4-dimensional), similar to [27], it can be un-
folded as W4D ∈ Rh×w×ni×no

unfold−−−→ W ∈ Rm×n, where
w, h are the width and height of the convolution kernel and
ni, no correspond to the number of input and output chan-
nels, respectively. We unfold the tensor either on mode-3
(input channel) as W ∈ Rwhno×ni or mode-4 (output chan-

nel) as W ∈ Rwhni×no . In the second form, if the layer is
a simple linear layer, we can directly utilize the 2D tensor
W ∈ Rm×n of linear layers weights (e.g. fully-connected
layer, Transformer weights, etc). Note in the case of linear
layers, bias would be ignored. In both forms we assume
n ≤ m. We then obtain the low-rank structure by factorizing

Wℓ[Weight]
fac.−→ Ŵℓ[Low-Rank]+Eℓ[Noise] (1)

where, Ŵℓ is the low-rank matrix containing limited non-
zero singular values i.e. Ŵℓ = UΛV ⊤, where Λ =

diag{σ1, σ2, . . . σn′} and n′ = rank Ŵℓ. Here, n′ <
min(m,n) due to the low-rank property. For our experi-
ments, we employ the Variational Baysian Matrix Factoriza-
tion (VBMF) method [35] to perform the low-rank factor-
ization. This method provides a global analytical solution
and avoids an iterative algorithm by solving a quadratic min-
imization problem, meaning it is computationally efficient
and can be easily applied to multiple layers of arbitrary size
with minimal overhead (see Figure 4 for example).

(a) Low-Rank decomposition on layer ℓ = 25 of ResNet34 applied to CIFAR10

(b) Quality (Q) Measure

Figure 1. (a) Implication of low-rank factorization on weight matrix
taken from a particular layer of ResNet34; (b) Quality measure (Q)
on ResNet50 trained with different optimizers.
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The use of VBMF low-rank factorization allows our anal-
ysis to be robust to the randomness introduced by different
initialization methods employed in training. This factoriza-
tion is essential, and using techniques such as SVD directly
would be heavily influenced by the presence of noise and
prevent proper analysis. In the context of our application to
augmenting SGD, performance would be seriously degraded.

Initially, the low-rank component of the weight matrix
has an empty structure (i.e. Ŵℓ = ⊘) as the randomness
of the initialized weights is fully captured in the noise per-
turbing component E. As training progresses, the low-rank
component becomes non-empty and start learning to develop
meaningful mapping structure. Figure 1a demonstrates an
intuitive example of this development from a ResNet34 layer.
Notice how the low-rank structure is preserved during epoch
training while the noise fades away. This highlights how
training reduces the perturbing noise within the layers of a
neural network and strengthens the useful information em-
bedded in the low-rank structure. We state that this leads to
a stabilized encoding layer.

3.2. Probing Metrics

Given this notion of low-rank factorization, we wish to
now quantify how well a network layer encodes and propa-
gates information. To this aim, we borrow two metrics from
linear algebra matrix analysis: stable rank [4, 38] and condi-
tion number [19]. We apply these concepts to the low-rank
factorized weight matrices discussed earlier.

The stable rank is the norm energy of the singular values
of a given matrix. We propose a modified definition of the
stable rank on the low-rank structure Ŵℓ ∈ Rm×n as

s(Ŵℓ) =
1

n

∥ Ŵℓ ∥∗
∥ Ŵℓ ∥2

=
1

nσ2
1(Ŵℓ)

n′∑
i=1

σ2
i (Ŵℓ), (2)

where, σ1 ≥ σ2 ≥ · · · ≥ σn′ are the low-rank singular
values in descending order and ∥ · ∥∗ stands for nuclear norm
(also known as the Schatten norm). This metric encodes the
significance of low-rank span in the output (feature) mapping
space. A higher measure indicates a better encoder and
stronger carriage of information through the layer’s weight
matrix. Note that we normalize the stable rank by the smaller
input dimension n of the input matrix (since we assume
n ≤ m) to bound s(Ŵℓ) ∈ [0, 1].

The condition number is also defined as a relative ratio
of the highest and lowest singular values. We modify this
definition on the low-rank structure Ŵℓ ∈ Rm×n as

κ(Ŵℓ) = 1− σn′(Ŵℓ)/σ1(Ŵℓ). (3)

Note that κ(Ŵℓ) ∈ [0, 1]. This metric indicates the numeri-
cal sensitivity of the weight matrix’s mapping with respect to
input noise perturbations. Lower condition indicates higher

robustness to noise and better input-output mapping. A con-
cept example is shown in Figure 3 for the evolution of these
metrics across training epochs of a layer in ResNet18. Note
also that our metric development does not consider compo-
nents such as skip connections. We argue intuitively that
the influence of components such as skip connections gets
captured in the weight matrices of nearby layers as it learns,
and by thus analyzing the matrices themselves is a sufficient
task, which we show holds in our experiments.

3.3. On the Meaning of Probing Metrics

Given the definitions of stable rank in Equation 2 and
condition number in Equation 3, we argue that a stable
rank of 1 and condition number of 0 indicate a perfectly
learned network. Specifically, for the stable-rank, higher
value s(Ŵℓ) → 1 indicates that most singular values are
non-zero (i.e. σ2

i (Ŵℓ) > 0∀i ∈ [1, . . . , n′] where n′ → n.
This creates a subspace spanned by a set of independent vec-
tors corresponding to the non-zero singular values mentioned
above. In other words, s(Ŵℓ)→ 1 corresponds to a many-
to-many mapping but not a many-to-low (i.e. rank-deficient)
mapping. Also, note that the stable rank is measured on
the low-rank and not the raw measure of the weights. So
the higher value indicates that the learned weight matrix
contains more non-empty structure which can be interpreted
as a sign of meaningful learning.

For the condition number, we note that this metric also
defines the numerical sensitivity of the inverse matrix Ŵℓ

toward minor input pertubations. Note that the error resid-
ual reconstruction under the linear system y = Ŵℓx will
be bounded by ∥ x − x̂ ∥ / ∥ x ∥< cσ1(Ŵℓ)/σn′(Ŵℓ),
where x and x̂ are the underlying and recovered signals, re-
spectively, and c is some constant measure from the linear
system. We defer to [19] for more information. Thus, the
mapping condition has a direct impact on the residual recon-
struction. This is specifically important during DNN training,
where gradients are back-propagated and the matrix weights
are involved in adjoint form for parameters updates. If the
condition number is low (i.e. κ(Ŵℓ) → 0) then the noise
perturbations from gradients will be accumulated during
the iterative training phase and accordingly it yields a poor
learned weight matrix for space mapping (i.e. the encoding).

Given this understanding, we the wish to incorporate both
metrics into a single probing measure to quantify quality of
learning. We tackle this in the following section.

3.4. Quality Measure on Learned Network

We now aim to combine stable rank and condition number
to develop a new quality measure that can help us quantify
the quality of a learned network and describe its general-
ization characteristics. We know from subsection 3.3 that a
stable rank of 1 and condition number of 0 would indicate a
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Network CIFAR10 CIFAR100
PLCC (%) ROCC (%) PLCC (%) ROCC (%)

Gen. Gap Test Acc. Gen. Gap Test Acc. Gen. Gap Test Acc. Gen. Gap Test Acc.

ResNet18 88.18 88.18 74.54 74.54 69.09 47.27 52.73 34.55
ResNet34 83.63 81.82 70.90 67.27 91.82 90.00 78.18 74.54
ResNet50 97.90 97.90 90.90 90.90 72.03 79.02 57.57 66.66
ResNet101 88.81 88.81 78.79 78.79 67.13 74.13 51.52 57.58

(a) Q Metric on ResNets (b) Q Metric on NATS Benchmark

Figure 2. Our proposed Q measure against generalization gap and test accuracy. (a) Applied on numerous optimizers and hyper-parameter
settings (see Table 1a) (dots represent a different experimental setup) on ResNets, with associated PLCC and ROCC correlations for our Q
measure and generalization gap (Gen. Gap) and test accuracy (Test Acc.). We consider Q at the last epoch of training. (b) Applied on the
NATS benchmark [7] on CIFAR10, where the top figure visualizes epoch 12 and the bottom visualizes epoch 90 of training.

perfectly learned network. We propose the following quality
measure to capture these properties:

q(Ŵℓ) = arctan s(Ŵℓ)/κ(Ŵℓ), where ℓ ∈ [L] (4)

where arctan(·) is the element-wise arctangent, and q is
bound by [0, π2 ]. Further, q is maximized when s → 1 and
κ → 0. Figure 1b visualizes the evolution of this quality
measure on different conv layers of ResNet34 trained by
different optimizers. The figure highlights the behaviour
of this metric in response to poor and strong generalization
performances. For instance, the Adam optimizer is known to
provide poor generalization performance in CV applications,
while the family of SGD-based optimizers are known to
yield better performance [12, 17, 50]. We argue that this lack
of performance from adaptive optimizers is realized by the
low quality measure on latter layers of the ResNet34 model;
this is visualized in Figure 1b by the darkness in the bottom
of the figure. In contrast, the well performing SGD-based
optimizers result in higher quality measure more consistently
throughout the network, indicating better learned weights at
all stages in the network.

We can define the overall quality measure of the network
by aggregating all layers using an L2-norm

Q = 1/
√
L ∥ q ∥22, where q = [q(Ŵ1), · · · , q(ŴL)]. (5)

Normalizing by the square root of the number of layers
accounts for the summation over layers within the ℓ2-norm
space. We found this normalization method to behave better
than a simple mean.

We perform a small study on our quality metric against
the popular NATS Benchmark [7] on CIFAR10 as well on

a collection of ResNets on CIFAR10 and CIFAR100. We
visualize our metric and associated correlation coefficients
in Figure 2a & Figure 2b. The NATS Benchmark is a Neural
Architecture Search benchmark that provides model check-
points at epoch 12 and epoch 90 in training, and whose goal
is to predict performance/characterize generalization. These
model checkpoints are of the 32,768 different topological
models generated in the benchmark, and each involve a range
of model sizes/complexities. As for the ResNets study, we
employed a similar technique as Google’s generalization pre-
diction using margin distributions [22] whereby we trained
various ResNets with various optimizers and computed our
measure for each. The plots and table highlight how this
metric is a strong indicator for both generalization perfor-
mance as well as test performance, and most networks have
very strong correlation scores.

Finally, we highlight that this explainability metric is (a)
derived using only training data, meaning it can be used to
predict the network’s generalization to unseen data; (b) can
quantify the contribution and strength of each layer in the
network, not just the layer as a whole as in previous methods
[22, 29, 36]; and (c) is unaffected by random initialization
due to low-rank factorization. Note that these points also
apply inherently to stable rank and condition number. This
can potentially shed light on new layer-based optimization
methods, one of which we explore in section 4.

4. Augmenting SGD by Probing Metrics

Our goal in this section is to exploit the probing metrics
developed in subsection 3.2 and develop an augmented SGD
optimization algorithm that improves model performance.
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4.1. New Updating Mechanism on Vanilla SGD

Recall the SGD training objective to minimize an associ-
ated loss function given a training dataset f(Wℓ; (X)train)
[2, 3, 31, 37, 55]. The update rule is then given by

Wk
ℓ ←−Wk−1

ℓ − ηk∇fk(W
k−1
ℓ ) (6)

for k ∈ {(t− 1)K +1, · · · , tK} where t and K correspond
to epoch number and number of mini-batches, respectively,
∇fk(W

k−1
ℓ ) = 1/|Ωk|

∑
i∈Ωk

∇fi(Wk−1
ℓ ) is the average

stochastic gradients on kth mini-batch that are randomly
selected from a batch of n-samples Ωk ⊂ {1, · · · , n}, and
ηk defines the step-size taken toward the opposite direction
of average gradients (i.e. the learning rate).

We aim to update the learning rate independently for each
network layer after every epoch and therefore the step-size
will be a function of epoch index and layer i.e. ηk ≡ ηℓ(t).
We now setup our problem by accumulating all observed
gradients throughout K mini-batch updates in one epoch as

Wt
ℓ = Wt−1

ℓ − ηℓ(t− 1)∇f tℓ, (7)

where, ∇f tℓ =
∑tK

k=(t−1)K+1∇fk(W
k−1
ℓ ) corresponds

to the total accumulated gradients in one training epoch.
The idea here is to select a learning rate ηℓ(t) such that
the stable rank is increased over each epoch i.e. ψ =

{ηℓ(t) : s(Ŵ
t

ℓ) ≥ s(Ŵ
t−1

ℓ )} in order to learn better en-
coding layers.

Theorem 1 (Increasing Stable Rank for Vanilla SGD). Let
the stable rank to be defined by Equation 2. Starting with an
initial learning rate ηℓ(0) > 0 and setting the step-size of
vanilla Stochastic Gradient Descent (SGD) proportional to

ηℓ(t) ≜ ζ
[
s(Ŵ

t

ℓ)− s(Ŵ
t−1

ℓ )
]

(8)

will guarantee the monotonic increase of the stable rank for

the next epoch update s(Ŵ
t+1

ℓ ) ≥ s(Ŵ
t

ℓ) for some existing
lower bound η(t) ≥ η0 and ζ ≥ 0.

The proof of Theorem 1 is provided in the supplementary
material (Appendix-A).

With the start of a positive initial learning rate ηℓ(0) > 0
and following the update rule in Equation 8, Theorem 1
guarantees the increase of the stable rank for the next epoch
update for Vanilla SGD. Accordingly, learning rates using
Equation 8 will remain positive over consecutive epochs.
For proof of demonstration, refer to Figure 3. We note in
Figure 3 that the SGD type training degrades in stable rank
over time, as the network learns more, while in contrast our
method RMSGD doesn’t. The idea is to have a high stable
rank after training has completed, which we can see that
SGD’s algorithm does not exhibit stable behaviour. Further,
SGD has higher stable rank, but worse (i.e. higher) condition
number. In contrast, RMSGD has a good stable rank, as well
as a much better condition number (i.e. lower).

4.2. RMSGD: Augmented SGD Algorithm

The step-size defined in subsection 4.1 for Vanilla SGD
is measured only for two consecutive epochs. Due to the
stochastic nature of gradients, the in-practice step-size can
fluctuate. To reduce step-size oscillations, we employ a
momentum algorithm for the historical accumulation of step-
sizes and stable ranks over epoch updates. We augment the
update rule for SGD by performing the following:

(i) revise learning rate by average momentum:

ηℓ(t)← βηℓ(t− 1) + ζ[s(Ŵ
t

ℓ)− s(Ŵ
t−1

ℓ )],
(ii) apply gradients through an average momentum

vk
ℓ ← αvk−1

ℓ − ηℓ(t)gk
ℓ ,

(iii) update network weights:
wk

ℓ ← wk−1
ℓ + vkℓ ,

where, k, t and ℓ correspond to the current mini-batch, cur-
rent epoch, and network layer indexes, respectively. v is
the velocity term, and w are the learnable parameters. No-
tice there are two associated momentum parameters: (1)
SGD momentum fixed at α = 0.9; and (2) learning mo-
mentum fixed at β = 0.98. We pick ζ = 1 and learning
momentum β < 1 to remain within the convergence bound
of the unit circle associated with the update rule (i). Setting
β trades-off between faster convergence and increased sta-
ble rank, which eventually leads to higher performance. An
ablative study of this parameter is shown in Figure 3. We pro-
vide further study of this parameter in Appendix-B. We dub
this optimizer Rank Momentum SGD: RMSGD1, and show
pseudo-code in Algorithm 1. The condition number plays
no role in this algorithm, but we introduced it previously as
an additional metric to evaluate/quantify learning. We show
here that just one of our metrics is sufficient to develop our
algorithm, and future work might include combining both.

Each layer in the network is assigned an index {ℓ}Lℓ=1

where all learnable parameters (e.g. conv, linear transform,
biases, batch-norms, etc) are called using this index. The
goal in RMSGD is first to callback the matrix weights of

each layer, second to compute the stable rank s(Ŵ
t

ℓ) of each
layer using Equation 2, third to compute the difference gain
using Equation 8, and finally accumulate this difference
value in a decaying momentum fashion. This is performed
to compute the learning rate of each layer independently
for the current epoch t to augment the SGD optimization
framework. We note here that the initial stable rank is zero
s(Ŵ

0

ℓ) = 0 for all layers due to random initialization of
weights. Figure 3 demonstrates an evolution example of the
learning rate adapted by RMSGD. Interestingly, the behav-
ior of learning rate coincides with scheduling techniques
using cyclical learning in [41,42] and warm-up/cosine decay
in [16]. We believe our method explains the intuition behind

1Code from https://github.com/mahdihosseini/RMSGD
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Figure 3. Comparison of (left) explainability metrics, (middle-left) Quality Measure, and (middle-right) learning rates for optimizers on
ResNet50 applied to CIFAR10 over 140 epochs. (right) Effect of varying the learning momentum factor β on testing accuracy for ResNet34
on CIFAR10.

Algorithm 1: Augmented SGD (RMSGD)
Require: batch size |Ωk|, # epochs T , # layers L, initial step-sizes
{ηℓ(0) = 0.03}Lℓ=1, initial vectors

{
v0ℓ ,w

0
ℓ

}L

ℓ=1
, SGD momentum

α = 0.9, learning momentum β = 0.98, ζ = 1
for t = 1 : T do

Stage-I: SGD optimization augmented by adaptive learning rates
- generate K mini-batches: {Ωk ⊂ {1, · · · , n}}Kk=1
for k = (t− 1)K + 1 : tK do

1. compute gradients:
gk
ℓ ← 1/|Ωk|

∑
i∈Ωk

∇fi(wk−1
ℓ ) ; ℓ ∈ {1, · · · , L}

2. compute velocity terms: vk
ℓ ← αvk−1

ℓ − ηℓ(t)g
k
ℓ

3. apply updates: wk
ℓ ← wk−1

ℓ + vk
ℓ

end for
Stage-II: adaptive computation of learning rates
for ℓ = 1 : L do

1. Factorize matrix weights Ŵ
t

ℓ by Equation 1 using EVBMF [35]
2. compute stable rank s(Ŵℓ) by Equation 2

3. update LR: ηℓ(t)← βηℓ(t− 1) + ζ[s(Ŵ
t

ℓ)− s(Ŵ
t−1

ℓ )]
end for

end for

such scheduling technique and why the learning rate is sug-
gested to start from small value and increase with proceeding
epochs (i.e. warm-up), and then decay to finalize training.

Proposition 1 (Convergence Guarantees of RMSGD).
Given RMSGD only evolves the learning rate and ensures
that ηℓ(t) > 0 ∀t ∈ {1, . . . , T}, its convergence guarantee
follows that of SGD [31, 56].

We further elaborate on the proof in Appendix-A.

5. Empirical Evaluation
Setup. We evaluate RMSGD against state-of-the-art

adaptive and non-adaptive optimizers and conduct dif-
ferent studies including (a) image classification on CI-
FAR10/CIFAR100 [26], ImageNet [39], as well as on two
computational pathology datasets (MHIST [49] and ADP
[20]). Hyper-parameters are tuned using ResNet18 on CI-
FAR10; (b) image classification with Cutout [6]; and (c)
batch size robustness. Grid search is used for learning

rate tuning. For full details on data augmentation, hyper-
parameter tuning, and additional results, see Appendix-B.

Hardware. A single-GPU (RTX2080Ti) was used for
each experiment, see Appendix-B for specifics.

Note. For all tables, green shows the best result and
orange is within standard deviation from best.

5.1. Image Classification

Note on CIFAR experiments. Since different optimizers
exhibit widely different epoch times (see Figure 4), for a fair
comparison, we limit training to the total wall clock time
consumed by 250 epochs using SGD. In terms of epochs,
this amounts to ∼ 250 epochs for all optimizers except
SAM, which consumes only ∼ 128− 133 epochs due to its
2 forward passes and twice as long epoch times.

Computer Vision: CIFAR. We report all results in
Table 1a and some in Figure 4, with the other figures
in Appendix-B. RMSGD performs consistently optimally,
and shows strength with increasing dataset complexity (CI-
FAR10→ CIFAR100) and increasing network complexity
(ResNet18→ ResNet34→ ResNet50→ ResNet101). We
note that SGDP and SAM do remain within standard de-
viations of performance in many cases, which highlights
the competitiveness of these optimizers. Note that for other
adaptive optimizers, the competitiveness is non-existent.

We further highlight the performance to time results
shown in Figure 4. Despite SAM’s competitive performance,
it consumes ∼ 2× as many seconds per epoch to train. We
highlight how RMSGD is able to outperform while incur-
ring very low computational overhead. SAM does exhibit
better generalization by its lower train-test gap. Note that for
scenarios where additional resources or time is available, we
also report final performance of all optimizers at epoch-250
in Appendix-B.

Computer Vision: CIFAR with Cutout. We also com-
pare RMSGD using cutout, as one may argue that cutout can
be used to augment SGD and negate the need for adaptive op-
timizers. However, we can see from Table 1b that RMSGD
with cutout is still able to consistently outperform SAM,
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Table 1. Perfomance of various networks and optimizers on CIFAR10 and CIFAR100 (a) without Cutout and (b) with Cutout. Reported
using wall clock time of 250 SGD training epochs as the cutoff. Note ResNet{18, 34, 50, 101}=R{18, 34, 50, 101} and ResNeXt=RNeXt.

(a) Without Cutout

Network AdaBelief [57] AdaBound [33] AdaGrad [9] Adam [25] AdamP [17] SLS [48] SAM [12] SGD [14] SGDP [17] RMSGD

C
IF

A
R

10

R18 [15] 93.340.10 93.840.09 92.450.24 93.270.10 94.820.10 93.620.10 95.580.07 95.320.07 95.390.16 95.660.17

R34 [15] 93.550.05 93.790.19 92.590.30 93.470.18 95.140.25 93.450.16 95.810.16 95.560.10 95.750.14 95.710.07

R50 [15] 93.700.18 94.000.15 92.120.23 92.670.12 94.690.10 92.700.18 95.200.18 95.050.28 95.190.15 95.630.05

R101 [15] 93.860.20 94.170.13 92.510.22 93.130.08 94.920.24 64.2020.98 95.400.12 95.300.13 95.360.04 95.530.14

RNeXt [51] 93.550.05 92.830.14 91.090.19 91.780.16 93.820.10 93.670.09 94.380.09 94.620.09 94.790.24 95.490.05

C
IF

A
R

10
0 R18 73.110.21 74.090.27 70.920.31 72.450.34 76.810.31 73.590.04 77.160.25 77.800.07 78.130.16 78.630.34

R34 73.430.14 74.840.18 70.390.57 72.090.50 76.930.40 73.220.11 77.980.39 77.880.39 78.740.12 79.320.10

R50 75.150.45 75.520.37 70.600.91 70.530.36 77.470.16 75.800.23 77.390.66 78.120.42 78.440.24 79.590.54

R101 75.630.10 76.310.41 72.390.84 72.200.68 77.710.16 73.310.84 78.380.48 78.480.45 78.600.55 79.360.26

RNeXt 72.640.49 72.970.38 68.830.43 71.540.41 74.540.40 72.350.42 75.830.30 75.360.33 76.560.33 77.140.31

(b) With Cutout

CIFAR10 CIFAR100
Network SAMC SGDC SGDPC RMSGDC SAMC SGDC SGDPC RMSGDC

ResNet18 95.960.13 96.120.13 96.130.13 96.130.08 77.580.11 78.160.21 78.820.37 78.530.22

ResNet34 96.640.09 96.530.13 96.700.10 96.420.08 78.570.19 78.630.55 79.670.24 79.700.19

ResNet50 95.790.10 95.780.27 96.030.16 96.280.07 77.730.28 78.360.67 79.520.31 80.060.45

ResNet101 96.170.08 96.040.16 96.120.05 96.330.08 79.410.66 79.350.62 80.030.67 80.360.35

ResNeXt 95.010.18 95.040.18 95.240.15 95.620.08 76.340.06 75.910.19 77.140.21 78.060.28

MobileNetV2 [40] 94.650.12 94.530.16 94.070.07 95.480.11 75.430.18 73.940.21 73.400.07 76.360.27

SENet18 [21] 95.920.16 95.990.10 96.040.08 95.800.06 77.640.32 77.800.23 77.700.05 77.770.15

EfficientNetB0 [46] 90.440.23 91.700.24 92.090.21 92.830.14 69.100.50 68.420.24 68.980.44 69.870.49

ShuffleNetV2 [34] 94.710.15 94.400.21 94.370.12 95.010.29 74.700.19 74.130.35 74.440.29 74.380.36

Table 2. Test accuracy results for MobileNetV2 on ImageNet using
a batch size of 128, trained a single GPU machine.

Epoch SAM SGD RMSGD
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

150 61.41 83.86 59.80 82.56 67.84 88.32
250 63.43 85.24 62.16 84.21 70.25 89.66

Table 3. Test accuracy results for MobileNetV2 and ResNet50 on
ImageNet using a batch size of 256, trained a single GPU machine.

Network SAM SGD AdamP RMSGD

MobileNetV2 63.38 64.61 69.40 71.24
ResNet50 75.51 76.12 75.85 76.42

Table 4. Test accuracy results for computational pathology
datasets. Note that ResNet18=R18, ResNet34=R34, and Mo-
bileNetV2=MV2

Net Adam AdamP SAM SGD SGDP RMSGD

M
H

IS
T R18 79.920.80 80.571.43 80.781.61 80.761.32 80.530.65 81.801.20

R34 81.020.95 80.570.88 80.721.12 79.651.98 80.160.85 80.940.85
MV2 79.900.95 80.590.52 82.890.93 81.410.81 80.801.58 82.580.64

A
D

P R18 92.750.20 94.040.12 93.280.12 93.220.17 93.480.43 94.270.10
R34 92.800.06 93.950.08 93.240.11 93.380.14 93.650.12 94.190.21
MV2 92.890.17 93.780.09 89.431.46 88.811.32 91.420.53 93.830.28

SGD, and SGDP, and incurs great improvements (∼ 1%)
over its non-cutout performance.

Computer Vision: ImageNet. We report ImageNet re-
sults in Table 2, Table 3, and Figure 4. The ∼ 7% top-1 test
accuracy performance gap highlights RMSGD’s strength
over SGD and SAM, even with no ImageNet-specific hyper-
parameter tuning. This highlights how RMSGD may be
used to tackle larger datasets with smaller computational
resources. SGD and RMSGD took 1 week to train, while
SAM took 2. The performance differences from the original
MobileNetV2 [40] relate to the smaller batch size of 128.

Computational Pathology: MHIST & ADP We report
our computational pathology results in Table 4 and some
shown in Figure 4. We show that RMSGD is able to outper-
form all optimizers on ADP. All optimizers tend to perform
similarly on MHIST, likely due to its smaller size. Computa-
tional pathology dataset are included in the experiments as
an additional (less conventional) dataset that pose additional
challenges (e.g. difficulty and scarcity of labels, image size).

Batch Size. We report
our ablative batch size study
in Figure 4. We highlight
RMSGD’s greater robustness
to varying batch sizes, par-
ticularly compared to SAM.
SGD exhibits robustness but
has inferior performance.

6. Concluding remarks

In this work we introduced probing metrics (i.e. stable
rank, condition number, and a quality measure) and demon-
strated how they can be used to quantify learning of neural
networks and be used as indicators for generalization perfor-
mance. We demonstrated how these metrics can be exploited
very simply to augment vanilla SGD and achieve signifi-
cant performance gains with extremely low computational
overhead (< 1s per training epoch).

Computational cost vs. performance benefits. We
highlight that RMSGD is able to remain extremely com-
putationally efficient, while incurring performance benefits
across many applications, network complexities, and dataset
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Figure 4. Test/train performance on different selections of dataset, network and optimizer. The cutout augmentation is annotated with a C. A
single GPU is used for all experiments including for ImageNet results with batch size of 128.

complexities. This is in contrast to optimizers like SGDP,
who are superior to SGD but incur computational cost and
slightly lower performance than RMSGD. SAM has also
shown to result in performance improvements over SGD,
however at a significant cost computationally (double that
of SGD). We further highlight that SAM tends to also lose
performance in scenarios where the batch size is small for
ImageNet training. RMSGD is able to remain very perfor-
mant in low computational environments. A comparative
study is done in Appendix-B for epoch time analysis on vari-
ous setup of network and dataset using different optimizers.

Learning rate as regularization. We emphasize
RMSGD’s robustness to varying batch sizes, and partic-
ularly its high performance levels on low batch sizes, as
compared to SGD and SAM who lose performance (e.g.
on ADP – Table 4, ImageNet – Table 2). We hypothesize
that RMSGD’s ability to dynamically adjust its learning rate
per layer regularizes training in a manner that larger batch
sizes normally do [16, 18, 24, 43]. With larger batch sizes,
model gradient updates in SGD yield low variance and using
a higher learning rate is possible in order to achieve bet-
ter performance. However, such scaling is not consistent

across optimizer selection. We found that scaling the batch
size with SAM can in fact degrades performance. This is
similar to what has been reported in [11, 53, 54] where train-
ing stability when using larger batch sizes varies for each
layer in a network. This finding led to the development of a
new optimizer that used layer-wise learning rate scheduling
and demonstrated improved performance in large batch size
settings. The concept of RMSGD’s per-layer learning rate
adjustment, enabled by tracking the per-layer stable rank,
also permits such a stablilization behaviour; but works well
even when using small batch sizes for training. We argue that
this explains why its performance levels remain consistently
high in different batch size setups.

Societal impact. Recent works [13, 44] have highlighted
the risks of AI on climate change, and being computationally
efficient to reduce carbon footprint is important. We showed
that RMSGD is able to run on minimal hardware and achieve
superior results, contributing towards this idea.
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