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Abstract

This article addresses the problem of distilling knowl-
edge from a large teacher model to a slim student network
for LiDAR semantic segmentation. Directly employing pre-
vious distillation approaches yields inferior results due to
the intrinsic challenges of point cloud, i.e., sparsity, ran-
domness and varying density. To tackle the aforementioned
problems, we propose the Point-to-Voxel Knowledge Distil-
lation (PVD), which transfers the hidden knowledge from
both point level and voxel level. Specifically, we first lever-
age both the pointwise and voxelwise output distillation to
complement the sparse supervision signals. Then, to better
exploit the structural information, we divide the whole point
cloud into several supervoxels and design a difficulty-aware
sampling strategy to more frequently sample supervoxels
containing less-frequent classes and faraway objects. On
these supervoxels, we propose inter-point and inter-voxel
affinity distillation, where the similarity information be-
tween points and voxels can help the student model better
capture the structural information of the surrounding en-
vironment. We conduct extensive experiments on two pop-
ular LiDAR segmentation benchmarks, i.e., nuScenes [3]
and SemanticKITTI [1]. On both benchmarks, our PVD-
consistently outperforms previous distillation approaches
by a large margin on three representative backbones, i.e.,
Cylinder3D [36, 37], SPVNAS [25] and MinkowskiNet [5].
Notably, on the challenging nuScenes and SemanticKITTI
datasets, our method can achieve roughly 75% MACs re-
duction and 2× speedup on the competitive Cylinder3D
model and rank 1st on the SemanticKITTI leaderboard
among all published algorithms1. Our code is available at
https://github.com/cardwing/Codes-for-
PVKD.

1https://competitions.codalab.org/competitions/20331#results (single-
scan competition) till 2021-11-18 04:00 Pacific Time, and our method is
termed Point-Voxel-KD. Our method (PV-KD) ranks 3rd on the multi-scan
challenge till 2021-12-1 00:00 Pacific Time.

1. Introduction

LiDAR semantic segmentation plays a vital role in the
perception of autonomous driving as it provides per-point
semantic information of the surrounding environment. With
the advent of deep learning, plenty of LiDAR segmentation
models have been proposed [14, 25, 26, 37] and have domi-
nated the leaderboard of many benchmarks [1,3]. However,
the impressive performance comes at the expense of heavy
computation and storage, which impedes them from being
deployed in resource-constrained devices.

To enable the deployment of these powerful LiDAR
segmentation models on autonomous vehicles, knowledge
distillation [10] is a prevailing technique to transfer the
dark knowledge from the overparameterized teacher model
to the slim student network to achieve model compres-
sion. However, directly applying previous distillation algo-
rithms [9, 10, 17, 24, 28] to LiDAR semantic segmentation
brings marginal gains due to the intrinsic difficulty of point
cloud, i.e., sparsity, randomness and varying density.

To address the aforementioned challenges, we propose
the Point-to-Voxel Knowledge Distillation (PVD). As the
name implies, we propose to distil the knowledge from both
point-level and voxel-level. Specifically, to combat against
the sparse supervision signals, we first propose to distil
the pointwise and voxelwise probabilistic outputs from the
teacher, respectively. The pointwise output contains fine-
grained perceptual information while the voxelwise predic-
tion embraces coarse but richer clues about the surrounding
environment.

To effectively distil the valuable structural knowledge
from the unordered point sequences, we propose to ex-
ploit the point-level and voxel-level affinity knowledge. The
affinity knowledge is obtained via measuring the pairwise
semantic similarity of the point features and voxel features.
However, straightforwardly mimicking the affinity knowl-
edge of the whole point cloud is intractable since there are
tens of thousands of points and the affinity matrix of these
point features have over ten billion elements. Consequently,
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Figure 1. Comparison between the prediction of our method
(PVD) and the competitive channel distillation (CD) algo-
rithm [24] on SemanticKITTI validation set. Points that are mis-
takenly classified are painted red for better visualization. It is obvi-
ous that PVD can make the student model predict more accurately
for those minority classes (person) and faraway objects (bicycles,
highlighted with green rectangles) than the baseline distillation ap-
proach. Here, KD denotes knowledge distillation.

we put forward the supervoxel partition to divide the whole
point cloud into a fixed number of supervoxels. At each dis-
tillation step, we only sample K supervoxels and distil the
affinity knowledge computed from point features and voxel
features in these supervoxels, thus significantly enhancing
the learning efficiency. Considering that uneven number-
of-points distribution exists among different classes and ob-
jects at distinct distances, we further introduce a difficulty-
aware sampling strategy to more frequently sample super-
voxels that contain minority classes and faraway objects,
emphasizing the learning on hard cases.

We summarize our contributions as follow. To our
knowledge, we are the first to study how to apply knowledge
distillation to LiDAR semantic segmentation for model
compression. To address the difficulty of distilling knowl-
edge from point cloud, namely sparsity, randomness and
varying density, we propose the point-to-voxel knowledge
distillation. In addition, we put forward the supervoxel par-
tition to make the affinity distillation tractable. A difficulty-
aware sampling strategy is also employed to more fre-
quently sample supervoxels that contain minority classes
and distant objects, thus remarkably enhancing the distil-
lation efficacy on these hard cases. As can be seen from
Fig. 1, our method produces much more accurate predic-
tions than the baseline distillation approaches especially for

those minority classes and faraway objects.
We conduct extensive experiments on the nuScenes [3]

and SemanticKITTI [1] datasets and the results demon-
strate that our algorithm consistently outperforms previ-
ous distillation approaches by a large margin on three
contemporary models, i.e., Cylinder3D [36, 37], SPV-
NAS [25] and MinkowskiNet [5]. Notably, on the nuScenes
and SemanticKITTI benchmarks, PVD achieves approx-
imately 75% MACs reduction and 2× speedup on the
top-performing Cylinder3D model with very minor perfor-
mance degradation.

2. Related Work
LiDAR semantic segmentation: LiDAR semantic seg-
mentation [5,6,8,14,18,21,22,25,26,29–31,35,37] is crucial
for the navigation of autonomous vehicles. PointNet [21] is
one of the pioneering work that uses Multi-Layer Percep-
tion (MLP) to process point cloud directly. Although effec-
tive in processing small-scale point cloud, PointNet and its
variants [22] are extremely slow to handle large-scale out-
door point cloud. To cope with large-scale outdoor point
cloud, Hu et al. [14] exploit random sampling for point se-
lection and a local feature aggregation module is designed
to further preserve the key features. Xu et al. [31] put for-
ward the range-point-voxel fusion network to make use of
the advantages of different views. Zhu et al. [37] propose
the Cylinder3D method that adopts the cylindrical partition
and asymmetrical convolution to better employ the valuable
information in point cloud. Tang et al. [25] leverage neural
architecture search to automatically find the optimal struc-
ture for the task at hand. Although these models have shown
impressive performance on various benchmarks, a common
drawback is that these networks are too cumbersome to be
deployed on resource-constrained devices. To enable the
deployment of these powerful yet lumbersome LiDAR se-
mantic segmentation models on real-world applications, we
propose the point-to-voxel knowledge distillation to achieve
model compression.
Knowledge distillation: Knowledge distillation (KD)
stems from the seminal work of G. Hinton et al. [10]. The
primary objective of KD is to transfer the rich dark knowl-
edge from a cumbersome teacher model to a compact stu-
dent model to mitigate the performance gap between these
two models. The majority of the KD approaches concen-
trate on image classification tasks and they take various
forms of knowledge as the distillation targets, e.g., inter-
mediate outputs [13, 23], visual attention maps [12, 33],
inter-layer similarity maps [32], sample-level similarity
maps [20,27], etc. Recently, some researchers have adapted
conventional KD techniques to distil knowledge for seman-
tic segmentation tasks [9, 11, 17, 24, 28]. For instance, Liu
et al. [17] propose to distil three levels of knowledge simul-
taneously, namely the pixel-level knowledge, the pairwise
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similarity knowledge and the holistic knowledge. He et
al. [9] make the student mimic the compressed knowledge
as well as the affinity information of the teacher. Although
previous distillation algorithms have shown excellent per-
formance on 2D segmentation, straightforwardly deploying
them on LiDAR segmentation tasks brings marginal gains
owing to the inherent sparsity, randomness and varying den-
sity of point cloud. And to our best knowledge, we are
the first to apply knowledge distillation to LiDAR semantic
segmentation. The proposed PVD can effectively transfer
both point-level and voxel-level knowledge to students and
is suitable for distilling various LiDAR semantic segmenta-
tion models.

3. Methodology
Given an input point cloud X ∈ RN×3, the objective

of LiDAR semantic segmentation is to assign a class label
l ∈ {0, 1, ..., C − 1} to each point, where N is the number
of points and C is the number of classes. Contemporary
algorithms use CNNs for end-to-end prediction.

Considering that autonomous vehicles typically have
limited computation and storage resources and call for real-
time performance, efficient models are employed to fulfill
the preceding requirement. Knowledge distillation [10] is
widely adopted to achieve model compression via convey-
ing the rich dark knowledge from the large teacher model
to the compact student network. However, previous dis-
tillation methods [9, 17, 24, 28] are tailored for 2D seman-
tic segmentation tasks. Directly applying these algorithms
to distill knowledge for 3D segmentation tasks produces
unsatisfactory results owing to the intrinsic difficulty of
point cloud, i.e., sparsity, randomness and varying density.
To address the aforementioned challenges, we propose the
Point-to-Voxel Knowledge Distillation (PVD) to transfer
the knowledge from both the point level and voxel level.

3.1. Framework overview of Cylinder3D

We first have a brief review of the Cylinder3D
model [37] and then introduce the point-to-voxel distilla-
tion algorithm based on it. Taking the point cloud as in-
put, Cylinder3D first generates the corresponding feature
for each point using a stack of MLPs and then reassigns the
point features F p ∈ RN×Cf based on the cylindrical parti-
tion where Cf is the dimension of point features. Point fea-
tures that belong to the same voxel are aggregated together
through the maxpooling operation to obtain the voxel fea-
tures F v ∈ RM×Cf where M is the number of non-empty
voxels. Next, these voxel features are fed into the asymmet-
rical 3D convolution networks to produce the voxel-wise
output Ov ∈ RR×A×H×C . A point-wise refinement mod-
ule is further employed to produce the refined point-wise
prediction Op ∈ RN×C . Here, N , C, R, A and H de-
note the number of points, number of classes, radius, angle

and height, respectively. Eventually, we will use the argmax
operation to process the pointwise prediction to obtain the
classification result of each point.

3.2. Point-to-Voxel Output Distillation

The primary difference between 2D and 3D semantic
segmentation lies in the input. Compared with images,
point cloud is sparse and it is difficult to train the efficient
student model using the sparse supervision signal. Previous
distillation approaches [10, 17] typically resort to distilling
the ultimate output of the teacher network, i.e., the point-
wise output of the teacher network for LiDAR semantic
segmentation. Although the pointwise output contains fine-
grained perceptual information of the environment, such
knowledge is inefficient to learn as there are hundreds of
thousands of points. To improve the learning efficiency, in
addition to the pointwise output, we propose to distil the
voxelwise output as the number of voxels is smaller and is
easier to learn. The combination of both pointwise output
distillation and voxelwise output distillation naturally form
the coarse-to-fine learning process. The pointwise and vox-
elwise output distillation loss is given below:

Lp
out(O

p
S ,O

p
T ) =

1

NC

N∑
n=1

C∑
c=1

KL(Op
S(n, c)∥O

p
T (n, c)),

(1)

Lv
out(O

v
S ,O

v
T ) =

1

RAHC

R∑
r=1

A∑
a=1

H∑
h=1

C∑
c=1

KL(Ov
S(r, a, h, c)∥Ov

T (r, a, h, c)),

(2)

where KL(.) denotes the Kullback-Leibler divergence loss.
Labels for the voxelwise output: Since a voxel may con-
tain points from different classes, how to assign the proper
label to the voxel is also crucial to the performance. Fol-
lowing [37], we adopt the majority encoding strategy that
uses the class label having the maximum number of points
inside a voxel as the voxel label.

3.3. Point-to-Voxel Affinity Distillation

Distilling the knowledge of the pointwise and voxelwise
outputs is insufficient as it merely considers the knowledge
of each element and fails to capture the structural infor-
mation of the surrounding environment. Such structural
knowledge is vital to the LiDAR-based semantic segmen-
tation model as the input points are unordered. A natural
remedy is to adopt the relational knowledge distillation [17]
which calculates the pairwise similarity of all point fea-
tures. However, there exist two shortcomings in this learn-
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Figure 2. Framework overview. We take the Cylinder3D model [37] as example. There are two networks in our framework, one is the
teacher and the other is the student. The student model is obtained via pruning 50% channels of each layer of the teacher. A teacher
model is comprised of five parts, i.e., point feature extraction module, point-to-voxel transformation module (voxelization), an encoder-
decoder model (asymmetric 3D convolution network), the Dimension-Decomposition Contextual Modeling (DDCM) module, and the
point refinement module. Given the input point cloud, we first divide it into a fixed number of supervoxels and sample K supervoxels
according to the difficulty-aware sampling strategy (K=1 in this figure, denoted by the red sector). Then, the student is forced to mimic
two levels of knowledge from the teacher. The first-level knowledge is the pointwise output and voxelwise output of the whole point cloud.
The second-level knowledge is the inter-point affinity matrix and inter-voxel affinity matrix of the sampled supervoxels.

ing scheme: 1) since there are usually hundreds of thou-
sands of points in an input point cloud, the similarity ma-
trix which has over ten billion elements is computationally
expensive to calculate and extremely difficult to learn. 2)
There exist significant quantity differences between differ-
ent classes and objects at different distances. The above-
mentioned learning strategy ignores such difference and
treats all classes and objects equally, thus making the dis-
tillation process sub-optimal.
Supervoxel partition: In order to more efficiently learn the
relational knowledge, we divide the whole point cloud into
several supervoxels whose size is Rs × As × Hs. Each
supervoxel is comprised of a fixed number of voxels and
the total number of supervoxels is Ns = ⌈ R

Rs
⌉ × ⌈ A

As
⌉ ×

⌈ H
Hs

⌉ where ⌈.⌉ is the ceiling function. We will sample K
supervoxels to perform the affinity distillation.
Difficulty-aware sampling: To make supervoxels that con-
tain less frequent classes and faraway objects more likely to
be sampled, we present the difficulty-aware sampling strat-
egy. The weight for choosing the i-th supervoxel is:

Wi =
1

fclass
× di

R
× 1

Ns
, (3)

where fclass is the class frequency, di is the distance of
the outer arc of the i-th supervoxel to the origin in the X-
Y plane. We treat the classes that have more than 1% of
all points in the whole dataset as majority classes and the
remaining classes are considered as minority classes. We

mimic

features affinity matrix

(a)
(b)

student

teacher

Figure 3. Computation of the inter-point affinity matrix within
a supervoxel. Given the sampled supervoxel, we first (a) extract
features from each point and then (b) obtain the affinity matrix via
calculating the pairwise point features. Finally, the produced affin-
ity matrix of the student is forced to mimic that of the teacher. Note
that all-zeros features (the dashed rectangle) will be appended to
current features if the number of point features is smaller than Np.

empirically set the class frequency of the supervoxel as:
fclass = 4 exp(−2Nminor) + 1, where Nminor is the num-
ber of voxels of minority classes in the supervoxel. If there
is no voxel of minority class, the fclass will be 5. And as the
the number of voxels of minority classes increases, fclass
will be close to 1 quickly. Then, we normalize the weight
and obtain the probability of the i-th supervoxel being sam-
pled is: Pi =

Wi∑Ns
i=1 Wi

.

Point/voxel features processing: Note that for each point
cloud, the number of input points is different and the den-
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sity is varying, thus making the number of point features
and voxel features variable in a supervoxel. As to the calcu-
lation of loss function, it is desirable to keep the number of
features fixed. Hence, we set the number of retained point
features and non-empty voxel features as Np and Nv , re-
spectively. If the number of point features is larger than Np,
then we will retain Np point features by randomly discard-
ing additional point features of majority class. If the number
of point features is smaller than Np, we will append all-zero
features to the current features to obtain Np features, as is
shown in Fig. 3 (a). The voxel features are processed in a
similar way.

Here we have Np point features F̂ p
r ∈ RNp×Cf and

Nv voxel features F̂ v
r ∈ RNv×Cf in the r-th supervoxel,

respectively. Then, for each supervoxel, we calculate the
inter-point affinity matrix according to the following equa-
tion:

Cp(i, j, r) =
F̂ p
r (i)

T
F̂ p
r (j)

∥F̂ p
r (i)∥2∥F̂ p

r (j)∥2
, r ∈ {1, ...,K} (4)

The affinity score captures the similarity of each pair of
point features and it can be taken as the high-level struc-
tural knowledge to be learned by the student. The inter-
point affinity distillation loss is given as below:

Lp
aff (C

p
S ,C

p
T ) =

1

KN2
p

K∑
r=1

Np∑
i=1

Np∑
j=1

∥Cp
S(i, j, r)−Cp

T (i, j, r)∥
2
2.

(5)

The inter-voxel affinity matrix is computed similarly.
Eventually, we make the student mimic the generated affin-
ity matrices of the teacher model. The inter-voxel affinity
distillation loss is presented as follows:

Lv
aff (C

v
S ,C

v
T ) =

1

KN2
v

K∑
r=1

Nv∑
i=1

Nv∑
j=1

∥Cv
S(i, j, r)−Cv

T (i, j, r)∥22.
(6)

Visualization of the learned affinity maps: From Fig. 4,
we can see that PVD causes a closer affinity map between
student and teacher. With PVD , features that belong to the
same class are pulled closer while those of different classes
are pushed apart in the feature space, resulting in a much
clear affinity map. Compared with the rival channel distil-
lation approach [24], PVD can better transfer the structural
knowledge from teacher to student, which strongly validates
the superiority of PVD in distilling LiDAR segmentation
models.

Student CD

PVD Teacher

0

1

Figure 4. Comparison between inter-voxel affinity maps of differ-
ent algorithms. The affinity value is obtained via normalizing the
cosine similarity score to [0, 1].

3.4. Final objective

Our final loss function is composed of seven terms, i.e.,
the weighted cross entropy loss for the pointwise output and
voxelwise output, the lovasz-softmax loss [2], the point-to-
voxel output distillation loss and the point-to-voxel affinity
distillation loss:

L =Lp
wce + Lv

wce + Llovasz + α1Lp
out(O

p
S ,O

p
T )

+ α2Lv
out(O

v
S ,O

v
T ) + β1Lp

aff (C
p
S ,C

p
T )

+ β2Lv
aff (C

v
S ,C

v
T ),

(7)

where α1, α2, β1 and β2 are the loss coefficients to balance
the effect of the distillation losses on the main task loss.

4. Experiments
Datasets. Following the practice of Cylinder3D [37],
we conduct experiments on two popular LiDAR seman-
tic segmentation benchmarks, i.e., nuScenes [3] and Se-
manticKITTI [1]. For nuScenes, it consists of 1000 driv-
ing scenes, in which 850 scenes are selected for training
and validation, and the remaining 150 scenes are chosen for
testing. 16 classes are utilized for LiDAR semantic seg-
mentation after merging similar classes and eliminating in-
frequent classes. For SemanticKITTI, it is comprised of 22
point cloud sequences, where sequences 00 to 10, 08 and 11
to 21 are used for training, validation and testing, respec-
tively. A total number of 19 classes are chosen for training
and evaluation after merging classes with distinct moving
status and discarding classes with very few points.
Evaluation metrics. Following [37], we adopt the
intersection-over-union (IoU) of each class and mIoU of all
classes as the evaluation metric. The calculation of IoU is:
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IoUi = TPi

TPi+FPi+FNi
, where TPi, FPi and FNi repre-

sent the true positive, false positive and false negative of
class i.
Implementation details. Following [37], we leverage
Adam [15] as the optimizer and the initial learning rate is
set as 2e-3. Batch size is set as 4 and the number of training
epochs is 40. α1, α2, β1 and β2 are set as 0.1, 0.15, 0.15
and 0.25, respectively. We take the rival and open sourced
Cylinder3D2 [37] approach as the backbone since the top-
performing RPVNet [31] and AF2S3Net [4] do not release
their codes. Random flipping, rotation, scaling and trans-
formation are taken as the data augmentation strategy. The
size of the voxel output is 480×360×32, where the three di-
mensions denote the radius, angle and height, respectively.
The size of the supervoxel is set as 120×60×8. Nv and
Np are set as 3000 and 6000, respectively. The number of
sampled supervoxels K is set as 4. The inter-point affinity
distillation is performed on the output of the point feature
extraction module and the inter-voxel affinity distillation
is conducted on the output of the encoder-decoder back-
bone. For nuScenes, Cylinder3D 0.5× is produced from
the original Cylinder3D model by pruning 50% channels
for each layer of the whole network. For SemanticKITTI,
Cylinder3D 0.5× is obtained by merely pruning 50% chan-
nels for each layer of the asymmetrical 3D convolution net-
work and we keep the point feature extraction module un-
changed as it is vital to extract rich information from the
input point cloud. We also apply our method to compress
SPVNAS3 [25] and MinkowskiNet [5] to verify the scal-
ability of our algorithm. More details are provided in the
supplementary material.
Baseline distillation algorithms. In addition to the state-
of-the-art methods in each benchmark, we also compare our
method with classical KD methods and contemporary dis-
tillation approaches tailored for 2D semantic segmentation,
including vanilla KD [10], SKD [17], CD [24], IFV [28] and
KA [9]. Here, SKD takes the output probability maps and
pairwise similarity maps as mimicking targets. We remove
the original holistic distillation loss for SKD as incorporat-
ing GANs into current framework will cause severe training
instability; CD utilizes the intermediate feature maps and
score maps as knowledge; IFV transfers the intra-class fea-
ture variation from the teacher to the student; KA makes
the student distil the compressed knowledge and the affinity
information of the whole output from the teacher.

4.1. Results

Comparison with state-of-the-art LiDAR segmentation
models: We compare our model with contemporary Li-
DAR semantic segmentation models, e.g., KPConv [26],
TORNADONet [7] and SPVNAS [25]. From Table 1, we

2https://github.com/xinge008/Cylinder3D
3https://github.com/mit-han-lab/spvnas

can see that Cylinder3D 0.5×+PVD (the penultimate row)
achieves comparable performance with the original Cylin-
der3D model on the SemanticKITTI test set. Compared
to KPConv and SPVNAS, our Cylinder3D 0.5×+PVD not
only achieves better performance, e.g., 3.8% higher than
SPVNAS in mIoU, but also has much lower latency than
the SPVNAS method (259 ms v.s. 76 ms). Specifically,
on minority classes such as bicycle, motocycle and bicy-
clist, the IoU of Cylinder3D 0.5×+PVD is at least 10.5%
higher than the SPVNAS method. And with some engineer-
ing tricks like finetuning and flip & rotation test ensemble,
our Cylinder3D 0.5×+PVD (the last row) can obtain 71.2
mIoU, which is 2.3 mIoU higher than the original Cylin-
der3D model. Impressive performance is also observed in
nuScenes validation set. Our Cylinder3D 0.5×+PVD ex-
hibits similar performance with the original Cylinder3D
network in terms of the overall mIoU and the IoU on each
class.
Comparison with previous distillation methods: From
Table 1 and 2, we can see that PVD significantly outper-
forms baseline distillation algorithms in both benchmarks.
The performance gap between PVD and the most compet-
itive KD method is larger than 1.8. For instance, on Se-
manticKITTI test set, our PVD is 2.8 mIoU higher than
the CD method. And on both majority classes and minor-
ity classes, our PVD significantly outperforms traditional
distillation algorithms. For instance, on nuScenes dataset,
PVD is at least 2 mIoU higher than SKD in classes such as
bicycle, bus, car, trailer and sidewalk. The aforementioned
results strongly demonstrate the effectiveness of PVD in
transferring knowledge for teacher-student learning.
Generalization to more architectures: To verify the gen-
eralization of our method, we also apply PVD to compress
SPVNAS [25] and MinkowskiNet [5]. Since SPVNAS does
not provide the training code for the NAS-based architec-
ture, we conduct experiments on its manually designed ar-
chitecture. As can be seen from Table 3, our PVD still
brings more gains to the student model than baseline dis-
tillation algorithms. For instance, our PVD outperforms
the SKD algorithm by 2.6 mIoU in terms of mIoU on the
SPVNAS backbone. It is noteworthy that PVD can safely
achieve 75% MACs reduction without causing severe per-
formance drop. The above results strongly demonstrate the
good scalability of our method.
Qualitative results: As can be seen from Fig. 5, com-
pared with the SKD approach, our PVD greatly improves
the prediction of the student model. The prediction errors of
PVD on those minority classes, e.g., person and bicycle, are
significantly smaller than those of SKD. Besides, on objects
that are faraway from the origin, e.g., the car highlighted by
the green rectangle, PVD also yields more accurate predic-
tions than SKD. And PVD has lower inter-class similarity
and higher intra-class similarity, which explicitly showcases
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Table 1. Quantitative results of our proposed method and state-of-the-art LiDAR semantic segmentation methods as well as previous
distillation approaches on SemanticKITTI test set. Cylinder3D 0.5× is abbreviated as C3D 0.5× to save space. * means that finetuning
and flip & rotation test ensemble are applied. All results can be found in the online leaderboard.
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FusionNet [34] * 61.3 – 95.3 47.5 37.7 41.8 34.5 59.5 56.8 11.9 91.8 68.8 77.1 30.8 92.5 69.4 84.5 69.8 68.5 60.4 66.5
KPRNet [16] * 63.1 – 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1

TORNADONet [7] * 63.1 – 94.2 55.7 48.1 40.0 38.2 63.6 60.1 34.9 89.7 66.3 74.5 28.7 91.3 65.6 85.6 67.0 71.5 58.0 65.9
SPVNAS [25] * 66.4 259 97.3 51.5 50.8 59.8 58.8 65.7 65.2 43.7 90.2 67.6 75.2 16.9 91.3 65.9 86.1 73.4 71.0 64.2 66.9

Cylinder3D [37] * 68.9 170 97.1 67.6 63.8 50.8 58.5 73.7 69.2 48.0 92.2 65.0 77.0 32.3 90.7 66.5 85.6 72.5 69.8 62.4 66.2
C3D 0.5× 65.3

76

93.4 62.3 59.2 48.3 56.4 72.3 66.3 21.0 91.2 61.3 75.3 30.4 89.8 65.4 84.2 71.4 67.3 60.2 64.2
C3D 0.5× + KD 65.6 93.8 62.5 59.4 48.6 55.3 72.9 66.5 21.9 91.8 61.3 75.7 30.5 90.4 65.5 84.3 71.7 67.6 60.3 64.8
C3D 0.5× + CD 66.1 94.5 62.7 59.8 49.3 57.2 72.1 67.1 22.7 92.1 61.4 74.9 30.8 90.9 67.3 84.6 72.2 68.3 61.1 65.1
C3D 0.5× + IFV 65.5 93.7 62.4 59.1 48.7 56.7 72.4 66.6 21.4 91.5 62.0 75.6 30.4 90.3 66.2 84.7 71.5 67.5 60.6 64.3
C3D 0.5× + SKD 65.8 93.6 62.7 59.6 48.5 57.4 72.8 66.7 24.3 91.6 61.4 75.9 30.8 90.1 65.6 84.8 71.7 67.5 60.7 65.2
C3D 0.5× + KA 65.5 93.4 62.6 58.9 48.5 56.5 72.7 66.5 20.7 91.6 61.5 75.3 30.1 89.9 65.6 84.4 71.3 67.8 60.3 65.8

C3D 0.5× + PVD 68.9 96.7 66.4 61.0 60.0 59.3 73.2 72.1 25.0 91.4 66.5 76.2 37.1 93.0 70.5 85.9 72.7 69.8 64.1 67.8
C3D 0.5× + PVD * 71.2 97.0 67.9 69.3 53.5 60.2 75.1 73.5 50.5 91.8 70.9 77.5 41.0 92.4 69.4 86.5 73.8 71.9 64.9 65.8

Table 2. Quantitative results of our proposed method and state-of-the-art LiDAR semantic segmentation methods as well as previous
distillation approaches on nuScenes validation set.
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RangeNet++ [19] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet [35] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext [6] 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4

Cylinder3D [37] 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
C3D 0.5× 73.6 74.6 36.2 88.2 87.3 47.9 76.4 77.0 63.4 58.8 82.3 95.1 70.0 73.5 73.6 88.7 85.2

C3D 0.5× + KD 73.9 75.2 35.4 88.3 88.2 47.6 76.8 77.2 63.6 57.3 83.1 95.7 70.1 75.2 73.1 89.2 85.3
C3D 0.5× + CD 74.1 75.4 36.1 88.4 89.3 46.9 76.1 77.6 62.9 58.0 84.3 96.0 70.3 74.8 74.6 90.1 85.6
C3D 0.5× + IFV 73.8 74.7 36.6 88.3 88.6 47.2 76.7 77.1 63.1 58.2 83.5 95.1 70.2 73.4 73.8 88.9 84.3
C3D 0.5× + SKD 74.2 74.9 37.3 87.6 89.1 47.5 76.2 77.4 63.2 59.3 83.4 95.9 70.4 73.9 74.3 90.3 87.1
C3D 0.5× + KA 73.9 74.2 36.3 88.5 87.6 47.1 76.9 78.3 63.5 57.6 83.4 94.9 70.3 73.8 73.2 88.4 86.3

C3D 0.5× + PVD 76.0 76.2 40.0 90.2 94.0 50.9 77.4 78.8 64.7 62.0 84.1 96.6 71.4 76.4 76.3 90.3 86.9

Table 3. Performance of different algorithms on compressing SPV-
NAS and MinkowskiNet on SemanticKITTI validation set.

Algorithm mIoU MACs (G)
SPVNAS [25] 63.8 118.6
SPVNAS 0.5× 60.4

29.7
SPVNAS 0.5× + CD 60.9

SPVNAS 0.5× + SKD 61.2
SPVNAS 0.5× + PVD 63.8

MinkowskiNet [5] 61.9 114.0
MinkowskiNet 0.5× 58.9

28.5
MinkowskiNet 0.5× + CD 59.6

MinkowskiNet 0.5× + SKD 59.4
MinkowskiNet 0.5× + PVD 61.8

the efficacy of PVD in distilling structural knowledge from
the teacher model.

4.2. Ablation studies

In this section, we perform comprehensive ablation stud-
ies to examine the efficacy of each component, super-
voxel size as well as the sampling strategy on the final

Table 4. Influence of each component on the final performance.
Lout p Lout v Laff p Laff v mIoU

63.1√
63.4√ √
64.1√ √ √
64.7√ √ √ √
66.4

performance. The experiments are conducted in the Se-
manticKITTI validation set. More ablation studies are put
in the supplementary material.
Effect of each component. From Table 4, we have the
following observations: 1) Combining both point-to-voxel
output distillation and affinity distillation brings the most
performance gains. 2) The voxel-level distillation brings
more gains than the point-level distillation, suggesting the
necessity of introducing the voxel-level mimicking loss. 3)
The affinity distillation yields more gains than the output
distillation, demonstrating the importance of leveraging the
relational knowledge to better capture the structural infor-
mation.
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Figure 5. Visual comparison of different methods on the SemanticKITTI validation set. Here, the ground-truth for the inter-voxel affinity
map is the ideal map where the intra-class similarity score is 1 and inter-class similarity score is 0.

Table 5. Effect of supervoxel size on the performance.
supervoxel size mIoU

(60, 30, 4) 65.3
(90, 45, 6) 65.7

(120, 60, 8) 66.4
(180, 90, 12) 65.6
(240, 180, 16) 65.2

64.5 
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65.5 

66.0 

66.5 

67.0 

Difficulty Class Distance Random

m
Io

U

Figure 6. Comparison between different sampling strategies.

Supervoxel size. Note that we perform the inter-point and
inter-voxel distillation on the sampled supervoxels. Super-
voxel size has a non-negligible effect on the efficacy of
PVD since a overly small size will make student learn little
from the affinity distillation loss while a large supervoxel
size will weaken the learning efficiency of PVD. Here, we
keep the number of sampled supervoxels as 4 to remove
the effect of this factor. From Table 5, we can see that
setting the supervoxel size to (120, 60, 8) yields the best
performance. Remarkably increasing or decreasing the su-
pervoxel size will harm the distillation efficacy.
Sampling strategy. We compare four different sam-
pling strategies, i.e., the original difficulty-aware sampling,
distance-aware sampling, category-aware sampling and ran-
dom sampling. Here, distance-aware sampling is to only

more frequently sample distant points while category-aware
sampling will more likely sample points belonging to rare
classes. From Fig. 6, it is apparent that difficulty-aware
sampling brings more gains than the other three strate-
gies. Specifically, difficulty-aware sampling outperforms
both distance-aware and category-aware sampling, suggest-
ing that both distance and categorical awareness are crucial
to the distillation effect. The large gap between difficulty-
aware sampling and random sampling validates the neces-
sity of difficulty-aware sampling strategy.

5. Conclusion

In this paper, we propose a novel point-to-voxel knowl-
edge distillation approach (PVD) tailored for LiDAR se-
mantic segmentation. PVD is comprised of the point-to-
voxel output distillation and affinity distillation. The super-
voxel partition and difficulty-aware sampling strategy are
further proposed to improve the learning efficiency of affin-
ity distillation. We perform experiments on two LiDAR se-
mantic segmentation benchmarks and show that PVD sig-
nificantly outperforms baseline distillation algorithms on
distilling Cylinder3D, SPVNAS and MinkowskiNet. The
impressive results indicate that there still exists large re-
dundancy in 3D segmentation models and our approach can
serve as a strong baseline to compress these cumbersome
models.
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