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Abstract

We present an approach to solving hard geometric opti-
mization problems in the RANSAC framework. The hard
minimal problems arise from relaxing the original geomet-
ric optimization problem into a minimal problem with many
spurious solutions. Our approach avoids computing large
numbers of spurious solutions. We design a learning strat-
egy for selecting a starting problem-solution pair that can
be numerically continued to the problem and the solution
of interest. We demonstrate our approach by developing a
RANSAC solver for the problem of computing the relative
pose of three calibrated cameras, via a minimal relaxation
using four points in each view. On average, we can solve
a single problem in under 70 µs. We also benchmark and
study our engineering choices on the very familiar problem
of computing the relative pose of two calibrated cameras,
via the minimal case of five points in two views.

1. Introduction

Minimal problems arise from geometrical problems in
3D reconstruction [59, 61, 62], image matching [55], visual
oodometry,and localization [3, 49, 57, 66]. Many geometri-
cal problems have been successfully formulated and solved
as minimal problems [1,4–6,11,12,18,27,34–37,45,46,48,
54, 56, 58, 64, 67]. Technically, minimal problems are sys-
tems of polynomial equations which depend on the input
data and have a finite number of solutions.
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acknowledges support from an NSF Mathematical Sciences Postdoctoral
Research Fellowship (DMS-2103310). We thank Dmytro Mishkin, Viktor
Larsson, and Zuzana Kukelova for their thoughtful comments.
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(a) The standard use of minimal
problems in RANSAC calls for
solving and scoring a large num-
ber of spurious solutions in S.
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↓
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↓
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(b) We suggest to learn a picking
function σ that finds start param-
eters a from which the homotopy
continuation reaches s.

Figure 1. The inner RANSAC loop finds the best solution for a
data sample p. This is very expensive when a minimal problem
has many spurious solutions. Our efficient homotopy continuation
combined with machine learning avoids solving for the spurious
solutions. Thus, using minimal problems in RANSAC becomes
effectively independent from the number of spurious solutions.

1.1. Motivation

Many geometrical problems are optimization problems
that have only one optimal solution. Minimal problems,
however, often have many additional spurious solutions.
The optimal solution is typically real, satisfies inequality
constraints, and fits well all data. Such constraints, however,
can not be used by methods of nonlinear algebra [13, 65]
which have no ability to bypass finding (or incurring the
cost of finding) all solutions of polynomial systems.

RANSAC [23, 53] approximates the optimal solution to
a geometrical problem by computing candidate solutions
from data samples and picking a solution with maximal
data support. This is done by iterating over the samples in
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an outer loop and over the solutions of a minimal problem
for each sample in an inner loop. To find a single solu-
tion for a data sample in the inner loop, the state-of-the-art
“solve & pick” approach first computes all solutions of a
minimal problem and then picks the optimal solutions by
removing nonreal solutions, using inequalities, and evaluat-
ing the support. Optimization in the inner loop may be very
costly when there are many spurious solutions to the mini-
mal problem. Fig. 1 compares the standard “solve & pick”
approach with our “pick & solve” approach that learns, for
a given data sample, how to first pick a promising starting
point and then (ideally) continue it to a meaningful solution.

Recent results [15,16] show that there are many minimal
problems in multiview geometry with many spurious solu-
tions which the state-of-the-art polynomial solvers cannot
solve efficiently. 1

1.2. Contribution

We present a method for combining optimized homotopy
continuation (HC) with machine learning to avoid solving
for spurious solutions. The main idea is to learn a single
starting point for a real HC path that has a good chance to
reach a good solution of the original geometrical problem.

To demonstrate our method on a hard problem, we de-
velop an efficient solver for the “Scranton” minimal prob-
lem obtained by relaxing the overconstrained problem of
four points in three views (4pt) [50]. We train a model
that predicts a starting problem for a single path real HC
method to find a good solution. Our solver is implemented
efficiently in C++ and evaluated on the state-of-the-art data
in computer vision. It successfully solves about 26.3% of
inputs in 16.3µs, Tab. 4. In Sec. 9 we show that when used
in RANSAC, about 4 samples suffice on average to obtain a
valid candidate of camera geometry in 61.6µs. No such ef-
ficient solver has been known for this problem before. The
best-known runtime for a very carefully designed approxi-
mation of the problem, reported in [50], was on the order of
milliseconds. We thus achieve more than ten times speedup
compared to [50]. Most importantly, our approach is gen-
eral and opens the door to solving other hard minimal prob-
lems, e.g., from [15, 16].

We benchmark (Sec. 9) our approach on the classical 5-
point problem (5pt) [48] using standard benchmarks [31].
We show that for the 5pt problem, we can solve 29.0% of
inputs in about 7.6µs, Tab. 4. Thus, in RANSAC, we can
solve it in average in 26.1µs.

Our approach is general. It can be applied even in some
cases where the number of spurious solutions is not finite.
For instance, our depth formulation of the Scranton prob-
lem has an infinite family of solutions where some depths
may be zero. Additional polynomial constraints, which do
not need to be explicitly enforced, reduce the number of

1See Sec. 12 in the SM for more about these problems.

potential solutions to 272—see 15. Thus, by exploiting the
“locality” of HC methods, we can guarantee that when start-
ing from a good starting point, we can ignore other spurious
solutions with no additional computational cost.

It is important to highlight that, unlike the current
symbolic-numeric solvers, our method is coupled with the
rest of SfM pipeline, i.e., it uses the real data distribution in
a particular vision problem at hand.

1.3. Previous work

The state-of-the-art approach to solving polynomial sys-
tems in computer vision is based on symbolic-numeric
solvers, which combine elimination (by Gröbner bases [37,
40, 64] or resultants [8, 19, 29]) with eigenvector computa-
tion [65] to find all complex solutions. Currently, symbolic-
numeric solvers [37, 40–42] provide efficient and stable re-
sults for minimal problems with as many as 64 complex so-
lutions [8,43]. However, these solvers mostly fail to deliver
practical results for hard computer vision problems with
many solutions. Symbolic/numeric solvers involve two hard
computational tasks. First, in the symbolic part, large matri-
ces are constructed and triangularized by the Gauss-Jordan
elimination. Secondly, in the numeric part, the eigenvec-
tors of n × n matrices, where n is the number of all com-
plex solutions, are computed. Both steps are prohibitive for
generic polynomial systems with many spurious solutions.
Methods which deal with real solutions only, e.g. Sturm se-
quences [48], also generally require expensive manipula-
tions (reduction to a univariate polynomial) and may still
need to consider many spurious real solutions.

Global HC methods give an alternative, well-studied ap-
proach [7, 10, 14, 68] to finding all complex solutions of
polynomial systems. Off-the-shelf HC solvers [7,10,14,68]
have been proven useful for studying the structure of min-
imal problems [2, 30, 32, 52]. However, the off-the-shelf
solvers are much slower (103 − 105 times) than current
symbolic-numeric solvers. For instance, our experiments,
Tab. 7, show that solving [48] with complex homotopy con-
tinuation in Macaulay2 [44] takes about 105µs compared to
5µs when [39] implementation of [48] is used.

The previous work [20] closest to this work addresses
the problem of speeding up minimal HC solvers. This pa-
per took notable steps towards the practical use of homo-
topy continuation for minimal problem solving. In that
work, an off-the-shelf HC implementation [44] has been op-
timized and efficiently implemented in modern C++. Two
hard problems in trifocal geometry have been solved in
about 660ms. Despite not providing practical solvers for
RANSAC [23, 53], the results of [20] demonstrated that
hard multiview problems involving 312 and 216 solutions
can be solved in a stable way and thus could be useful for
building practical structure from motion algorithms.

Our paper considers a novel solver for a problem named
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“Scranton”2, which is a minimal relaxation of the overcon-
strained 4pt problem [50]. Previous work formulated Scran-
ton using camera parameters and found that it has 272 com-
plex solutions [16,32]. We consider an alternative formula-
tion in terms of 3D point depths, analogous to [52], which
has 272 potentially meaningful solutions. The original 4pt
problem was solved by numerical search in [50], with about
1ms runtime. A depth-formulated 4pt problem was also
studied in [52], showing that the overconstrained problem
with exact input has a unique solution. Their exact solution
does not apply to problems with noisy data.

We also study the classical, well-understood 5-point
problem (5pt) of computing the relative pose of two cal-
ibrated cameras [48]. Unlike Scranton, this problem has
many practical solutions [9, 27, 38, 48, 59]. Currently, the
most efficient symbolic-numeric solver [42] of the 5pt prob-
lem solves for up to 10 essential matrices in about 5µs. Al-
though the 5pt problem is not as hard as Scranton in terms
of the number of spurious solutions, it does provide an im-
portant testing ground for us.

2. Our approach
Here we present our approach to solving hard minimal

problems. We shall use HC methods to track one real so-
lution of a start problem to obtain one real solution of the
target problem. We shall design an algorithm such that this
one solution we obtain is a meaningful solution with suffi-
cient success rate.

2.1. Problem-solution manifold

We operate in the problem-solution manifold M of
problem-solution (p-s) pairs (p, s), where p is a problem
and s is a solution of p. Problem p belongs to a real vector
space P . Solution s comes from a real vector space of solu-
tions. The projection π ∶ M → P is defined by (p, s) ↦ p.
The preimage π−1(p) ∈M contains all p-s pairs that corre-
spond to a particular problem p.

Example 1. To illustrate the introduced concepts, let us
look at one equation x3 + ax + b = 0 in one unknown x
with two parameters a and b. Here a problem p = (a, b) has
either one or three real solutions depending on whether the
discriminant D = 4a3 + 27b2 is positive or negative; see the
corresponding problem-solution manifold M in Fig. 2a.

To be precise, the equation defines an algebraic variety,
which is guaranteed to be a smooth manifold when points
above the discriminant locus D = 0 are removed.

See SM Sec. 13 for the detailed examples of setting up
problem-solution manifolds for the 5pt problem and Scran-
ton, a minimal relaxation for the 4pt problem. Below is a
condensed version of the 5pt problem.

2The US telephone area code for Scranton PA is 272.

M
×××Ö
π

P

(a) (b)

Figure 2. (a) Problem-solution manifold M projected to the prob-
lem space P . (b) Numerical HC method.

Example 2. Consider the classical 5pt problem of comput-
ing the relative pose of two calibrated cameras which view
five world points where the scale is fixed such that the first
3D point lies in the first image plane.

Denote by x the images of 5 points in 2 views: i.e., x
is a point in P = R20. Assume the points are in front of
both cameras: i.e., their depths λi,j , (i = 1, . . . ,5; j = 1,2)
are all positive. Our assumptions imply that λ1,1 = 1. The
unknown depths vector in the solution space R9 determines
the relative pose. Therefore, the problem-solution manifold
M is contained in the ambient space R20 × R9. Equations
vanishing on M are given in Sec. 7.1.

2.2. Probability distribution on M

We introduce a probability density µ on the problem-
solution manifold M that gives the distribution of real-
world problem-solution pairs. In Fig. 2a, we give an ex-
ample of µ depicted with shades of gray (darker is bigger)
on the manifold M . Note that the density is such that any
problem with a set S of three solutions has only one s ∈ S
with µ(s) > 0. We shall (implicitly) operate under the fol-
lowing assumption:

An input problem p is likely to have one meaningful so-
lution that is dominant, i.e., occurs much more frequently in
the real data than other meaningful solutions.

In many problems (e.g., the one in Section 7.2) the num-
ber of meaningful solutions is guaranteed to be exactly one
generically. The distribution µ is hard to model; in what
follows it is represented by training data.

2.3. Pick & solve vs. solve & pick

A typical local iterative method (e.g. Newton’s method,
gradient descent, etc.) would attempt solving a problem p
by obtaining an initial approximate solution s0 with a hope
that it is not too far away from an actual solution and then
producing a sequence of its refinements s0, s1, s2, . . . until
either a desired quality is reached or some termination-with-
failure criterion is satisfied.
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Our homotopy approach is a generalization of such local
methods. In a nutshell, given a problem p,

1. we select a suitable start problem-solution pair
(p0, s0) ∈M for p,

2. we choose a path p0 ↝ p in the problem space P , lead-
ing from p0 to p,

3. we track the path (p0, s0) ↝ (p, s) to obtain the target
solution s of p.

Selecting a start pair (p0, s0) is the key ingredient of our
approach. Given a real HC method, one can aim to con-
struct the selection strategy σ(p) = (p0, s0) in two steps.
First, one finds a small set of anchors A ⊂ M , such that
it is possible to reach (cover) a significant part of M from
A by the real homotopy continuation. Secondly, one learns
a selection strategy σ such that starting from (p0, s0) ∈ A,
the meaningful problem-solution pair is reached with suffi-
ciently high frequency to make RANSAC work.

Intuitively, one may perceive a minimal solver employed
in RANSAC as an arrow p→ S in the following diagram:

p S = π−1(p) s

a = (p0, s0)

solve (minimal problem)

pick (anchor)

pick (s ∈ S)

solve (homotopy)

where an instance p of a minimal problem is “solved” (all
solutions in S are found.) Then RANSAC “picks” at most
one solution, S → s, a candidate that maximizes the number
of inliers.

Looking for a shortcut that would allow us to go directly
p → s, we reverse this flow: first “picking” an anchor and
then tracking one HC path to “solve”.

2.4. Structure of our solvers

Our solvers for both 5pt and Scranton minimal problems
have a common structure, consisting of an offline training
stage and an online evaluation stage. Offline computations
may be resource-intensive; however, the online stage must
be very efficient to achieve practical sub-millisecond run
times. The offline stage consists of:

1. Sampling data D, according to µ, representing the
(preprocessed) problem-solution manifold M (Sec 3).

2. Covering a sufficient fraction of the data with anchors
A ⊂D (Sec. 4).

3. Learning a model σ which selects a starting p-s pair
(p0, s0) ∈ A for any given problem p (Sec. 5).

The online stage consists of:

1. Preprocessing the input p to reduce its variability
(Sec. 8).

5pt problem Scranton
n 1K 4K 10K 40K 1K 4K 10K 40K
50 % 8 9 8 8 18 18 17 16
75 % 25 28 27 26 47 51 50 50
90 % 59 70 70 70 92 112 120 134
95 % 90 109 115 124 126 168 191 233
100 % 140 235 334 585 176 335 507 1205

Table 1. Number of anchors from office + terrains (generated as
described in Sec. 4, cf. Tab. 2) which are needed to cover 50%,
75%, 90%, 95%, and 100% of n problem-solution pairs. Differ-
ent values of n are considered. A problem-solution pair is covered
by the set of anchors if there is at least one anchor from which the
problem-solution pair can be correctly tracked. A track is consid-
ered correct if the Euclidean distance from the obtained solution
to the ground-truth solution is less than 10−5.

2. Selecting a starting pair from A as (p0, s0) = σ(p).
3. Constructing polynomial equations from p (Sec. 7).
4. Computing a solution s of p by HC from (p0, s0)

(Sec. 6).

The next sections describe these steps in detail.

3. Sampling data representing M and µ

The offline stages of our solvers begin by sampling the
data D given by 3D models of various realistic objects. We
use models from ETH 3D Dataset to represent µ.

A 3D model consists of 3D points X , cameras C, and
relation I ⊂ X × C encoding observations ((Xm,Ci) ∈ I
iff Ci observes Xm). For Scranton, we may sample a single
p-s pair (p, s) ∈M as follows:

1. Select 3 cameras Ci,Cj ,Ck ∈ C
2. Select 4 points Xl,Xm,Xn,Xo ∈ X ∶
(Xa,Cb) ∈ I ∀a ∈ {l,m,n, o}, b ∈ {i, j, k}

3. Project the points to the cameras to get 12 2D points
xa,b, concatenate them to 24-dim vector p ∈ P

4. Get the depths λa,b of the points in the cameras, con-
catenate them to 12-dim vector s ∈ S

Sampling for the 5pt problem is similar; in step 1 we select
2 cameras, and in step 2 we select 5 points.

4. Selecting anchors A
We now describe how the starting p-s pairs are obtained.

Our goal is to find a small set A of starting p-s pairs (the set
of anchors), from which a high portion of p-s pairs from a
given distribution can be tracked by HC.

If we limit ourselves to a finite set of p-s pairs and the
anchors are selected from the same set, the optimal anchor
selection procedure consists of building a graph with p-s
pairs as vertices. Two vertices (pi, si), (pj , sj) in this graph
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Source α [%] Source α [%]
Courtyard 78.1 Relief 2 77.0
Office 81.1 Off. + Terr. 82.2
Terrains 79.0 Off. + Rel. 80.7
Playground 75.4 O + T + P + R2 79.7

Table 2. Study of sources for anchor selection. Rows correspond
to different models or combinations of models, from which the
anchors are generated. For each source of anchors, we measure
the percentage α of testing p-s problems (generated from models
delivery area, electro, facade, kicker, meadow, pipes) that can be
reached from any of the anchors generated from the given source.
A set of 100 anchors is considered for each source.

are connected with an edge if the correct solution sj can be
obtained by tracking HC from (pi, si) to pj . A set of an-
chors covering all problems in this graph is called a dom-
inating set. Since computing a minimum-size dominating
set is NP-hard, we use a greedy proxy which is known to
perform well3.

In Tab. 1, we generate n = 1K, 4K, 10K, 40K p-s pairs
from the models office and terrains4 for both the 5pt and
Scranton problems. In each case, we use the greedy domi-
nating set heurstic to determine a set of anchors which cover
a given percentage of all generated p-s pairs. The results
show that if the number of vertices in the graph is suffi-
ciently high, a reasonable portion of different p-s pairs from
the same scene can be solved by HC starting from one of
the anchors obtained by our greedy strategy.

The choice of these models used in Tab. 1 is motivated by
another experiment measuring the percentage of test prob-
lems covered by different sources of anchor selection. This
experiment is summarized in Tab. 2, which shows that using
the combination of office and terrains as a source of anchors
generalizes best when compared to other sources.

Finally, Tab. 3 displays the rate at which HC starting
from a fixed subset of these anchors successfully leads to
the correct solution on test sets of 40K p-s pairs from de-
livery area and facade. The resulting percentage may be
interpreted as the success rate of an “oracle strategy” that
always finds the best anchor to start from. The results give
us a refined picture of how well the anchors we generate
generalize to test scenes. Even when the number of anchors
is small, eg. 16, the percentage of testing p-s pairs that are
covered may be reasonably large, eg. 40–50%.

5. Learning σ to select the starting p-s pair
We formulate the problem of finding the best starting p-s

pair as a classification task. Our method relies on a classifier

3The proposed method is illustrated in SM. Fig. 5.
4https://www.eth3d.net/datasets

5 pt problem coverage [%]
# anchors 8 26 70 124 585
delivery area 43.3 73.5 86.8 91.4 96.5
facade 51.3 74.9 88.6 92.9 97.0

4 pt problem coverage [%]
# anchors 16 50 134 233 1205
delivery area 47.4 73.6 88.2 92.9 96.6
facade 42.1 71.1 87.9 92.9 96.9

Table 3. Percentage of testing problem-solution pairs covered by
anchors generated from office and terrains. The anchors used are
a subset of the n = 40000 used in Tab. 1. A p-s pair is “covered” if
HC starting from some anchor yields a solution whose Euclidean
distance from the ground-truth solution is less than 10−5. This is
an “oracle strategy” that always starts from the best anchor.

σ, which for a sample problem p ∈ P assigns a label from
σ(p) ∈ A∪{TRASH}, where A is the anchor set generated
in Sec. 4. The label TRASH is included for cases where
no problem in A covers p.

Our goal is to minimize the effective time ϵt = µt/ρ of
the solver, where µt is the total time5 and ρ is the success
rate. Therefore, we must be able to classify p very fast, on
the order of 10µs for a subsequent HC path σ(p) ↝ (p, s)
σ(p) ≠ {TRASH}.) Now, we are going to describe the
classifier and its training.

For both problems, we use a Multi-Layer Perceptron
(MLP) with 6 hidden layers of 100 neurons with bias.6 The
input layer has size dimP , and the output layer has size
∣A∣ + 1. We use the PReLU activation function. During
training, we use the dropout before the last layer to prevent
overfitting. The classification time of the MLP is about 8µs
for both 5pt and 4pt problems.

The input to the MLP is a normalized (Sec. 8) problem
p ∈ P . The output is a vector of ∣A∣ + 1 numbers, which
give the score for every starting p-s pair (p0, s0), as well as
for TRASH . If the score of TRASH is higher than the
scores of all anchors, we skip the sample. Otherwise, we
track from the p-s pair with the highest score.

During training, we normalize the output of the MLP
with a softmax layer, and we use the standard cross-entropy
loss. We use the SGD optimizer, which gives us better re-
sults than other optimizers, such as Adam. We generate
training and testing data as described in Sec. 5.1, and train
the MLP by minimizing the loss on the training data for 80
epochs. Then, we select the hyperparameters which max-
imize the success rate on the validation data. We evaluate
the resulting classifier, Sec. 5.2.

5preprocessing, anchor selection, tracking, and RANSAC scoring
6See SM Tab. 11 for a comparison with MLPs with different sizes.
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5.1. Training data generation

We use the training and testing data generated from ETH
3D Dataset. Testing data is generated from models deliv-
ery area and facade, training data from 23 other sequences.
First, we generated p-s pairs (p, s) from the models accord-
ing to Sec. 3. Then, we normalized each problem p (Sec. 8),
and tracked the solution to problem p from each anchor
(p̆a, s̆a) ∈ A. If the solution to p obtained by HC starting in
anchor (p̆a, s̆a) ∈ A is equal to the expected solution s, then
the ID a of the anchor is assigned as the label of problem p.
If solution s cannot be reached from any anchor, the label
of p is TRASH . A problem may have multiple labels. We
note that this procedure allows us, in principle, to generate
an unlimited amount of training data7.

Our experiments use ≈ 1M training p-s pairs per model
(23M in total) and 30000 validation p-s pairs per model.

5.2. Classifier evaluation

In the evaluation of the trained MLPs, an anchor (p0, s0)
is selected by the classifier, and HC is tracked from (p0, s0).
Success rate is the percentage of test p-s pairs (p, s)
for which the correct solution s is obtained by HC from
(p0, s0). The classification task is difficult because for
some problems p, multiple geometrically meaningful solu-
tions (all points in front of cameras, small ratios between the
depths, and small baseline) exist. Therefore, we also con-
sider MLP classifiers which return m best anchors. Then,
the classification is successful if the correct solution s can
be tracked from one of the selected anchors.

We compare our classifier to the following baselines:

B1 (m = ∣A∣) Start from every anchor in A. (The “oracle
strategy” that emulates guessing the best anchor.)

B2 (m = 1) Start from the closest anchor (p0, s0) in terms
of Euclidean distance.

B3 (m = 1) Start from the closest anchor (p0, s0) in terms
of Mahalanobis distance.

Note that the first baseline gives the upper bound on the
success rate for a given anchor set A. The downside of
this baseline is that HC paths from all ∣A∣ anchors must be
tracked. Success rate and total time for different classifiers
are shown in Tab. 4. The solution s is considered correct if
the squared Euclidean distance from the obtained solution
to the ground-truth solution is less than 10−5.

6. Homotopy continuation
We now recall the basic principles of HC methods

[7, 47, 63] in the framework of our work. Suppose we
have a square system of n polynomial equations f(p, s) =
(f1(p, s), . . . , fn(p, s)) in n unknowns s = (s1, . . . , sn)
that vanish on our problem/solution manifold M .

7The procedure for generating training data is illustrated in Figure 6.

5pt problem 4pt problem
ρ [%] µt[µs] ϵt[µs] ρ[%] µt[µs] ϵt[µs]

B1, A50 47.3 ∞ ∞ 44.2 ∞ ∞
B1, A75 74.2 ∞ ∞ 72.0 ∞ ∞
B1, A90 87.7 ∞ ∞ 87.9 ∞ ∞
B2, A50 9.9 11.8 119.5 5.2 16.1 310.5
B2, A75 9.0 12.4 137.8 4.9 16.7 340.9
B2, A90 8.4 12.1 144.5 5.0 16.3 324.5
B2, A 11.2 327.9 2927.7 9.8 150.1 1531.6

B3, A50 14.0 12.2 87.3 5.1 15.9 312.2
B3, A75 13.4 12.8 95.3 4.8 17.0 352.7
B3, A90 4.2 19.5 460.2 4.8 19.9 413.5

MLP, A50 29.3 15.7 53.5 21.6 19.7 91.3
MLP, A75 38.8 15.0 38.7 27.8 20.3 73.0
MLP, A90 39.9 14.3 35.8 29.2 19.6 66.9

MLPT A50 17.0 4.6 26.9 9.1 8.9 96.8
MLPT A75 29.0 7.6 26.1 19.0 13.5 71.1
MLPT A90 36.8 10.8 29.3 26.3 16.2 61.6

Table 4. Classifier evaluation. Rows correspond to start problem
selection strategies. The anchors are extracted from datasets Office
and Terrains (Tab. 1). The strategies are evaluated on datasets De-
livery area and Facade. An denotes a set of anchors covering n%
of the training datasets. “B1, An” starts from all anchors in An;
this is the “Oracle strategy” used in Tab. 3. “B2, An” starts from
the closest anchor to the target problem using Euclidean distance
in the space of normalized image points. “B3, An” starts from the
closest anchor using the Mahalanobis distance. Our “MLP T An”
starts from the highest-scoring anchor, using the MLP described
in Sec.5. Columns: ρ is the success rate (recall) of retrieving a
starting point from which the target problem can be reached, µt is
the mean solving time, is the mean effective solving time ϵt (as a
percentage), i.e. the average time to obtain one correct solution. If
multiple anchors are selected, the classification is considered suc-
cessful if any of the tracks ends in a correct solution. A solution
is considered correct if the squared Euclidean distance from the
obtained solution to the ground-truth solution is less than 10−5.
We measure total time needed to perform the classification, pre-
processing of the input problem and HC from all selected anchors.

Our task is to numerically continue a known problem/-
solution pair (p0, s0) ∈ M to a pair (p, s) ∈ M for some
problem of interest p ∈ P. This may be accomplished by
introducing a parameter homotopy H(s, t) = f(p(t), s)
where p(t) ∶ [0,1]→ P is some differentiable function with
p(0) = p0 and p(1) = p. The goal is to compute a differen-
tiable path (p(t), s(t)) ∶ [0,1] → M such that s(0) = s0
and satisfying the implicit equation H(p(t), s(t)) = 0.
Note that the homotopy H depends on p(t), and that many
choices are possible. We mainly consider Linear segment
HC: that is, we choose p(t) = (1 − t)p0 + t p.

We approximate the solution curve s(t) may be com-
puted with numerical predictor/corrector methods, illus-
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Figure 3. (left) The main geometrical constraint. (right) Scranton
formulation. The world point X1 projects under the first camera
to an image point at distance l from x1,1.

trated in Fig. 2b. In our predictor step, s(ti) for a given ti ∈
[0,1) is known, and s(ti + ∆t) (for an adaptively-chosen
stepsize ∆t) is approximated using the standard Runge-
Kutta method. In the corrector step, the value s(ti + ∆t)
is refined by up to 3 steps of Newton’s method.

For both cases of 5pt and Scranton problems, there are
additional polynomial constraints which rule out certain
spurious solutions. However, one advantage of our HC
method is that, although the vanishing set of the f we use
is strictly larger than M, these additional constraints do not
need to be explicitly enforced—See SM Sec. 16

6.1. Efficient HC implementation

Our work builds on the core of an optimized HC solver
introduced in [20] that was originally developed for the
problem of computing the relative pose of three calibrated
cameras from corresponding point-line incidences. The
optimized solver in that work is globally convergent with
probability 1, but needs about 500 miliseconds to track 312
complex solution paths to solve a single problem instance.

By contrast, our solver for Scranton tracks a single path
in under 10 microseconds, a speedup of more than 1000×.
As noted in Sec. 1.3, much of this dramatic speedup is be-
cause global HC methods must compute all solutions over
the complex numbers, whereas our method computes one,
allowing now a greater probability of failure for a given data
sample. Moreover, the start system in our HC method is tai-
lored to the input by the anchor selection procedure.

There are also significant implementation-specific
speedups. For instance, we obtain another ≈ 14× speedup
by performing all computations in real, instead of complex
arithmetic. We also obtain an ≈ 5× speedup by optimizing
the linear algebra underlying predictor/corrector steps; the
Jacobian matrices of our depth-formulated are sparse, lead-
ing to inexpensive closed-form solutions.8

7. Minimal problem formulation
We now describe the polynomial systems used by our

5pt and 4pt HC solvers. The unknowns in both systems
are normalized depths in each camera, as formulated in pre-
vious works [52, 69]. The basic principle underlying both

8See SM Sec. 16 for more details.

formulations, depicted in Fig. 3, is that the distances be-
tween any two 3D points must be the same, regardless of
the 2D points used to reconstruct them. Throughout, we
write vk,i = [xk,i; 1] for the homogeneous coordinates of
an image point. We choose these formulations over others
because (i) due to low degree and sparsity, they lead to fast
evaluation of straight-line programs and execution of linear
algebra subroutines used in HC and (ii) they work well in
tandem with our input normalization described in Sec. 8.

7.1. 5pt minimal problem

The 5pt problem is parametrized by the projection of 5
3D points into 2 calibrated cameras. There are 10 unknown
depths λi,j , i = 1, . . . ,5, j = 1,2, and 10 = (5

2
) equations

∣∣λk,1vk,1 − λm,1vm,1∣∣2 = ∣∣λk,2vk,2 − λm,2vm,2∣∣2 (1)

with k,m = 1, . . . ,5, k ≠ m. To dehomogenize this sys-
tem, we set λ1,1 = 1, obtaining a system of 10 equations in
9 unknowns. This system has at most 10 nonsingular so-
lutions with all depths positive and which can be extended
to a rotation with detR2 = 1. As we explain thoroughly
in SM Sec. 14, there exist other, spurious solutions which
satisfy both this system of equations and the square subsys-
tem of 9 equations in 9 unknowns used by our HC solver.
In principle, these spurious solutions may be ruled out by
enforcing additional polynomial constraints. However, as
already noted in Sec. 6, it is not necessary to enforce these
additional constraints with our HC approch.

7.2. Scranton relaxation of the 4pt problem

The 4pt problem consists of the projection of 4 points
into 3 calibrated cameras. Here we get 12 equations which
are homogeneous in the 12 unknown depths:

∣∣λk,ivk,i − λm,ivm,i∣∣2 = ∣∣λk,jvk,j − λm,jvm,j ∣∣2 (2)

with k,m = 1, . . . ,4, k ≠ m and, e.g., i = 1,2, j = i + 1. To
dehomogenize the system, we set λ1,1 = 1. Unlike for the
5pt problem, here we get an overconstrained system of 12
equations for 11 unknown depths, which has no solution for
generic (noisy) parameters vk,i. To get a minimal problem,
we replace v1,1 by v1,1 + l [0; 1; 0], where l is a new un-
known. This relaxation allows us to “adjust” the second co-
ordinate of the first point in the first camera. Notice that by
relaxing the first point in the first view, which has λ1,1 = 1,
the equations involving that point

∣∣v1,1 + l [0; 1; 0] − λm,1vm,1∣∣2 = ∣∣λ1,2v1,2 − λm,2vm,2∣∣2

for m = 2,3,4 remain quadratic in unknowns (λ, l). Solu-
tions to the minimal problem “Scranton”, Fig. 3, are solu-
tions to this square, inhomogeneous system.9.

9See SM Sec. 15 for additional details about Scranton.
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Figure 4. Percentage of camera pairs from the 2020 RANSAC
Tutorial [31] for which the relative pose obtained by RANSAC
has rotation and translation error less than 10○.

8. Problem preprocessing

To simplify both learning the anchor selection strategy σ
and HC tracking, we considered several schemes for nor-
malizing the input image correspondences, i.e., the param-
eters p of the problems. Our chosen normalization yields
single representative p for all problems that differ from p up
to camera re-orientation or permutation of cameras or cor-
respondences. Once the normalized problem is solved, the
original problem may be solved by applying a transforma-
tion R−1i described below.

For the 5pt problem, a problem p is given by image
coordinates xi,j ∈ R2 with cameras indexed by i = 1,2
and points indexed by j = 1, . . . ,5. First, we construct
unit 3D vectors representing the rays of the image points
as vi,j = [xi,j ; 1]/∣∣[xi,j ; 1]∣∣. Next, we compute the mean
ray for each camera mi = meanj(vi,j). Then, we find the
ray vi∗j∗ that contains the largest angle with the mean ray
mi of its camera, i.e., (i∗, j∗) = argmax(i,j)∠(xi,j ,mi).
Next, we compute wi,j = Rivi,j such that Rimi = [0; 0; 1]
and yi∗,j∗ , as well as the corresponding y1−i∗,j∗ , have the
second coordinate equal to 0, i.e., we put them on the “x
axis”. Finally, we swap the cameras to make the camera i∗

the first one, project 3D rays wi,j back to the image points
xi,j = wi,j/w(3)i,j , and reorder the image correspondences
counterclockwise starting with j∗10

For the 4pt problem, cameras are ordered accord-
ing to angles of the first point; ∠([x1,1; 1], [0,0,1]) ≥
∠([x2,1; 1], [0,0,1]) ≥∠([x3,1; 1], [0,0,1]).

9. Experiments - RANSAC evaluation

To show how our method generalizes to different real
scenes and to data contaminated by noise and wrong
matches, we evaluate our approach for the 5pt problem on
the dataset from the CVPR 2020 RANSAC Tutorial [31]
consising of 2 validation scenes and 11 test scenes, each
comprising 4950 camera pairs. For every camera pair, a set

10See SM Fig. 8 and Sec. 17 for more details.

of matched 2D points is known. The points are contami-
nated with noise and mismatches. We evaluate solvers by
plugging them into a RANSAC scheme [53] and comput-
ing relative poses for camera pairs in each scene. We eval-
uate the rotation error and translation error separately. Our
evaluation metric is the percentage of relative poses whose
angular distance from the ground truth is less than 10○. We
believe that this metric is justified, because the main pur-
pose of the RANSAC procedure is to separate the correct
matches from the mismatches, and a more precise relative
pose can be obtained by local optimization on the inliers.

We consider our HC solver with a single anchor, our
HC solver with MLP without trash, and our HC solver
with MLP and trash. To estimate the success rate of our
solver on this data, we compare it with the Nistér 5 point
solver [48]. The success rate of the Nistér solver is close
to 100%, and its errors are only due to the noise and
mismatches in the data. Therefore, if the success rate of a
solver on the given data is, e.g., 25%, we expect it to need
4 times the number of samples used for the Nistér solver
to get the same results. We have considered RANSAC
with 25,50,100,200,400,800,1600, and 3200 samples.
The inlier ratio is 3px. The relation between the number
of samples and the percentage of correctly estimated
cameras is shown in Fig. 4. The graph shows that the
lower success rate of our method can be compensated by
running RANSAC for more samples. Our method with
MLP requires about 4 times more samples than the Nistér
solver. Therefore, the success rate on the data from [31]
is around 25%, which is about 1.6 times lower than the
success rate on the testing data from ETH 3D dataset 11.

10. Conclusion
Our approach to solving hard minimal problems for

RANSAC framework, which uses efficient homotopy con-
tinuation and machine learning to avoid solving for many
spurious solutions, is fast and delivers correct results.
Supplementary Material (SM) presents more details and
experiments. Our code and and data are available at
https://github.com/petrhruby97/learning minimal.
Limitations of our approach: First, we sacrifice the high
success rate of a complex HC method for a fast, real HC
method that fails more frequently. Nevertheless, when com-
bined with trained models, our method succeeds in comput-
ing real solutions often enough to be useful in RANSAC.
Secondly, our MLP model represents only what it is trained
for. Still, we saw that it was able to represent real data distri-
butions while keeping small size and fast evaluation. Fitting
to a particular data distribution may also be useful in spe-
cial situations, e.g., when cameras are mounted on a vehicle,
hence having special motions.

11See SM Sec. 18 for the study of our engineering choices.
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[35] Yubin Kuang and Kalle Åström. Pose estimation with un-
known focal length using points, directions and lines. In
IEEE International Conference on Computer Vision, ICCV
2013, Sydney, Australia, December 1-8, 2013, pages 529–
536, 2013. 1
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