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Abstract

We propose the Dual-Generator (DG) network for large-
pose face reenactment. Given a source face and a reference
face as inputs, the DG network can generate an output face
that has the same pose and expression as the reference face,
and has the same identity as the source face. As most ap-
proaches do not particularly consider large-pose reenact-
ment, the proposed approach addresses this issue by incor-
porating a 3D landmark detector into the framework and
considering a loss function to capture visible local shape
variation across large pose. The DG network consists of
two modules, the ID-preserving Shape Generator (IDSG)
and the Reenacted Face Generator (RFG). The IDSG en-
codes the 3D landmarks of the reference face into a ref-
erence landmark code, and encodes the source face into
a source face code. The reference landmark code and the
source face code are concatenated and decoded to a set of
target landmarks that exhibits the pose and expression of
the reference face and preserves the identity of the source
face. The RFG is partially built on the StarGAN2 generator
with modifications on the input and layer settings, and with
a facial style encoder added in. Given the target landmarks
made by the IDSG and the source face as inputs, the RFG
generates the target face with the desired identity, pose and
expression. We evaluate our approach on the RaFD, MPIE,
VoxCeleb1, and VoxCeleb2 benchmarks and compare with
state-of-the-art methods.

1. Introduction
Given a source face and a reference face, face reenact-

ment refers to the transformation of the action of the refer-
ence face to the source face. The action refers to the pose
and facial expression. The challenges are on the similar-
ity between the actions of the reference face and the source
face and on the preservation of the source identity after the
transformation. It is an active research topic in the fields of
computer vision and attracts increasing attention in recent
years [23–26]. It has a wide range of applications in the
areas such as virtual reality, animation and entertainment.

Various approaches have been proposed in recent years
[4, 22–25]. A major family of the approaches is the
Landmark-Assisted Generation (LAG), which exploits the
facial landmarks to leverage the action transformation and
the reenacted face generation [4, 22, 24, 25]. The FReeNet
[25] trains a landmark converter to transfer the reference’s
landmarks to the source, and trains a generator to make the
target face show the reference’s expression, but it cannot
handle pose transformation. The FSTH [24] trains an em-
bedder to encoder the source’s landmarks, and a generator
to transfer the reference’s action to the source face. More
approaches from the LAG family are reviewed in Sec.2.
Different from the existing LAG approaches, our approach
explores a dual-generator architecture with one generator to
make the ID-preserving 3D landmarks, and the other gener-
ator to make the target face satisfy multiple objectives. Due
to the embedding of 3D landmarks and the core losses con-
sidered in training, our approach can address the large-pose
reenactment, which is a challenging problem, but has not
received sufficient attention.

There are methods without using landmarks, for exam-
ple, the MGOS [23] that uses the reconstructed 3D meshes
as guidance to learn the optical flow needed for the target
face synthesis. Although the progresses made by differ-
ent approaches are substantial, many issues are yet to be
solved. The performance measured by the common met-
rics, for example the FID, CSIM and SSIM, is still far from
ideal. Many approaches have specific issues. For example,
the FReeNet only transfers the facial expression, but can-
not handle pose transfer. Although the FSTH can transfer
both the pose and expression, the facial landmarks used to
control the conversion are often inaccurate, damaging the
identity preservation. Another important issue is that most
approaches only deal with median pose variation (yaw an-
gle < 45o) and ignore large/extreme poses.

To address the above issues, we propose the Dual-
Generator (DG) network that contains two generators, the
ID-preserving Shape Generator (IDSG) and the Reenacted
Face Generator (RFG). Given a source face Is and a ref-
erence face Ir as inputs, the IDSG transfers the pose and
expression of the reference face Ir to the source face Is and
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generates the target landmark estimate l̂t. The RFG takes
the target landmark estimate l̂t and the source Is as inputs,
and generates the reenacted face Ît that shows the same ac-
tion as of the reference face Ir, but has the same identity
as of the source Is. To handle large-pose references, we
embed a 3D-landmark detector and consider an objective
function to capture the pose-dependent local shape varia-
tion from frontal to profile. We train the DG network on the
dataset with full pose variation so that the landmark motion
and identity preservation across large pose can be learned.

We summarize the contributions of this work as follows:
• The ID-preserving Shape Generator (IDSG) is veri-

fied effective in generating an identity-preserving fa-
cial shape with the desired pose and expression.

• The Reenacted Face Generator (RFG) is verified ef-
fective in generating an identity-preserving target face
with the desired pose and expression.

• Different from most approaches in the LAG family that
use 2D landmarks, we embed 3D landmarks with a loss
function to capture visible local shape variation so that
the large-pose face reenactment can be handled.

• Better performance than state-of-the-art approaches,
based on the evaluations on the RaFD, MPIE, Vox-
Celeb1, VoxCeleb2 benchmarks.

Our code, model and more qualitative results are avail-
able on https://github.com/AvLab-CV/Dual_
Generator_Face_Reenactment. In the following,
we first review the related work in Sec. 2, then the proposed
approach in Sec. 3, then the experiments for performance
evaluation in Sec. 4, and then a conclusion in Sec. 5.

2. Related Work
Many approaches have been proposed in recent years

[4, 18, 22, 23, 25]. A major family of the approaches is the
Landmark-Assisted Generation (LAG), which exploits fa-
cial landmarks to leverage the expression and pose conver-
sion, followed by the reenacted face generation [22,24,25].
There are approaches without using landmarks, for ex-
ample, the Mesh Guided One-Shot (MGOS) [23] and the
X2Face [21]. However, most approaches only concern me-
dian pose variation, i.e., the yaw angle < 45o and ignore
large/extreme poses. The proposed approach belongs to the
LAG family, but it can handle large/extreme poses, in addi-
tion to the common median pose variation.

The ReenactGAN [22] employs an encoder to encode
faces into a boundary latent space defined by the heatmaps
of facial landmarks. A boundary-based transformer is made
to convert the reference’s boundary to the source’s bound-
ary, and an identity-specific decoder synthesizes the trans-
formed boundary to the reenacted face. Although the Reen-
actGAN can generate good quality target faces, it needs to
retrain a new face boundary transformer and decoder when

applied to an unseen identity. The Few-Shot Talking Head
(FSTH) [24] is made of an embedder network, a generator
and a discriminator for activating few-shot learning. The
embedder network converts faces into personalized embed-
ding vectors, which are entered into the layers of the gener-
ator to make the desired reenacted faces. The FReeNet [25]
is made of a landmark converter and a generator for facial
expression transfer. The landmark converter transfers the
landmark features of the source and reference into the tar-
get landmarks with the reference’s expression. The gener-
ator takes the transferred target landmarks and the source
face for reenactment. The FReeNet only transfers the facial
expression and does not transfer the pose, so the reenacted
face is in the same pose as of the source, imposing a big lim-
itation on the application. The PuppeteerGAN [4] consists
of a sketch network for pose retargeting and a coloring net-
work for appearance transformation. The former takes the
source’s segmentation mask and the reference’s landmarks
to generate the target segmentation mask and landmarks,
which are taken by the latter to make the target preserve the
source identity with the reference’s action.

Some approaches do not belong to the LAG family, and
consider different annotations or keypoints for capturing the
pose and expression transformation. To improve identity
preservation, the MGOS [23] uses reconstructed 3D meshes
to learn the optical flow needed for the target face synthesis.
The learning is based on the optical flow directly from 3D
dense meshes, and able to provide the sufficient shape and
pose information to reconstruct the source’s expression and
pose. The First Order Motion (FOM) model [18] consists of
a keypoint detector, a motion network and a generator. The
motion network takes the motion representation to gener-
ate the dense optical flow from the reference to the source.
The generator takes the optical flow and an occlusion map
to combine the source appearance and the reference motion
to make the desired target face. The X2Face [21] consists
of an embedding network and a driving network. The em-
bedding network learns a face representation across source
faces with differing poses and expressions and the driving
network learns a pixel sampler to convert pixels from the
source face to generate the target faces.

As the RFG module in the proposed DG network is de-
veloped based on the StarGAN2 [6], we give it a brief re-
view. The StarGAN2 is proposed to address the issues of
the StarGAN [5], which learns a deterministic mapping in
each visual domain and does not capture the multi-modal
nature of the data distribution over multiple domains. The
StarGAN2 replaces the domain label in the StarGAN with
a domain specific style code to represent the styles of a spe-
cific domain. It includes two modules, the mapping network
and the style encoder. Both modules have multiple output
branches, each of which provides a style code for a specific
domain. The StarGAN2 generator learns to synthesize im-
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Figure 1. The DG network consists of two generators, the ID-preserving Shape Generator (IDSG) and the Reenacted Face Generator
(RFG). Given a source face Is and a reference face Ir as input, the IDSG transforms the action of Ir to Is in terms of the landmarks l̂t.
The RFG takes l̂t and Is as input, and generates the reenacted face Ît that has the same action as Ir , and has the same identity as Is.

ages over multiple domains by using the style codes.

3. Proposed Approach
The Dual-Generator (DG) network is composed of

two primary modules, the ID-preserving Shape Generator
(IDSG) and the Reenacted Face Generator (RFG). The con-
figuration is shown in Figure 1. The IDSG consists of a face
encoder Ef , a facial landmark detector Fl, a landmark en-
coder El and a landmark decoder Rl. Given a source face
Is and a reference face Ir as inputs, it generates a set of tar-
get landmark estimate l̂t as output. The RFG consists of a
face generator Gf and a style encoder Es. Taking the target
landmark estimate l̂t and the source face Is as inputs, the
RFG generates the desired target face Ît so that Ît and Is
have the same identity, and Ît and Ir have the same action
in terms of the pose and expression. Both IDSG and RFG
are trained for self-reenactment with ground-truth It and
lt available, then trained for cross-ID reenactment (cross-
reenactment) for handling unseen subjects. The details of
the above components and modules are given in the follow-
ing sections. See Supplementary Materials for more details
about the network architectures and settings.

3.1. ID-preserving Shape Generator

The IDSG (ID-preserving Shape Generator) is designed
to transform the pose and expression of the reference face
Ir to the source face Is in terms of facial landmarks. The
problem is formulated as the transformation of the reference
facial landmark lr to the target landmark estimate l̂t so that
l̂t preserves the identity characteristics of the source Is but
exhibits the pose and expression of the reference Ir.

To solve this problem, we design an encoder-decoder
landmark generator Gl = [El, Rl], where El denotes the
landmark encoder and Rl is the landmark decoder. At the
training phase, the landmark generator Gl works with a
landmark discriminator Dl and a landmark-based subject
classifier Cl. The discriminator Dl verifies the quality of
the landmarks made by Gl by distinguishing the gener-
ated landmarks from the actual landmarks obtained on the
source images. The subject classifier Cl classifies the land-
marks of the reference faces according to the subjects in the

reference dataset, i.e., Cl classifies the individuals by con-
sidering their corresponding landmarks.

Except for the above four major components, El, Rl, Dl

and Cl, the IDSG incorporates a 3D facial landmark de-
tector Fl and a face encoder Ef . Both networks are off-
the-shelf models and not updated during training. We use
the FAN (Face Alignment Network) [1] as the 3D landmark
detector Fl, and the feature embedding layers of the VG-
GFace2 [3] as the face encoder Ef . The landmark detector
Fl detects the 3D landmarks of a 2D face, and labels each
landmark as visible or invisible across pose, allowing us to
develop the visible local shape loss for handling large-pose
reenactment. The face encoder Ef provides the identity loss
required to optimize the landmarks generated by the IDSG.
The details of the major modules are given below.

• El is an MLP made of five fully connected (fc) layers
and a leaky ReLU [15] activation function applied to
each fc layer, and it generates an action code γ to rep-
resent the pose and expression of a set of landmarks.

• The landmark decoder Rl is structured as the mirror of
El with five fc layers and leaky ReLU activations. It
takes the action code γ concatenated with the facial ID
code rs to generate the estimated target landmark l̂t.

• Both the landmark discriminator Dl and subject clas-
sifier Cl are structured in the same way as of the land-
mark encoder El with the same dimension at input
(due to the same dimension of the landmark input) but
different dimension at output. The output dimension of
Dl is one, for distinguishing the generated landmarks
from the real ones; while the output dimension of Cl is
the number of subjects to identify in the training set.

We do not just generate the target landmark estimate l̂t,
but also the reference landmark estimate l̂r by entering the
reference faces as the source faces during training. One of
the novelties in this study is about the loss functions, espe-
cially the visible local shape loss, which enables the shape
switch across large pose. We consider the following losses:
the adversarial loss, the visible local shape loss, the action
loss, the subject class loss and the localization loss.
Adversarial Loss To make the target landmark estimate
l̂t = Gl(lr, Is) exhibit an actual set of landmarks, the fol-
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lowing adversarial losses are needed for training the land-
mark generator Gl and discriminator Dl:

Ladv
Gl

= −Elr∼p(lr),Is∼p(Is) log [1−Dl (Gl(lr, Is))] (1)

Ladv
Dl

=Elr∼p(lr) log [Dl (lr)] +

Elr∼p(lr),Is∼p(Is) log [1−Dl (Gl(lr, Is))] (2)

Visible Local Shape Loss The visible local shape (VLS)
loss Lvls is proposed for two objectives. One is to capture
the shape variation of the target landmark estimate l̂t across
large pose, e.g., one eye occluded when rotating the face
to > 45◦ in yaw, and reappearing when rotating back. The
other one is to make l̂t far apart from the reference landmark
lr, while making the estimated reference landmark l̂r closer
to the real reference landmark lr simultaneously, as l̂t is
made for the source Is which must be made further away
from the reference lr, while l̂r is made for the reference Ir
which must be made closer to lr.

We divide the landmarks into five groups for five local
regions, namely the left eye, right eye, nose, mouth and
face contour. As the landmark coordinates given by the
3D landmark detector Fl can be used to label visible and
invisible landmarks, we can learn the variation of the visi-
ble/invisible landmarks across large pose and minimize the
following VLS loss for each region during training.

Lk
vls =

∥∥∥lkr,v − l̂kr,v

∥∥∥
1
−
∥∥∥lkr,v − l̂kt,v

∥∥∥
1
+ σk (3)

where Lk
vls is the VLS loss defined for Region-k, k =

1, 2, ..., 5 for left eye, right eye, nose, mouth and face con-
tour, respectively; v = 0, 1 is the visibility indicator; σk is
a margin parameter determined in the experiment. We only
compute Lk

vls for the visible landmarks, i.e., v = 1. As the
landmark detector Fl can number each landmark in a spe-
cific order regardless of the pose, we group the landmarks
for each region by their numbers.

The generation of l̂t is driven by the concatenated [γ, rs],
and the generation of l̂r driven by the concatenated [γ, rr],
where rs and rr are the facial ID codes of the source Is and
reference Ir, respectively. The VLS loss Lvls constrains the
generation of l̂r and l̂t by using the reference landmark code
γ, awards the closeness between lr and l̂r, and penalizes the
similarity between lr and l̂t.
Action Loss To better duplicate the pose and expression
of the reference, we minimize the following action loss La

that computes the difference between the landmark codes of
the reference landmark and target landmark estimate.

La =
∥∥∥El(l̂t)− El(lr)

∥∥∥
1

(4)

Subject Class Loss We use the subject classifier Cl to com-
pute the following subject class loss LCl

to make l̂t preserve

the subject identity in the shape space.

LCl
= Elr∼p(lr)[− logP (si|Cl(lr))] (5)

where si is the ID label of the reference face Ir.
Localization Loss To make the generated landmarks lo-
cated at the desired locations, the localization loss Ll is ex-
ploited to minimize the distance between lr and l̂r and the
distance between lt and l̂t when the ground truth lt can be
available at the self-reenactment training phase.

Ll =
∥∥∥l̂t − lt

∥∥∥
1
+

∥∥∥l̂r − lr

∥∥∥
1

(6)

Note the differences between the global additive setup in
(6) and the local adversarial setup in (3), and the different
desired objectives.

The following weighted sum of the above five losses is
minimized when training the IDSG.

LIDSG = Ladv
Gl

+ λvLvls + λaLa + λcLCl
+ λlLl (7)

where λl, λc, λv, λa are the weights to be determined in the
experiments.

3.2. Reenacted Face Generator

The Reenacted Face Generator (RFG) takes the target
landmark estimate l̂t and the source image Is as input, and
generates the reenacted face Ît as output. The desired Ît
must be of the same identity as of the source face Is, and in
the same pose and expression as of the reference face Ir. It
is composed of an encoder-decoder generator Gf and a style
encoder Es. During training, Gf and Es learn along with
a face discriminator Df and a shape discriminator Ds to
produce the desired target face Ît. The details of the above
modules are presented below.

• The style encoder Es consists of six downsampling
residual blocks and aims to extract the facial style code
ss = Es(Is) from the source Is. ss will be entered to
the layers of the generator Gf to preserve the source
identity at the generated target Ît.

• The generator Gf consists of four downsampling
residual blocks, four intermediate residual blocks and
four upsampling residual blocks. The AdaIN [11,12] is
applied to enter the facial style code ss into the last two
intermediate residual blocks and all upsampling resid-
ual blocks to make the target face Ît = Gf (l̂t, ss). We
enter l̂t into Gf in the form of a landmark map, which
is a binary image of the landmarks with each neighbor-
ing landmark pair connected by an edge.

• The face discriminator Df and shape discriminator Ds

have the same structure as of the style encoder Es but
both with 1D output for discriminating the generated
from the real. The input to Df is Ît, and the input to
Ds is Fl(Ît)
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Although the generator Gf is built on the StarGAN2,
the differences include the layer settings for entering the
style signal ss, the source format in a binary map, the dis-
criminator settings and the loss functions. We consider the
following loss functions when training the RFG for self-
reenactment with the ground-truth target It is available.

Adversarial Loss Force the generated target Ît to comply
with two requirements: 1) Ît must appear as a real face with
the same identity as of the source face Is; 2) Ît must be
in the same action as of the reference Ir. The following
adversarial losses for G, Df and Ds are needed to meet
these requirements:

Ladv
G = −El̂t∼p(l̂t),Is∼p(Is)

log
[
1−Df

(
G(l̂t, Is)

)]
(8)

Ladv
Df

=EIt∼p(It) log
[
Df (It)

]
+

El̂t∼p(l̂t),Is∼p(Is)
log

[
1−Df

(
G(l̂t, Is)

)]
(9)

Ladv
Ds

=EFl(It)∼p(Fl(It))
log [Ds (Fl(It))]+

EFl(l̂t)∼p(Fl(l̂t))
log

[
1−Ds

(
Fl(Ît)

)]
(10)

Attribute Loss To make the image attributes of the gener-
ated target Ît close to those of the ground-truth target It, we
exploit the following pixel-wise L1 loss Lat.

Lat =
∥∥∥Ît − It

∥∥∥
1

(11)

Identity Loss To preserve the source identity of Is at the
generated face Ît, we use the face encoder Ef formed by the
feature embedding layers of the VGGFace2 [3] to compute
the following identity (ID) loss via cosine similarity.

Lid = 1− cos(Ef (Ît), Ef (Is)) (12)

Style Consistency Loss To make the style encoder Es gen-
erate the same facial style code ss to the source Is and the
generated target Ît, we exploit the following loss.

Lst =
∥∥∥Es(Ît)− Es(Is)

∥∥∥
1

(13)

Landmark Loss To make the generated target face Ît ap-
pear in the desired action, we exploit the following land-
mark loss Llm to minimize the distance between l̂t and the
landmarks detected on Ît.

Llm =
∥∥∥Fl(Ît)− l̂t

∥∥∥
1

(14)

The full objective function for training the RFG is a
weighted sum of the above loss functions:

LRFG = Ladv
G +λatLat+λidLid+λstLst+λlmLlm (15)

where λat, λid, λst, λlm are the weights to be determined.

4. Experiment
We first introduce the datasets, then the evaluation and

implementation details, and then an ablation study on dif-
ferent settings of the DG network. A comparison with state-
of-the-art approaches is presented with the performance on
both the normal and large-pose settings.

4.1. Datasets and Implementation Details

We consider both the constrained and unconstrained
datasets. The RaFD [14] and MPIE [9] are the constrained
datasets that offer ground truth for target poses and expres-
sions; the VoxCeleb1 [16] and VoxCeleb2 [7] are the un-
constrained (aka in-the-wild) datasets.

RaFD The Radboud Faces Database (RaFD) [14] con-
sists of 8,040 pictures collected from 67 subjects. Each
subject has 8 expressions in 3 gaze directions and 5 differ-
ent poses. All images were resized to 2562 pixels, and we
used the FAN to detect the 68 3D landmarks on each face.
We followed the same settings as in the FReeNet [25]. The
training set was formed by 67 subjects with 8 facial expres-
sions in 3 gaze directions and 5 different poses. For perfor-
mance evaluation, we synthesized 100 reenacted images for
each source identity with 100 reference images randomly
selected from other identities, resulting in 6,700 reenacted
images for the 67 subjects.

MPIE The MPIE offers more than 750k images for
337 subjects in 15 poses, 6 expressions and 20 lighting
conditions. It is selected for the evaluation on large pose
reenactment. We followed the same setup as that in [2].
The training set is formed by 200 subjects with all poses
and 5 lighting condition and 4 expressions, and the rest
137 subjects form the testing set. The training set is
used for self-reenactment, and the testing set is used for
cross-reenactment. We design two test protocols for cross-
reenactment. One synthesized 100 reenacted images for
each source identity in the testing set with 100 reference
images randomly selected from other identities. The other
repeated the experiments but each source face with yaw
< 30◦ and reference faces with yaw > 60◦. The latter is
called MPIE (Large Pose) in the experiments.

VoxCeleb1 The VoxCeleb1 dataset [16] contains over
100k utterances for 1,251 celebrities, extracted from the
YouTube videos, and is divided into the training and test-
ing sets. In our experiment, all images were extracted from
the videos sampled at 1 fps, resized to 2562 pixels, and
each with 3D landmarks detected by the FAN. We followed
the experimental protocol reported in the FSTH [24], and
trained all models on the training set. For the performance
evaluation, we fine tuned all models by using 8 frames ran-
domly selected from the 50 videos in the test set, and tested
on the 32 hold-out frames of the same 50 videos (fine-tuning
and the hold-out frames do not overlap).
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VoxCeleb2 The VoxCeleb2 [7] is an extension of the
VoxCeleb1. It contains over 1 million utterances for 6,112
celebrities, and is divided into the training and testing sets.
We extracted images from the videos at 25 fps and pro-
cessed the images in the same way as performed for the
VoxCeleb1. We again followed the protocol reported in the
FSTH [24] for the experiments.

Evaluation Metrics Multiple metrics are selected to
test the photo-realistic quality and identity preservation of
the generated images, including the Frechet-Inception Dis-
tance (FID) [10], the Structured Similarity (SSIM) [20] and
Cosine Similarity (CSIM). The FID evaluates the photo-
realistic quality by measuring the distribution distance be-
tween the features extracted from the real and generated
images. The feature is extracted by using the last average
pooling layer of the Inception-V3 [19]. The SSIM mea-
sures the low-level similarity of the generated images to
the ground-truth images. The CSIM measures the identity
preservation in the generated images by using the similarity
between the facial features extracted from the source and
generated images. We use the feature embedding layers of
the ArcFace [8] to extract the facial features, and compute
the cosine similarity.

Implementation Details We trained the IDSG and
RFG, independently; and merged them for testing. We be-
gan with self-reenactment with minimum two images per
identity for training, and one image used as source and the
other as reference. Based on the model trained for self-
reenactment, we retrained it for cross-reenactment with ref-
erences replaced by other identities.

We trained the IDSG module from scratch with the ob-
jective defined in (7). The following parameters were deter-
mined from a comparison study. The margins [mi]i=1,...,5

for the VLS loss in (3) were selected as 0.05, 0.05, 0.1, 0.05
and 0.2, respectively. The weights in (7) were settled as
λl = 0.5, λc = 1, λvls = 10, λa = 1. We also trained
the RFG module from scratch with the objective given in
(15). To compute the identity loss in (12), we extracted the
2048D feature from the last fully connected layer of the VG-
GFace2 built on the ResNet50 [3]. The weights in (15) were
selected as λat = 10, λid = 10, λst = 1 and λlm = 1. Our
programs were written in the Pytorch deep learning frame-
work [17]. All experiments were run with batch size 4 on
a Ubuntu 18.04 with NVIDIA RTX Titan GPU. We used
the Adam [13] optimizer with β1 = 0.01, β2 = 0.99. The
learning rates for the two modules were 1e−5 and 1e−4, re-
spectively.

4.2. Ablation Study

To better determine the settings of the loss functions
for the IDSG and the RFG, we selected the RaFD as the
dataset to determine the settings for the loss functions, and
the MPIE (Large Pose) for demonstrating the effect of the

Table 1. Average Coordinate-wise Error (ACE) on RaFD dataset
for different loss settings on the IDSG. Baseline (BL) refers to the
model with adversarial loss Ladv

Gl
and classification loss LCl only.

BL: Ladv
Gl

+ LCl + Ll + La DG (+ Lvls)

8.07 ± 2.59 6.93 ± 1.90 6.61 ± 1.65 4.13 ± 1.12

Table 2. RFG performance for different losses cumulatively added
on to the baseline (BL) with Ladv

Df
+ Lat on the RFG. Top four

rows with Df only, last row with Ds added on.

Metrics SSIM↑ FID↓ CSIM↑
BL: Ladv

Df
+ Lat 0.503 58.61 0.211

+ Lid 0.643 12.01 0.775
+ Lst 0.662 9.92 0.803
+ Llm 0.707 5.59 0.844

DG (+ Ladv
Ds

) 0.726 3.99 0.862

IDSG. Both the RaFD and MPIE (Large Pose) offer differ-
ent faces of the same pose and expression so that the ground
truth for the target action can be available for comparison.

Loss Functions for the IDSG We computed the Av-
erage Coordinate-wise Error (ACE) of the landmarks gen-
erated by the IDSG with different loss settings. We define
a baseline that only considers the adversarial loss Ladv

Gl
and

classification loss LCl
, and other loss functions are cumula-

tively added to the baseline. The performance comparison
in ACE is given in Table 1. The ACE decreases when the
localization loss Ll and the action loss La are added to the
baseline. When the VLS loss Lvls is added on, the ACE is
substantially improved. Due to page limit, please see Sup-
plementary Materials for qualitative comparisons.

Loss Functions for the RFG Table 2 shows the FID,
SSIM and CSIM when each loss function is cumulatively
added to the RFG baseline, which only considers the face
discriminator Df and the attribute loss Lat. The identity
loss Lid can significantly improve the image quality and
identity preservation. The style consistency loss Lst and
landmark loss Llm also enhances the overall quality and
performance. The additional shape discriminator Ds further
improves the generated quality and identity preservation, as
demonstrated by all three metrics, especially the FID. See
Supplementary Materials for qualitative comparisons.

Influence of IDSG Figure 2 shows the effect of the
IDSG sampled from the experiment on MPIE (Large Pose).
When the poses of the source and reference are close to
frontal, the RFG alone performs well in identity preserva-
tion with the source Is and the reference landmark lr as in-
put, i.e., the shape information is all given by the reference
without using the IDSG. But the facial contour generated
looks similar to the reference, instead of the source. This
can be a serious issue when the reference is in large pose.
As the cases shown in Figure 2, the RFG mistakes the ref-
erence’s landmark as a mouth-open pattern and makes the
reenacted faces open mouth. When using the target land-
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Figure 2. The second row shows the reenacted faces made by the
RFG with reference landmark lr , i.e., without using the IDSG; the
third row made by the DG (=IDSG+RFG).

Figure 3. Comparison with several SOTA approaches for self-
reenactment

Table 3. Comparison of self-reenactment performance with state-
of-the-art methods on the VoxCeleb1 dataset

Method (N) SSIM↑ FID↓ CSIM↑
VoxCeleb1

X2Face [21] 0.75 56.5 0.18
FSTH [24] 0.74 29.5 0.19
FOM [18] 0.723 25.0 0.813

PuppeteerGAN [4] 0.725 33.6 0.717
MGOS [23] 0.739 n.a. 0.822

DG 0.761 22.1 0.831

mark estimate l̂t, i.e., the reference’s landmark rectified by
the IDSG, the performance is considerably improved.

4.3. Comparison with State-of-the-Art Methods

The DG network with the best settings confirmed in
the ablation study is compared with state-of-the-art ap-
proaches for handling both the self-reenactment and cross-
reenactment. We ran the same experiments for the ap-
proaches with code available. For the approaches without
code, we duplicate the results and image samples in their
papers for comparison.

Self-Reenactment Table 3 shows the self-reenactment

Table 4. Cross-reenactment performance compared with SOTA
methods on VoxCeleb2, RaFD, MPIE and MPIE (Large Pose)

Method (N) SSIM↑ FID↓ CSIM↑
VoxCeleb2

FOM [18] 0.53 54.78 0.714
DG 0.54 51.79 0.721

RaFD

FReeNet [25] 0.717 12.17 n.a.
FOM [18] 0.723 9.37 0.801

DG 0.726 4.79 0.862
MPIE

FOM [18] 0.58 28.34 0.714
DG 0.65 16.55 0.780

MPIE (Large Pose)

FOM [18] 0.38 62.88 0.382
DG 0.61 25.66 0.711

performance on the VoxCeleb1 dataset compared with the
X2face [21], FSTH [24], FOM [18], PuppeteerGAN [4]
and MGOS [23]. The DG net achieves the best scores in
all three metrics. Figure 3 shows the qualitative compari-
son with some of the approaches and the ground truth. The
DG demonstrates better performance in identity preserva-
tion and facial expression similarity to the ground truth.
However, as those samples are all close to frontal pose, the
performance for reenactment across large pose needs a dif-
ferent evaluation. Although the X2face, FOM and FSTH
have released models/codes, only the FOM model offers
similar results as reported in the paper according to our
tests. We are unable to duplicate the performance of the
X2face and FSTH as similar to what they reported in their
papers by using their models/codes. The samples in Figure
3 are photo-copied from their papers.

Cross-Identity Table 4 shows the cross-reenactment
performance on the VoxCeleb2, RaFD, MPIE datasets. As
mentioned in Sec. 4.1, the MPIE has two testing proto-
cols and one is for testing large-pose performance. Very
few methods report performance for cross-reenactment, and
we only found that the FReeNet [25] presents the perfor-
mance on the RaFD. The performance of the FOM in Ta-
ble 4 is based on the model released by the authors which
we have retrained on MPIE and MPIE (Large Pose). The
DG net claims the best performance in all three metrics on
all benchmarks, including the MPIE Large-Pose. Figure 4
shows a qualitative comparison with the faces made by the
FReeNet and FOM. Note the FReeNet can only handle fa-
cial expression transfer but cannot deal with pose transfer,
as the generated faces are all in the same pose as of the
source. The FOM can deliver good results to the sources in
frontal pose, but does not work for the sources with large
poses. Please see Supplementary Materials for more quali-
tative comparisons for cross-reenactment performance.
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Figure 4. Cross-reenactment comparison with FReeNet and FOM
on the RaFD. Top row shows the references. Those enclosed by
red bounding boxes are made by the DG net.

Figure 5. Cross-reenactment samples on the MPIE dataset.

4.4. Performance for Large-Pose Reenactment

Figure 5 shows cross-reenactment samples on the MPIE,
compared with the ground truth. To demonstrate the per-
formance for handling large-pose reenactment, the refer-
ences are selected for large pose differences from the source
face and a few references are in extreme poses. The reen-
acted faces well preserve the source identity and exhibit the
poses and expressions of the references. For comparison

Figure 6. Comparison of the DG trained on MPIE (+MPIE); the
DG trained on VoxCeleb1 training set only, without MPIE; and the
FOM trained on VoxCeleb1 training set with MPIE for large-pose
reenactment on the VoxCeleb1 with extreme-pose reference.

purpose, we trained the DG network on the combination of
the MPIE and VoxCeleb1 training sets, and tested the cross-
reenactment performance on the test sets. Figure 6 shows
several cases with the source faces from the VoxCeleb1 and
the extreme-pose reference from MPIE. The comparison in-
cludes results made by the FOM, as it shows satisfying per-
formance for sources in frontal pose. However, the FOM
is unable to handle the source with extreme pose. The DG
network performs well for the source with extreme pose if
it is trained on the MPIE, which offers sufficient data in
large/extreme poses for learning. The performance deterio-
rates if the training set does not contain MPIE, which offers
a sufficient amount of large-pose training data.

5. Conclusion

We propose the Dual-Generator (DG) network for face
reenactment. It is composed of two generators, one for gen-
erating an identity-preserving facial shape with the refer-
ence’s pose and facial expression, and the other for generat-
ing the desired reenacted face. As most approaches do not
particularly consider large-pose reenactment, the proposed
DG network address this issue by incorporating a 3D land-
mark detector into the framework and considering a loss
function to capture visible local shape variation across large
pose. Experiments verify that the DG network outperforms
state-of-the-art approaches in the action ranges considered
by most existing approaches, and perform satisfactorily for
large-pose reenactment.
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