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Abstract

The integration of Vector Quantised Variational AutoEn-
coder (VQ-VAE) with autoregressive models as generation
part has yielded high-quality results on image generation.
However, the autoregressive models will strictly follow the
progressive scanning order during the sampling phase. This
leads the existing VQ series models to hardly escape the
trap of lacking global information. Denoising Diffusion
Probabilistic Models (DDPM) in the continuous domain
have shown a capability to capture the global context, while
generating high-quality images. In the discrete state space,
some works have demonstrated the potential to perform text
generation and low resolution image generation. We show
that with the help of a content-rich discrete visual codebook
from VQ-VAE, the discrete diffusion model can also gen-
erate high fidelity images with global context, which com-
pensates for the deficiency of the classical autoregressive
model along pixel space. Meanwhile, the integration of the
discrete VAE with the diffusion model resolves the drawback
of conventional autoregressive models being oversized, and
the diffusion model which demands excessive time in the
sampling process when generating images. It is found that
the quality of the generated images is heavily dependent
on the discrete visual codebook. Extensive experiments
demonstrate that the proposed Vector Quantised Discrete
Diffusion Model (VQ-DDM) is able to achieve compara-
ble performance to top-tier methods with low complexity. It
also demonstrates outstanding advantages over other vec-
tors quantised with autoregressive models in terms of image
inpainting tasks without additional training.

1. Introduction
Vector Quantised Variational AutoEncoder (VQ-VAE)

[34] is a popular method developed to compress images
into discrete representations for the generation. Typically,
after the compression and discretization representation by
the convolutional network, an autoregressive model is used

Figure 1. FID v.s. Operations and Parameters. The size of the
blobs is proportional to the number of network parameters, the
X-axis indicates FLOPs on a log scale and the Y-axis is the FID
score.

to model and sample in the discrete latent space, including
PixelCNN family [5,22,35], transformers family [4,24], etc.
However, in addition to the disadvantage of the huge num-
ber of model parameters, these autoregressive models can
only make predictions based on the observed pixels (left up-
per part of the target pixel) due to the inductive bias caused
by the strict adherence to the progressive scan order [3,15].
If the conditional information is located at the end of the au-
toregressive sequence, it is difficult for the model to obtain
relevant information.

A recent alternative generative model is the Denoising
Diffusion Model, which can effectively mitigate the lack of
global information [10, 29], also achieving comparable or
state-of-the-art performance in text [1,12], image [6,28,33]
and speech generation [19] tasks. Diffusion models are pa-
rameterised Markov chains trained to translate simple dis-
tributions to more sophisticated target data distributions in
a finite set of steps. Typically the Markov chain begins with
an isotropic Gaussian distribution in continuous state space,
with the transitions of the chain for reversing a diffusion
process that gradually adds Gaussian noise to source im-
ages. In the inverse process, as the current step is based on
the global information of the previous step in the chain, this
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endows the diffusion model with the ability to capture the
global information.

However, the diffusion model has a non-negligible disad-
vantage in that the time and computational effort involved
in generating the images are enormous. The main rea-
son is that the reverse process typically contains thousands
of steps. Although we do not need to iterate through all
the steps when training, all these steps are still required
when generating a sample, which is much slower compared
to GANs and even autoregressive models. Some recent
works [21, 30] have attempted addressing these issues by
decreasing the sampling steps, but the computation cost is
still high as each step of the reverse process generates a full-
resolution image.

In this work, we propose the Vector Quantised Discrete
Diffusion Model (VQ-DDM), a versatile framework for im-
age generation consisting of a discrete variational autoen-
coder and a discrete diffusion model. VQ-DDM consists of
two stages: (1) learning an abundant and efficient discrete
representation of images, (2) fitting the prior distribution of
such latent visual codes via discrete diffusion model.

VQ-DDM substantially reduces the computational re-
sources and required time to generate high-resolution im-
ages by using a discrete scheme. Then the common prob-
lem of the lack of global content and overly large number of
parameters of the autoregressive model is solved by fitting a
latent variable prior using the discrete diffusion model. Fi-
nally, since a bias of codebook will limit generation quality,
while model size is also dependent on the number of cate-
gories, we propose a re-build and fine-tune(ReFiT) strategy
to construct a codebook with higher utilization, which will
also reduce the number of parameters in our model.

In summary, our key contributions include the following:

• VQ-DDM fits the prior over discrete latent codes with
a discrete diffusion model. The use of diffusion model
allows the generative models consider the global in-
formation instead of only focusing on partially seen
context to avoid sequential bias.

• We propose a ReFiT approach to improve the utilisa-
tion of latent representations in the visual codebook,
which can increase the code usage of VQ-GAN from
31.85% to 97.07%, while the FID between reconstruc-
tion image and original training image is reduced from
10.18 to 5.64 on CelebA-HQ 256× 256.

• VQ-DDM is highly efficient for the both number of
parameters and generation speed. As shown in Fig-
ure 1, using only 120M parameters, it outperforms
VQ-VAE-2 with around 10B parameters and is com-
parable with VQ-GAN with 1B parameters in image
generation tasks in terms of image quality. It is also
10 ∼ 100 times faster than other diffusion models for
image generation [10, 30].

2. Preliminaries
2.1. Diffusion Models in continuous state space

Given data x0 from a data distribution q(x0), the diffu-
sion model consists of two processes: the diffusion process
and the reverse process [10, 29].

The diffusion process progressively destroys the data x0

into xT over T steps, via a fixed Markov chain that grad-
ually introduces Gaussian noise to the data according to a
variance schedule β1:T ∈ (0, 1]T as follows:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (2)

With an adequate number of steps T and a suitable vari-
ance schedule β, p(xT ) becomes an isotropic Gaussian dis-
tribution.

The reverse process is defined as a Markov chain param-
eterised by θ, which is used to restore the data from the
noise:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

The objective of training is to find the best θ to fit the
data distribution q(x0) by optimizing the variational lower
bound (VLB) [18]

Eq(x0)[log pθ(x0)]

=Eq(x0) logEq(x1:T |x0)

[
pθ(x0:T )

q(x1:T |x0)

]
≥Eq(x0:T )

[
log

pθ(x0:T )

q(x1:T |x0)

]
=: Lvlb.

(5)

Ho et al. [10] revealed that the variational lower bound
in Eq. 5 can be calculated with closed form expressions in-
stead of Monte Carlo estimates as the diffusion process pos-
teriors and marginals are Gaussian, which allows sampling
xt at an arbitrary step t with αt = 1 − βt, ᾱt =

∏t
s=0 αs

and β̃t =
1−ᾱt−1

1−ᾱt
:

q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I), (6)

Lvlb = Eq(x0)[DKL(q(xT |x0)||p(xT ))− log pθ(x0|x1)

+

T∑
t=2

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))].

(7)
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Figure 2. The proposed VQ-DDM pipeline contains 2 stages: (1) Compress the image into discrete variables via discrete VAE. (2) Fit a
prior distribution over discrete coding by a diffusion model. Black squares in the diffusion diagram illustrate states when the underlying
distributions are uninformative, but which become progressively more specific during the reverse process. The bar chart at the bottom of
the image represents the probability of a particular discrete variable being sampled.

Thus the reverse process can be parameterised by neural
networks ϵθ and υθ, which can be defined as:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, (8)

Σθ(xt, t) = exp(υθ(xt, t) log βt

+ (1− υθ(xt, t)) log β̃t).
(9)

Using a modified variant of the VLB loss as a simple loss
function will offer better results in the case of fixed Σθ [10]:

Lsimple = Et,x0,ϵ

[
||ϵ− ϵθ(xt, t)||2

]
, (10)

which is a reweighted version resembling denoising score
matching over multiple noise scales indexed by t [31].

Nichol et al. [21] used an additional Lvlb to the sim-
ple loss for guiding a learned Σθ(xt, t), while keeping the
µθ(xt, t) still the dominant component of the total loss:

Lhybrid = Lsimple + λLvlb. (11)

2.2. Discrete Representation of Images

van den Oord et al. [34] presented a discrete variational
autoencoder with a categorical distribution as the latent
prior, which is able to map the images into a sequence of
discrete latent variables by an encoder and reconstruct the
image according to those variables with a decoder.

Formally, given a codebook Z ∈ RK×d, where K rep-
resents the capacity of latent variables in the codebook and

d is the dimension of each latent variable, after compress-
ing the high dimension input data x ∈ Rc×H×W into latent
vectors h ∈ Rh×w×d by an encoder E, z is the quantised h,
which substitutes the vectors hi,j ∈ h by the nearest neigh-
bor zk ∈ Z. The decoder D is trained to reconstruct the
data from the quantised encoding zq:

z = Quantise(h) := arg mink||hi,j − zk||, (12)

x̂ = D(z) = D(Quantise(E(x))). (13)

As Quantise(·) has a non-differentiable operation
arg min, the straight-through gradient estimator is used for
back-propagating the reconstruction error from decoder to
encoder. The whole model can be trained in an end-to-end
manner by minimizing the following function:

L = ||x−x̂||2+||sg[E(x)]−z||+β||sg[z]−E(x)||, (14)

where sg[·] denotes stop gradient and broadly the three
terms are reconstruction loss, codebook loss and commit-
ment loss, respectively.

VQ-GAN [8] extends VQ-VAE [34] in multiple ways. It
substitutes the L1 or L2 loss of the original VQ-VAE with
a perceptual loss [40], and adds an additional discriminator
to distinguish between real and generated patches [41].

The codebook update of the discrete variational autoen-
coder is intrinsically a dictionary learning process. Its ob-
jective uses L2 loss to narrow the gap between the codes
Zt ∈ RKt×d and the encoder output h ∈ Rh×w×d [34],
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where Kt is constant during all diffusion steps. In other
words, the codebook training is like k-means clustering,
where cluster centers are the discrete latent codes. How-
ever, since the volume of the codebook space is dimension-
less and h is updated each iteration, the discrete codes Z
typically do not follow the encoder training quickly enough.
Only a few codes get updated during training, with most un-
used after initialization.

3. Methods
Our goal is to leverage the powerful generative capabil-

ity of the diffusion model to perform high fidelity image
generation tasks with a low number of parameters. Our
proposed method, VQ-DDM, is capable of generating high
fidelity images with a relatively small number of parame-
ters and FLOPs, as summarised in Figure 2. Our solution
starts by compressing the image into discrete variables via
the discrete VAE and then constructs a powerful model to fit
the joint distribution over the discrete codes by a diffusion
model. During diffusion training, the darker coloured parts
in Figure 2 represent noise introduced by uniform resam-
pling. When the last moment is reached, the latent codes
have been completely corrupted into noise. In the sampling
phase, the latent codes are drawn from an uniform categor-
ical distribution at first, and then resampled by performing
reverse process T steps to get the target latent codes. Even-
tually, target latent codes are pushed into the decoder to gen-
erate the image.

3.1. Discrete Diffusion Model

Assume the discretization is done with K categories, i.e.
zt ∈ {1, . . . ,K}, with the one-hot vector representation
given by zt ∈ {0, 1}K . The corresponding probability dis-
tribution is expressed by zlogitst in logits. We formulate the
discrete diffusion process as

q(zt|zt−1) = Cat(zt; z
logits
t−1 Qt), (15)

where Cat(x|p) is the categorical distribution parame-
terised by p, while Qt is the process transition matrix. In
our method, Qt = (1 − βt)I + βt/K, which means zt has
1−βt probability to keep the state from last timestep and βt

chance to resample from a uniform categorical distribution.
Formally, it can be written as

q(zt|zt−1) = Cat(zt; (1− βt)z
logits
t−1 + βt/K). (16)

It is straightforward to get zt from z0 under the schedule
βt with αt = 1− βt, ᾱt =

∏t
s=0 αs:

q(zt|z0) = Cat(zt; ᾱtz0 + (1− ᾱt)/K) (17)

or q(zt|z0) = Cat(zt; z0Q̄t); Q̄t =

t∏
s=0

Qs. (18)

We use the same cosine noise schedule as [12, 21] be-
cause our discrete model is also established on the latent
codes with a small 16 × 16 resolution. Mathematically, it
can be expressed in the case of ᾱ by

ᾱ =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
× π

2

)2

. (19)

By applying Bayes’ rule, we can compute the posterior
q(zt−1|zt, z0) as:

q(zt−1|zt, z0) = Cat

(
zt;

zlogitst Q⊤
t ⊙ z0Q̄t−1

z0Q̄tz
logits
t

⊤

)

= Cat(zt; θ(zt, z0)/

K∑
k=1

θk(zt,k, z0,k)),

(20)

θ(zt, z0) = [αtz
logits
t + (1− αt)/K]

⊙ [ᾱt−1z0 + (1− ᾱt−1)/K].
(21)

It is worth noting that θ(zt, z0)/
∑K

k=1 θk(zt,k, z0,k)
is the normalised version of θ(zt, z0), and we use
N[θ(zt, z0)] to denote θ(zt, z0)/

∑K
k=1 θk(zt,k, z0,k) be-

low.
Hoogeboom et al. [12] predicted ẑ0 from zt with a neural

network µ(zt, t), instead of directly predicting pθ(zt−1|zt).
Thus the reverse process can be parameterised by the prob-
ability vector from q(zt−1|zt, ẑ0). Generally, the reverse
process pθ(zt−1|zt) can be expressed by

pθ(z0|z1) = Cat(z0|ẑ0),
pθ(zt−1|zt) = Cat(zt| N[θ(zt, ẑ0)]).

(22)

Inspired by [13,20], we use a neural network µ(Zt, t) to
learn and predict the a noise nt and obtain the logits of ẑ0.

It is worth noting that the neural network µ(·) is based
on the Zt ∈ Nh×w, where all the discrete representation
zt of the image are combined. The final noise prior ZT is
uninformative, and it is possible to separably sample from
each axis during inference. However, the reverse process is
jointly informed and evolves towards a highly coupled Z0.
We do not define a specific joint prior for zt, but encode the
joint relationship into the learned reverse process. This is
implicitly done in the continuous domain diffusion. As zt−1

is based on the whole previous representation zt, the reverse
process can sample the whole discrete code map directly
while capturing the global information.

The loss function used is the VLB from Eq. 7, where the
summed KL divergence for T > 2 is given by

KL(q(zt−1|zt, z0)||pθ(zt−1|zt)) =∑
k

N[θ(zt, z0)]× log
N[θ(zt, z0)]

N[θ(zt, ẑ0)]
.

(23)
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3.2. Re-build and Fine-tune Strategy

Our discrete diffusion model is based on the latent rep-
resentation of the discrete VAE codebook Z. However, the
codebooks with rich content are normally large, with some
even reaching K = 16384. This makes it highly unwieldy
for our discrete diffusion model, as the transition matrices
of discrete diffusion models have a quadratic level of growth
to the number of classes K, e.g. O(K2T ) [1].

To reduce the categories used for our diffusion model, we
proposed a Re-build and Fine-tune (ReFit) strategy to de-
crease the size K of codebook Z and boost the reconstruc-
tion performance based on a well-trained discrete VAEs
trained by the straight-through method.

From Eq. 14, we can find the second term and the third
term are related to the codebook, but only the second term
is involved in the update of the codebook. ||sg[E(x)] −
z|| reveals that only a few selected codes, the same number
as the features from E(x), are engaged in the update per
iteration. Most of the codes are not updated or used after
initialization, and the update of the codebook can lapse into
a local optimum.

We introduce a re-build and fine-tune strategy to avoid
the waste of codebook capacity. With the trained encoder,
we reconstruct the codebook so that all codes in the code-
book have the opportunity to be selected. This will greatly
increase the usage of the codebook. Suppose we desire to
obtain a discrete VAE having a codebook with Zt based on
a trained discrete VAE with an encoder Es and a decoder
Ds. We first encode each image x ∈ Rc×H×W to latent
features h, or loosely speaking, each image gives us h × w
features with d dimension. Next we sample P features uni-
formly from the entire set of features found in training im-
ages, where P is the sampling number and far larger than
the desired codebook capacity Kt. This ensures that the re-
build codebook is composed of valid latent codes. Since
the process of codebook training is basically the process of
finding cluster centres, we directly employ k-means with
AFK-MC2 [2] on the sampled P features and utilise the
centres to re-build the codebook Zt. We then replace the
original codebook with the re-build Zt and fine-tune it on
top of the well-trained discrete VAE.

4. Experiments and Analysis
4.1. Datasets and Implementation Details

We show the effectiveness of the proposed VQ-DDM on
CelebA-HQ [14] and LSUN-Church [39] datasets and verify
the proposed Re-build and Fine-tune strategy on CelebA-
HQ and ImageNet datasets. The details of the dataset are
given in the Appendix.

The discrete VAE follows the same training strategy
as VQ-GAN [8]. All training images are processed to
256×256, and the compress ratio is set to 16, which means

the latent vector z ∈ R1×16×16. When conducting Rebuild
and Fine-tune, the sampling number P is set to 20k for
LSUN and CelebA. For the more content-rich case, we tried
a larger P value 50k for ImageNet. In practical experiments,
we sample P images with replacement uniformly from the
whole training data and obtained corresponding latent fea-
tures. For each feature map, we make another uniform sam-
pling over the feature map size 16 × 16 to get the desired
features. In the fine-tuning phase, we freeze the encoder and
set the learning rate of the decoder to 1e-6 and the learning
rate of the discriminator to 2e-6 with 8 instances per batch.

With regard to the diffusion model, the network for es-
timating nt has the same structure as [10], which is a U-
Net [26] with self-attention [36]. The detailed settings of
hyperparameters are provided in the Appendix. We set
timestep T = 4000 in our experiments and the noise sched-
ule is the same as [21]

4.2. Codebook Quality

A large codebook dramatically increases the cost of
DDM. To reduce the cost to an acceptable scale, we pro-
posed a resample and fine-tune strategy to compress the
size of the codebook, while maintaining quality. To demon-
strate the effectiveness of the proposed strategy, we com-
pare the codebook usage and FID of reconstructed images
of our method to VQ-GAN [8], VQ-VAE-2 [25] and DALL-
E [24].

In this experiment, we compressed the images from
3 × 256 × 256 to 1 × 16 × 16 with two different code-
book capacities K = {512, 1024}. We also proposed an
indicator to measure the usage rate of the codebook, which
is the number of discrete features that have appeared in the
test set or training set divided by the codebook capacity.
The quantitative comparison results are shown in Table 1
while the reconstruct images are demonstrated in Figs. 3 &
4. Reducing the codebook capacity from 1024 to 512 only
brings ∼ 0.1 decline in CelebA and ∼ 1 in ImageNet. As
seen in Figure 4, the reconstructed images (c,d) after ReFiT
strategy are richer in colour and more realistic in expression
than the reconstructions from VQ-GAN (b). The codebook
usage of our method has improved significantly compared
to other methods, nearly 3x high than the second best. Our
method also achieves the equivalent reconstruction quality
at the same compression rate and with 32× lower capacity
K of codebook Z.

For VQ-GAN with capacity 16384, although it only has
976 effective codes, which is smaller than 1024 in our Re-
FiT method when P = 20k, it achieves a lower FID in
reconstructed images vs validation images. One possible
reason is that the value of P is not large enough to cover
some infrequent combinations of features during the re-
build phase. As the results in Table 1, after we increase
the sampling number P from 20k to 100k, we observe that

11506



Model Latent Size Capacity Usage of Z FID ↓
CelebA ImageNet CelebA ImageNet

VQ-VAE-2 Cascade 512 ∼65% - - ∼10
DALL-E 32x32 8192 - - - 32.01
VQ-GAN 16x16 16384 - 5.96% - 4.98
VQ-GAN 16x16 1024 31.85% 33.67% 10.18 7.94

ours (P = 100k) 16x16 1024 - 100% - 4.98
ours (P = 20k) 16x16 1024 97.07% 100% 5.59 5.99
ours (P = 20k) 16x16 512 93.06% 100% 5.64 6.95
1 All methods are trained straight-through, except DALL-E with Gumbel-Softmax [24].
2 CelebA-HQ at 256×256. Reported FID is between 30k reconstructed data vs training data.
3 Reported FID is between 50k reconstructed data vs validation data

Table 1. FID between reconstructed images and original images
on CelebA-HQ and ImageNet

increasing the value of P achieved higher performance.

4.3. Generation Quality

We evaluate the performance of VQ-DDM for the un-
conditional image generation on CelebA-HQ 256 × 256.
Specifically, we evaluated the performance of our approach
in terms of FID and compared it with various likelihood-
based based methods including GLOW [16], NVAE [32],
VAEBM [38], DC-VAE [23], VQ-GAN [8] and likelihood-
free method, e.g., PGGAN [14]. We also conducted an ex-
periment on LSUN-Church.

In CelebA-HQ experiments, the discrete diffusion model
was trained with K = 512 and K = 1024 codebooks re-
spectively. We also report the different FID from T = 2 to
T = 4000 with corresponding time consumption in Figure
6. Regarding the generation speed, it took about 1000 hours
to generate 50k 256× 256 images using DDPM with 1000
steps on a NVIDIA 2080Ti GPU, 100 hours for DDIM with
100 steps [30], and around 10 hours for our VQ-DDM with
1000 steps.

Table 2 shows the main results on VQ-DDM along with
other established models. Although VQ-DDM is also a
likelihood-based method, the training phase relies on the
negative log-likehood (NLL) of discrete hidden variables,
so we do not compare the NLL between our method and the
other methods. The training NLL is around 1.258 and test
NLL is 1.286 while the FID is 13.2. Fig. 7a shows the gen-
erated samples from VQ-DDM trained on the CelebA-HQ.

For LSUN-Church, the codebook capacity K is set to
1024, while the other parameters are set exactly the same.
The training NLL is 1.803 and the test NLL is 1.756 while
the FID between the generated images and the training set
is 16.9. Some samples are shown in Fig. 7b.

After utilizing ReFiT, the generation quality of the model
is significantly improved, which implies a decent codebook
can have a significant impact on the subsequent genera-
tive phase. Within a certain range, the larger the codebook
capacity leads to a better performance. However, exces-
sive number of codebook entries will cause the model col-
lapse [12].

4.4. Image Inpainting

Autoregressive models have recently demonstrated supe-
rior performance in the image inpainting tasks [4, 8]. How-
ever, one limitation of this approach is that if the important
context is found at the end of the autoregressive series, the
models will not be able to correctly complete the images.
As mentioned in Sec. 3.1, the diffusion model will directly
sample the full latent code map, with sampling steps based
on the full discrete map of the previous step. Hence it can
significantly improve inpainting as it does not depend on
context sequencing.

We perform the mask diffusion and reverse process in
the discrete latent space. After encoding the masked image
x0 ∼ q(x0) to discrete representations z0 ∼ q(z0), we dif-
fuse z0 with t steps to z̃t ∼ q(zt|z0). Thus the last step
with mask z̃mT can be demonstrated as z̃mT = (1 − m) ×
z̃T + m × C, where C ∼ Cat(K, 1/K) is the sample
from a uniform categorical distribution and m ∈ {0, 1}K
is the mask, m = 0 means the context there is masked and
m = 1 means that given the information there. In the re-
verse process, zT−1 can be sampled from pθ(zT−1|z̃mT ) at
t = T , otherwise, zt−1 ∼ pθ(zt−1|zmt ), and the masked
zmt−1 = (1−m)× zt−1 +m× z̃t−1.

We compare our approach and another that exploits a
transformer with a sliding attention window as an autore-
gressive generative model [8]. The completions are shown
in Fig. 8, in the first row, the upper 62.5% (160 out of 256
in latent space) of the input image is masked and the lower
37.5% (96 out of 256) is retained, and in the second row,
only a quarter of the image information in the lower right
corner is retained as input. We also tried masking in an ar-
bitrary position. In the third row, we masked the perime-
ter, leaving only a quarter part in the middle. Since the
reverse diffusion process captures the global relationships,
the image completions of our model performs much better.
Our method can make a consistent completions based on
arbitrary contexts, whereas the inpainting parts from trans-
former lack consistency. It is also worth noting that our
model requires no additional training in solving the task of
image inpainting.

5. Related Work
5.1. Vector Quantised Variational Autoencoders

VQ-VAE [34] leads a trend of discrete representation
of images. The common practice is to model the discrete
representations using an autoregressive model, e.g. Pix-
elCNN [5, 35], transformers [8, 24, 24], etc. Some works
had attempted to fit the prior distribution of discrete latent
variables using a light non-autoregressive approach, like
EM approach [27] and Markov chain with self-organizing
map [9], but yet they are struggling to fit a large scale of
data. Ho et al. [10] have also shown that the diffusion mod-
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Figure 3. Reconstruction images 384× 384 from ImageNet based VQ-GAN and ReFiT

(a) Source (b) VQ-GAN (c) ReFiT K=1024 (d) ReFiT K=512

Figure 4. Reconstruction images of CelebA HQ 256 × 256 from
VQ-GAN and ReFiT.

Figure 5. Steps and corresponding FID during the sampling. The
text annotations are hours to sample 50k latent feature maps on 1
NVIDIA 2080Ti GPU

Figure 6. Hours to sampling 50k latent codes by VQ-DDM and
generating 50k images with VQ-DDM and DDPM

els can be regarded as an autoregressive model along the
time dimension, but in reality, it is non-autoregressive along
the pixel dimension. A concurrent work [7] follow a simi-
lar pipeline which uses a diffusion model on discrete latent
variables, but the work uses parallel modeling of multiple
short Markov chains to achieve denoising.

Method FID ↓ Params FLOPs

Likelihood-based

GLOW [16] 60.9 220 M 540 G
NVAE [32] 40.3 1.26 G 185 G
ours (K = 1024 w/o ReFiT) 22.6 117 M 1.06 G
VAEBM [38] 20.4 127 M 8.22 G
ours (K = 512 w/ ReFiT) 18.8 117 M 1.04 G
DC-VAE [23] 15.8 - -
ours (K = 1024 w/ ReFiT) 13.2 117 M 1.06 G
DDIM(T=100) [30] 10.9 114 M 124 G
VQ-GAN + Transformer [8] 10.2 802 M 102 Ga

Likelihood-free

PG-GAN [14] 8.0 46.1 M 14.1 G
a VQ-GAN is an autoregressive model, and the number in

the table is the computation needed to generate the full
size latent feature map. The FLOPs needed to generate
one discrete index out of 256 is 0.399 G.

Table 2. FID on CelebA HQ 256× 256 dataset. All the FLOPs in
the table only consider the generation stage or inference phase for
one 256× 256 images.

5.2. Diffusion Models

Sohl-Dickstein et al. [29] presented a simple discrete dif-
fusion model, which diffused the target distribution into the
independent binomial distribution. Recently, Hoogeboom
et al. [12] have extended the discrete model from binomial
to multinomial. Further, Austin et al. [1] proposed a gen-
eralised discrete diffusion structure, which provides several
choices for the diffusion transition process.

In the continuous state space, there are some recent dif-
fusion models that surpassed the state-of-the-art in the im-
age generation area. With the guidance from the classifiers,
Dhariwal et al. [6] enabled diffusion models called ADM
to generate images beyond BigGAN, which was previously
one of the most powerful generative models. In CDM [11],
the authors performed the cascade pipeline on the diffusion
model to generate the image with ultra-high fidelity and
reach state-of-the-art on conditional ImageNet generation.
In addition, there have been several recent works that have
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(a) Samples (256× 256) from a VQ-DDM model trained on CelebA HQ. FID=13.2

(b) Samples (256× 256) from a VQ-DDM model trained on LSUN-Church. FID=16.9

Figure 7. Samples from VQ-DDM models.

Figure 8. Completions with the arbitrary masks.

attempted to use diffusion models to modelling the latent
variables of VAE [17, 37], while revealed the connection
among several diffusion models mentioned above.

6. Conclusion
In this paper, we introduce VQ-DDM, a high-fidelity im-

age generation model with a two-stage pipeline. In the first
stage, we train a discrete VAE with a well-utilised content-
rich codebook. With the help of such an efficient codebook,
it is possible to generate high-quality images by a discrete
diffusion model with relatively tiny parameters in the sec-
ond stage. Simultaneously, benefiting from the discrete dif-
fusion model, the sampling process captures the global in-
formation and the image inpainting is no longer affected

by the location of the given context and mask. Meanwhile,
in comparison with other diffusion models, our approach
further reduces the gap in generation speed with respect to
GAN. We believe that VQ-DDM can also be utilised for
audio, video and multimodal generation.

Limitations

For a complete diffusion, we need a large number of
steps, which will result in a very fluctuating training pro-
cess and limit the image generation quality. Hence, our
model may suffer from underperformance when exposed to
the large scale and complex datasets.
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