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Abstract
The rapid development of deep learning provides a bet-

ter solution for the end-to-end reconstruction of hyperspec-
tral image (HSI). However, existing learning-based meth-
ods have two major defects. Firstly, networks with self-
attention usually sacrifice internal resolution to balance
model performance against complexity, losing fine-grained
high-resolution (HR) features. Secondly, even if the op-
timization focusing on spatial-spectral domain learning
(SDL) converges to the ideal solution, there is still a signif-
icant visual difference between the reconstructed HSI and
the truth. So we propose a high-resolution dual-domain
learning network (HDNet) for HSI reconstruction. On the
one hand, the proposed HR spatial-spectral attention mod-
ule with its efficient feature fusion provides continuous and
fine pixel-level features. On the other hand, frequency do-
main learning (FDL) is introduced for HSI reconstruction
to narrow the frequency domain discrepancy. Dynamic FDL
supervision forces the model to reconstruct fine-grained fre-
quencies and compensate for excessive smoothing and dis-
tortion caused by pixel-level losses. The HR pixel-level at-
tention and frequency-level refinement in our HDNet mutu-
ally promote HSI perceptual quality. Extensive quantitative
and qualitative experiments show that our method achieves
SOTA performance on simulated and real HSI datasets.
https://github.com/Huxiaowan/HDNet

1. Introduction
Hyperspectral images (HSIs) with more spectral bands

can capture richer scene information and fixed wavelength
imaging characteristics, which are used in image classifica-
tion [32], object detection [50], and tracking [17,30] widely.

Imaging systems with single 1D or 2D sensors take a
long time to scan a scene for HSIs. They are not suitable
for capturing dynamic scenes. Recently, the coded aperture
snapshot spectral imaging (CASSI) system [24, 39, 40] can
capture 3D HSI cubes at a real-time rate. CASSI exploits a
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Figure 1. Frequency spectra visualization of different methods.

coded aperture to modulate the HSI signal and compress it
into a 2D measurement. Nonetheless, a core problem of the
CASSI system is to recover the reliable and fine underlying
3D HSI signal from the 2D compressed images.

Traditional methods mainly regularize the reconstruction
based on hand-crafted priors that delineate the structure of
HSI. But manually adjusted parameters result in poor gener-
alization. Researchers began using convolutional neural net-
works (CNN) for HSI reconstruction [41, 45]. Some meth-
ods [23, 27, 28, 43] focus on self-attention learning in the
spatial domain, but they usually sacrifice feature resolution
to cut down the computational complexity of non-local at-
tention maps [27, 28]. These operations inevitably damage
the spectral auto-correlation and information continuity. In-
spired by the extensive exploration of pixel-level attention
in high-level visual tasks [5, 22], we find that it is critical
to elaborate high-resolution (HR) and fine-grained spectral-
spatial attention for HSIs. However, although finer atten-
tion is undoubtedly beneficial for reconstructing HSI with
rich spectral bands, capturing pixel-level perception for HSI
with 28 spectral channels is far more challenging than 3-
channel RGB images. It requires an optimal trade-off be-
tween model performance and resource costs.

Besides, existing learning-based methods [3, 14, 27, 28,
42] for HSI reconstruction mainly focus on spatial-spectral
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domain learning (SDL), where the spectral representations
are sparsely presented in the frequency domain. The equal
treatment of each frequency may result in sub-optimal mode
efficiency. Some works show that due to the inherent biases
of CNNs [29, 33, 34, 37], models tend to preferentially fit
low-frequency components that are easy to synthesize while
losing high-frequency components. We visualize the spec-
tra of reconstructed HSIs in Fig. 1. We can see that even if
previous methods based on SDL converge to the ideal solu-
tion, there is still an obvious frequency domain discrepancy
between reconstructed HSIs and truth. TSA-Net [27] loses
high-frequency information and has observable checker-
board artifacts. DGSMP [14] deviates to a limited frequency
area. The focal frequency loss [16] is proven to be effective
in synthesizing fine frequency components, but its potential
to narrow the frequency domain gap in HSI reconstruction
still remains under-explored. We find that each frequency
in the spectra is the statistical sum across all pixels in the
HSI, so the frequency-level supervision can offer a new so-
lution for global optimization. Experiments show that fre-
quency domain learning (FDL) can compensate for exces-
sive smoothing and distortion caused by pixel-level SDL.

Motivated by these meaningful findings, we propose a
high-resolution dual-domain learning network, dubbed HD-
Net. Dual-domain supervision exhausts the model represen-
tation capacity within its spatial-spectral domain and fre-
quency domain. On the one hand, in the spatial-spectral
domain, we split the feature as HR spectral attention and
HR spatial attention, and connect them in an efficient fea-
ture fusion (EFF) manner. The proposed fine-grained pixel-
level attention avoids dimensionality collapse for high in-
ternal resolution. On the other hand, we use the Discrete
Fourier Transform (DFT) to supervise the frequency dis-
tance between truth and reconstructed HSIs adaptively. Dy-
namic weighting mechanism makes the model concentrate
high frequencies that are difficult to synthesize. Frequency
spectra reconstructed by HDNet are the closest to the truth
in Fig. 1, which shows our superiority in narrowing the fre-
quency difference between HSIs. The HR pixel-level atten-
tion in SDL and frequency-level refinement in FDL mu-
tually promote common prosperity and ameliorate image
quality further. Specific contributions of this paper are:

• Dynamic frequency-level supervision that can narrow the
frequency domain discrepancy is first used to improve the
perceptual quality of HSIs. The proposed FDL forces the
model to restore high and hard frequencies adaptively.

• We design the HR pixel-level attention in SDL for higher
internal feature resolution, which further assists fre-
quency alignment in FDL. Complementary dual-domain
learning mechanism ameliorate HSI quality mutually.

• Our method achieves state-of-the-art (SOTA) perfor-
mance in quantitative evaluation and visual comparison.
Extensive experiments prove the superiority of HDNet.

2. Related Work

2.1. HSI Reconstruction
Traditional methods [9, 19, 21, 23, 39, 44, 53, 54] mainly

recover the 3D HSI cube from the 2D compressive mea-
surement based on hand-crafted priors. Nonetheless, these
model-based methods suffer from poor generalization abil-
ity. Inspired by the success of deep learning, researchers
have started using deep CNN for HSI reconstruction [14,27,
28,42,43]. GAP-Net [26] presents a deep unfolding method
and utilizes a pre-trained denoiser for HSI restoration. λ-
Net [28] and TSA-Net [27] explores the self-attention for
spatial features. The DGSMP [14] uses the deep Gaussian
scale mixture prior for promising HSI reconstruction. How-
ever, current learning-based methods mainly focus on the
spatial-spectral domain, where the frequency domain learn-
ing for HSI reconstruction remains under-investigated.
2.2. Self-Attention Mechanism

The self-attention mechanism [38] is widely used to cap-
ture long-range interactions. Many attention module and its
variants used for natural images have shown great poten-
tial [2,8,13,20,36,47]. The λ-Net [28] first explored the fea-
ture auto-correlation in HSI restoration. Then [25] uses the
bi-directional network to model spectral correlation. The
TSA-Net [27] calculates the spatial attention map and the
spectral attention map separately. Wang et al. [43] utilize
the local and non-local correlation between spectral images.
However, most existing networks sacrifice the internal reso-
lution of attention to speed up calculations, which inevitably
degrades performance. There are some pixel-level attention
modules designed for high-level tasks [4, 5, 57] further en-
hances the model’s representation ability. Therefore, the ex-
ploration of pixel-level HR attention for HSI reconstruction
can provide a targeted solution for boosting performance.

2.3. Image Frequency Spectrum Analysis
Frequency spectrum analysis describes signal frequency

characteristics [34, 37]. The F-Principle [52] prove that
deep learning networks tend to prefer low frequencies to
fit the objective, which will result in the frequency domain
gap [51,56]. Recent studies [15,46,55] indicate that the pe-
riodic pattern shown in the frequency spectrum may be con-
sistent with the artifacts in the spatial domain. Therefore,
some works try to reduce the visual difference by narrow-
ing the frequency domain gap between the input and output.
[10] treats low-frequency and high-frequency images differ-
ently during training. DASR [49] uses domain-gap aware
training and domain-distance weighted supervision to solve
the domain deviation in super-resolution. Jiang et al. [16]
proved that focusing on difficult frequencies can improve
the reconstruction quality. In HSI reconstruction, the model
over-fitting at low frequencies brings smooth textures and
blurry structures. So exploring adaptive constraints on spe-
cific frequencies is essential for the refined reconstruction.
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Figure 2. The architecture of HDNet. Spatial-spectral domain learning (SDL) includes HR spectral attention, HR spatial attention, and
efficient feature fusion (EFF). In frequency domain learning (FDL), the 2D Discrete Fourier Transform (DFT) is used to obtain the HSI
frequency spectrum. The adaptive weight θ(u, v) of each frequency coordinate (u, v) is dynamically determined by the frequency distance.

3. The Proposed Method
3.1. Overall Architecture

The overall network architecture and internal module de-
tails of our proposed HDNet are shown in Fig. 2. We choose
ResNet [11] as the baseline to build the proposed HDNet for
a lightweight model, which is convenient to show the supe-
riority of our designed plug-and-play components.

In CASSI, the mask m ∈ RH×W is used to modulate
the HSI signals. Then the modulated HSIs are shifted in the
dispersion process. Thus, we shift back the measurement
y ∈ RH×(W+d(Nβ−1)), where d denotes the shifting inter-
val and Nβ denotes the number of wavelengths in HSIs.
Then we formulate the dispersion process as follow:

y′(x, y, nβ) = y(x, y − d(βn − βr)), (1)

where y′ represents the multi-channel shifted version of
the measurement, nβ ∈ {1, ..., Nβ} indices the spectral
channel, βr is supposed to the reference wavelength, and
d(βn−βr) indicates the shifted distance for the nβ-th chan-
nel. Then we use the mask to modulate y′ for the input:

xin = y′ ⊙ m, (2)

where ⊙ denotes the element-wise product. Then we define
the 3 × 3 convolution layer as F 3×3

conv(·) to extract shallow
features, and the corresponding features x0 is defined as:

x0 = F 3×3
conv(xin). (3)

To prove the effectiveness and efficiency of the spatial-
spectral domain learning module, we only insert an SDL
block in the middle of the stacked residual blocks (RBs).
We define the number of RB stacked before and after SDL
as l and g respectively, and we process the input as follow:

xt = F l
RB(xl−1) = F l

RB(F
l−1
RB (· · ·(F 1

RB(x0)) · ··)),
x̂f = FSDL(xt),

x̂t = F g
RB(xg−1) = F g

RB(F
g−1
RB (· · ·(F 1

RB(x̂f )) · ··)),
(4)

where the FRB(·) and FSDL(·) correspond to the RB and
SDL module functions. The SDL module includes HR spec-
tral attention, HR spatial attention, and efficient feature fu-
sion (EFF). The internal implementation details of these
modules will be described in Section 3.2. To maintain the
high internal resolution of the features extracted from the
stacked RBs, we use feature reshape and matrix multiplica-
tion operations instead of feature downsampling and chan-
nel sharp narrowing operations, and the grouped split-and-
merge structure is designed for efficient feature fusion.

Global skip connection combines the shallow features x0

with the deep features to further increase the model stability
and information flow. Through the channel adjustment of
the convolutional layers, we get the reconstructed HSI as:

ypred = F 3×3
conv(F

3×3
conv(x̂t) + x0). (5)

As shown in Fig. 2, the predicted HSI ypred is supervised
by a dual-domain learning mechanism. The SDL module is
designed to be plug-and-play, and the FDL mechanism is
used for loss optimization, which constrains the frequency
distance between the reconstructed HSI and the truth adap-
tively. Dynamic weighting mechanism makes the model
focus on hard frequencies reconstruction that is easily ig-
nored by SDL. The HR pixel-level attention in SDL and the
frequency-level refinement in FDL to achieve complemen-
tary learning, which further ameliorates HSI quality. In the
following, we will introduce these two domains in detail.
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3.2. Spatial-Spectral Domain Learning
We extract the HR spatial-spectral attention cross spec-

tral and spatial direction respectively, and perform efficient
feature fusion (EFF) for more efficient representation.
HR Spectral Attention. We use two convolution layers to
obtain query vector defined as fq

c with the full spatial res-
olution and key vector defined as fk

c with the half channel
resolution. Then the query vector does attention remapping
to the key vector for the value vector fv

c , and its spectral di-
mension remains C/2, which avoids excessive loss of con-
tinuity. The the input xt ∈ RH×W×C is processed as:

fq
c = F 1×1

conv(xt) ∈ R1×H×W ,

fk
c = F 1×1

conv(xt) ∈ RC / 2×H×W ,

fv
c = FR(f

k
c )⊗ Softmax[FR(f

q
c )] ∈ RC / 2×1×1 ,

(6)

where F 1×1
conv(·) is the 1×1 convolution function and the re-

shape function FR(·) is used to facilitate size matching. ⊗
means matrix multiplication operation. In Fig. 2, after chan-
nel adjustment and Sigmoid activation, the weight factor of
each channel can be obtained. Then the original feature xt
is re-calibrated through channel element-wise product oper-
ation for HR spectral attention feature xspe, defined as:

xspe = xt ⊙ F 1×1
conv(Sigmoid[fv

c ]). (7)

HR Spatial Attention. For the input xt ∈ RH×W×C , we
obtain the key vector defined asfk

s with the half channel res-
olution and the full spatial resolution. The query vector de-
fined as fq

s is regarded as the remapping factor to adjust the
spatial attention for the value vector fv

s . Even if the global
average pooling (GAP) sacrifices the channel resolution of
fq
s , the full spatial resolution of fv

s will bring HR features
in the spatial dimension. These operations are defined as:

fq
s = FGAP (F

1×1
conv(xt)) ∈ R1×1×C / 2,

fk
s = F 1×1

conv(xt) ∈ RC / 2×H×W ,

fv
s = Softmax[FR(f

q
s )]⊗ FR(f

k
s ) ∈ R1×HW ,

(8)

where FGAP (·) is the GAP function. As shown in Fig. 2,
we re-calibrate the original feature xt by the weight factor
of each spatial feature coordinate, and these weight factors
come from the Sigmoid activation value of fv

s . Then the HR
spatial attention feature xspa is calculated as:

xspa = xt ⊙ Sigmoid[FR(f
v
s )]. (9)

Efficient Feature Fusion. To further improve the feature
utilization and interactivity within the spectral-spatial atten-
tion learning, we use an efficient fusion manner to group
and re-interact the input features. Firstly, we fuse the spec-
tral attention feature xspe and spatial attention feature xspa:

xf = xspe + xspa, (10)

where xf ∈ RH×W×C. Then, considering the diverse im-
portance of different channels, we divide feature xf into m
groups, so the xf can be expressed as [x1f , x2

f , x3
f , ..., xmf ].

The channel number of each group xi
f (i ∈ [1,m]) is C/m.

As shown in Fig. 2, we replace the standard convolution
with the depthwise-separable convolution (DSC) [7, 12, 35]
to reduce the computational cost. For each group of fea-
tures xif , the salient features are extracted independently.
After activating through the Softmax layer, the correspond-
ing weighting factor f i

e of each group can be expressed as:

f i
e = FDSC(xif )

= Softmax[FPWC
conv (FMP (F

DWC
conv (xif )))],

(11)

where FPWC
conv (·) is the point-wise convolution (PWC), and

FDWC
conv (·) represents the depth-wise convolution (DWC).

The FMP (·) represents the max pooling function with a ker-
nel size of 3×3. The normalized weight f i

e re-calibrates xi
f .

Then we introduce residual skip connection to further pro-
mote information flow. and get the re-interaction feature as:

x̂if = f i
exi

f + xif . (12)
We traverse each group and connect the feature maps of
each group to obtain the final fusion feature x̂f as follows:

x̂f = [x̂1f , x̂2f , x̂3f , ..., x̂m
f ], (13)

where [·] denotes the concatenating operation. The efficient
grouped DSC adjusts feature interactions of each group dy-
namically instead of equal treatment, which further ensures
the extraction of high-resolution features. Efficient calcula-
tion greatly reduces parameter cost and calculation burden.

3.3. Frequency Domain Learning
The inherent bias of CNN makes it challenging to syn-

thesize high-frequency features in SDL, which leads to the
frequency domain discrepancy in other methods in Fig.1. so
we introduce dynamic FDL for frequency-level supervision.
Discrete Fourier Transform. DFT transforms the discrete
signal from the time domain to the frequency domain to an-
alyze the frequency structure. For a finite-length discrete 1D
signal, the sine wave components of each frequency are ob-
tained through the following correspondence:

F (w) = 1
N

∑N−1
n=0 f(n)e−j2πwn

N , (14)
where F (w) represent the frequency domain signal corre-
sponding to the 1D discrete time domain signal f(n).
HSI Frequency Spectra Analysis. We use the 2D DFT
to convert the HSI to the frequency domain to reconstruct
more high-frequency details. We define the ground truth and
reconstructed HSI as ygt and ypred with the dimensions of
RH×W×C . We calculate the frequency spectrum for each
channel. In a specific channel k, the conversion relationship
between spatial coordinates (h,w, k) and frequency domain
coordinates (u, v) is expressed as:

Fk
gt(u, v) =

∑H−1
h=0

∑W−1
w=0 ygt(h,w, k)e

−j2π(uh
H + vw

W ),

Fk
pred(u, v) =

∑H−1
h=0

∑W−1
w=0 ypred(h,w, k)e

−j2π(uh
H + vw

W ),

(15)
where the Fgt and Fpred are the frequency spectra of all
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channels corresponding to ygt and ypred. As shown in
Fig. 2, their frequency spectra visualization represents the
severity of the grayscale changes. The structural textures
and edges are mapped as high-frequency signals while the
background as low-frequency signals. Therefore, we can
easily manipulate the high-frequency or low-frequency in-
formation of the HSI. Then we introduce dynamic weights
to make the network treat different frequencies adaptively.
Frequency Distance Optimization. We use a frequency
distance coefficient α to make the distance correlation ad-
justable. In each channel k, the frequency distance between
ground truth and predicted HSI is equivalent to the power
distance between their spectrum, which is defined as:

dk(u, v) = ∥Fk
gt(u, v)− Fk

pred(u, v)∥
α
. (16)

The analysis of frequency-distance coefficients α is pro-
vided in Sec. 4.3. Then we define a dynamic weight factor
θ(u, v) linearly related to the distance d(u, v) to make the
model pay more attention to the frequencies hard to be syn-
thesized. Then the distance between the ground truth and
the predicted HSI in a single channel k is formulated as:

d(Fk
gt,Fk

pred) =
1

HW

∑H−1
u=0

∑W−1
v=0 θk(u, v)dk(u, v),

(17)

where the θk(u, v) changes linearly with the absolute value
of the k-th channel frequency distance

√
(|dk(u, v)|). We

traverse k = {0, 1, 2, ..., C − 1} and sum each spectral dis-
tance to calculate the frequency domain loss in FDL as:

LFDL(Fgt,Fpred) =
∑C−1

k=0 d(F
k
gt,Fk

pred). (18)

3.4. Traning Objective
We choose the least absolute error as the loss in SDL,

i.e. LSDL(ygt, ypred) = ∥ygt − ypred∥1. The loss in FDL
is LFDL(Fgt,Fpred) defined in Eq. (18). We introduce the
weight factor λ to balance SDL and FDL, and the total loss
combined with the dual-domain learning is expressed as:

Ltotal = LSDL(ygt, ypred) + λLFDL(Fgt,Fpred). (19)

It is worth mentioning that how the model focuses on hard
frequencies in FDL can be controlled by α in Eq. (16). The
larger α, the greater the penalty for the hard frequencies.

4. Experiments
4.1. Experimental Setup
Datasets. We conduct experiments on two publicly avail-
able simulated HSI datasets CAVE [31] and KAIST [6]
for a fair comparison. The CAVE consists of 32 HSIs
with 31 spectral bands with a spatial size of 512×512,
and the KAIST consists of 30 HSIs with 31 spectral chan-
nels at a size of 2704×3376. Following TSA-Net [27] and
DGSMP [14], we use the same mask at a size of 256×256
for simulation. 28 wavelengths ranging from 450nm to
650nm obtained by spectral interpolation manipulation are
adopted. As with TSA-Net [27], we use the CAVE dataset
for training and select 10 scenes from KAIST for testing.

Implementation Details. We follow the same experimen-
tal settings as TSA-Net [27]. During the training, a patch
at the size of 256×256×28 is randomly selected from the
training 3D HSI datasets as labels. After mask modulation,
the data cube is shifted in spatial with an accumulative two-
pixel step and then summed up along the spectral dimension
to generate the 2D measurement of size 256×310. Random
flipping and rotation are used for data argumentation. We
use 32 RBs (l = g =16) and insert one SDL module in the
middle. We set α = 2 in Eq. (16) and λ = 0.7 in Eq. (19).
The HDNet is optimized by ADAM [18] with the learning
rate of 4 × 10−4, which decreases linearly to half every 50
epochs. Our models are trained on NVIDIA GeForce RTX
2080 Ti GPU. Peak-signal-to-noise-ratio (PSNR) and struc-
tured similarity (SSIM) [48] are adopted as the metrics to
evaluate the HSI reconstruction quantitatively.

4.2. Comparison with Other Methods
Quantitative Comparison: We compare the HSI recon-
struction of the proposed HDNet with 7 other SOTA meth-
ods, including three conventional methods (TwIST [1],
GAP-TV [53], and DeSCI [23]) and four CNN-based meth-
ods (λ-Net [28], HSSP [42], DNU [43], TSA-Net [27], and
DGSMP [14]). The quantitative results on 10 scenes of the
KAIST dataset in terms of PSNR and SSIM are reported in
Tab. 1. We can see that our HDNet significantly outperforms
other methods. Specifically, our method surpasses the re-
cent best competitor DGSMP by 1.71 dB in average PSNR
and 0.0406 in average SSIM. When compared with the two
deep unfolding algorithms HSSP and DNU, our HDNet is
3.99 dB and 3.60 dB higher, respectively. When compared
with the two model-based methods TwIST and DeSCI, our
HDNet achieves 11.22 dB and 9.98 dB performance gain.
Noted that although our HDNet’s PSNR is slightly lower
than DGSMP in Scene7, SSIM exceeds it by a large mar-
gin, which proves that the frequency domain optimization
strategy we use is more focused on the refinement of per-
ceptual quality and structural similarity. The complemen-
tary spatial-spectral domain and frequency domain further
improve the reconstruction performance.
Visual Comparison: We show the simulated HSI recon-
struction comparisons of Scene 7 with 4 (out of 28) spectral
channels in Fig. 3. The density-wavelength spectral curves
correspond to the green boxes identified as a and b of the
RGB image. We calculate the curve correlation between all
comparison methods and the reference truth. These quanti-
tative results show that our reconstructed HSI is the closest
and highest correlation to the ground truth (GT). Besides,
we visualize the entire HSI and enlarge the selected yellow
boxes in the upper right of Fig. 3. Our HDNet generates
more visually pleasant results than previous methods, es-
pecially in the reconstruction of high-frequency structural
content and spectral-dimension consistency, which benefit
from pixel-level and frequency-level dual-domain learning.
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Method TwIST [1] GAP-TV [53] DeSCI [23] λ-Net [28] HSSP [42] DNU [43] TSA-Net [27] DGSMP [14] HDNet (Ours)
Scene1 25.16, 0.6996 26.82, 0.7544 27.13, 0.7479 30.10, 0.8492 31.48, 0.8577 31.72, 0.8634 32.03, 0.8920 33.26, 0.9152 34.95, 0.9478
Scene2 23.02, 0.6038 22.89, 0.6103 23.04, 0.6198 28.49, 0.8054 31.09, 0.8422 31.13, 0.8464 31.00, 0.8583 32.09, 0.8977 32.52, 0.9531
Scene3 21.40, 0.7105 26.31, 0.8024 26.62, 0.8182 27.73, 0.8696 28.96, 0.8231 29.99, 0.8447 32.25, 0.9145 33.06, 0.9251 34.52, 0.9569
Scene4 30.19, 0.8508 30.65, 0.8522 34.96, 0.8966 37.01, 0.9338 34.56, 0.9018 35.34, 0.9084 39.19, 0.9528 40.54, 0.9636 43.00, 0.9810
Scene5 21.41, 0.6351 23.64, 0.7033 23.94, 0.7057 26.19, 0.8166 28.53, 0.8084 29.03, 0.8326 29.39, 0.8835 28.86, 0.8820 32.49, 0.9565
Scene6 20.95, 0.6435 21.85, 0.6625 22.38, 0.6834 28.64, 0.8527 30.83, 0.8766 30.87, 0.8868 31.44, 0.9076 33.08, 0.9372 35.96, 0.9645
Scene7 22.20, 0.6427 23.76, 0.6881 24.45, 0.7433 26.47, 0.8062 28.71, 0.8236 28.99, 0.8386 30.32, 0.8782 30.74, 0.8860 29.18, 0.9373
Scene8 21.82, 0.6495 21.98, 0.6547 22.03, 0.6725 26.09, 0.8307 30.09, 0.8811 30.13, 0.8845 29.35, 0.8884 31.55, 0.9234 34.00, 0.9609
Scene9 22.42, 0.6902 22.63, 0.6815 24.56, 0.7320 27.50, 0.8258 30.43, 0.8676 31.03, 0.8760 30.01, 0.8901 31.66, 0.9110 34.56, 0.9576
Scene10 22.67, 0.5687 23.10, 0.5839 23.59, 0.5874 27.13, 0.8163 28.78, 0.8416 29.14, 0.8494 29.59, 0.8740 31.44, 0.9247 32.22, 0.9500
Average 23.12, 0.6694 24.36, 0.6993 25.27, 0.7207 28.53, 0.8406 30.35, 0.8524 30.74, 0.8631 31.46, 0.8939 32.63, 0.9166 34.34, 0.9572

Table 1. The PSNR in dB (left entry in each cell) and SSIM (right entry in each cell) results of the test methods on 10 scenes.

450 500 550 600 650
Wavelength (nm)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
en

si
ty

 Reference
 DeSCI, corr: 0.9709
 GapTV, corr: 0.9754
 HSSP, corr: 0.9801
 -Net, corr: 0.9834
 TSA-Net, corr: 0.9866
 Twist, corr: 0.9742
 DGSMP, corr: 0.9715
 HDNet, corr: 0.9924

b
a

RGB image

Measurement

TwIST GAP-TV DeSCI λ-Net HSSP TSA-Net DGSMP HDNet (Ours) GT

64
8.
0
nm

60
4.
0
nm

57
5.
5
nm

45
7.
5
nm

TwIST GAP-TV TSA-Net DGSMP HDNet GTSpectral Density Curves

a b
450 500 550 600 650

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
en

si
ty

 Reference
 DeSCI, corr: 0.9763
 GapTV, corr: 0.9291
 HSSP, corr: 0.9823
 -Net, corr: 0.9701
 TSA-Net, corr: 0.9734
 Twist, corr: 0.9324
 DGSMP, corr: 0.9883
 HDNet, corr: 0.9975

Figure 3. Simulated HSI reconstruction comparisons of Scene 7 with 4 (out of 28) spectral channels. We show the spectral curves (top-
medium) corresponding to the selected green boxes of the RGB image. Our HDNet reconstructs more visually pleasant detailed contents.

4.3. Ablation Study
Model Analysis. There are some existing attention net-
works used for HSI reconstruction. We reports their pa-
rameters, spatial resolution, model complexity, and perfor-
mance in Tab. 2. Noted that we retrain attentions in λ-
Net [28] and TSA-Net [27] with the same baseline and the
loss in Eq. (19) for a fair comparison. Although the λ-Net
treats each channel equally, the non-local spatial mecha-
nism makes its parameter amount as high as 62.64M. TSA-
Net sacrifices part of the channel resolution in exchange for
computation complexity, but the used spatial-spectral self-
attention also has a higher parameter burden. Our HDNet
achieves the best trade-off between model performance and

parameters, and it also maintains the greatest fine details
and resolutions in both channel resolution (CR) and spa-
tial resolution (SR). The parameter of our HDNet is 2.37M,
which is less than one-eighteenth of TSA-Net while main-
taining the same model complexity. These results show the
superiority of our proposed HR attention mechanism.
Attention Feature Visualization: To show the advantages
of our proposed HR spatial-spectral attention (HSA) in cap-
turing HR fine-grained features more intuitively, we visu-
alize the intermediate attention maps of different attention
modules used for HSI reconstruction. We take ResNet [11]
as the baseline, and then add the TSA and our HSA, re-
spectively. The corresponding results are shown in Fig. 4.
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Method Params. CR SR Complexity PSNR/SSIM
λ-Net [28] 62.64M 1 [H ,W ] C2WH + CW 2H2 30.85 / 0.9062
TSA-Net [27] 44.25M C / 4 [H ,W ] CWH 32.68 / 0.9267
HDNet (Ours) 2.37M C / 2 [H ,W ] CWH 34.34 / 0.9572

Table 2. Model analysis of different attention networks with dif-
ferent channel resolution (CR) and spatial resolution (SR).

Baseline

with TSA

with HSA (Ours)

HSI

471.5 nm 594.5 nm 604.5 nm 525.5 nm 487.0 nm

Figure 4. Feature visualization with different attention modules.

Compared with the baseline, both TSA and HSA can en-
hance the extraction of salient features. However, TSA with
lower resolution attention inevitably loses a lot of textures
and edges and even focuses on the background by mistake.
Our proposed HSA solves this problem well. The continu-
ous HR attention in HSA allows the network to retain more
high-frequency information and complete structure of HSI.
Loss Weight Factor. The weight factor λ in Eq. (19) is
introduced to adjust the importance of SDL and FDL dy-
namically. We analyze how the model performance changes
with λ, and report the corresponding results in Tab. 3.
λ = 0 means that the model only minimizes the spatial-
spectral domain loss, and its unsatisfactory results indicate
that frequency-level supervision is necessary. It can be seen
that as the proportion of FDL loss increases, the model per-
formance also increases. When λ = 0.7, the model perfor-
mance reaches the highest PSNR and SSIM performance.
The performance degradation caused by the continued in-
crease of λ indicates that excessive constraints on the fre-
quency will destroy the pixel-level optimization balance.
FDL Loss Ablation. We calculate the log frequency dis-
tance (LFD) to evaluate the spectrum difference between
the reconstructed HSI and truth. The LFD is calculated as:

FLFD = log
[

1
HW

(∑H−1
u=0

∑W−1
v=0 |d(u, v)|

)
+ 1

]
. (20)

As shown in Fig. 5, we visualize the 3D-spectra recon-
structed with or without the FDL loss and provide the cor-
responding LFD. It can be seen that the reconstructed 3D-
spectra without frequency supervision has a ringing arti-
fact, which will produce oscillations at the sharp brightness
changes. Amplitude and phase distortion make different fre-
quency components of HSI have different gain amplitude

λ 0 0.1 0.3 0.5 0.7 0.9 1
SSIM ↑ 0.9093 0.9369 0.9498 0.9538 0.9572 0.9425 0.9399
PSNR ↑ 31.91 33.27 33.86 34.05 34.34 33.75 33.52

Table 3. Performance comparisons of different loss weight factor.
Metric α = 0.1 α = 0.3 α = 0.5 α = 1 α = 2 α = 3
LFD ↓ 14.8633 14.3792 13.9825 13.6571 13.3238 15.0863
SSIM ↑ 0.9397 0.9428 0.9543 0.9569 0.9572 0.9065
PSNR ↑ 33.16 33.51 34.14 34.40 34.34 31.89

Table 4. Model performance comparison using different coeffi-
cients to calculate the spectrum distances in frequency domain.

w/o  FDL with  FDL TruthHSI

648.0 nm

648.0 nm

648.0 nm

Figure 5. Frequency spectrum visualization with or without (w/o)
FDL. The metric LFD is used to measure the frequency similarity.

and relative displacement, which is manifested as deformed
structure and color deviation in HSI. On the contrary, the
3D-spectra optimized with our proposed loss in FDL al-
low for more accurate frequency reconstruction and lower
LFD, fitting the frequency statistics closer to truth. Fine-
grained spectrum supervision further preserves more high-
frequency information that is difficult to synthesize.
Frequency Distance Coefficient. The far frequency dis-
tance between reconstructed HSI and truth represents the
inaccurate fit, so we introduce the coefficient α in Eq. (16)
to control the model’s focus on frequencies that have not
been reconstructed well. The larger α is, the greater the
model will penalize the underfitting frequency. We report
the results corresponding to different coefficients in Tab. 4.
When α = 1, the model obtains the highest PSNR, and
when α = 2, the model obtains the best SSIM and LFD
performance. Smaller α results in weaker frequency penalty
and slightly lower performance, but the larger α brings more
stringent FDL supervision and excessive constraint, which
will lead to HSI distortion. In order for the model to focus
on both structural similarity and perceptual quality, we set
α = 2 to balance the visual and quantitative results.
Patch-based Frequency Spectrum. To further analyze the
frequency characteristics of HSI, we replace the entire im-
age spectrum calculation with patch-based calculation. The
original HSI is cropped into p × p patches. The new fre-
quency domain distance L̂FDL(Fgt, Fpred) of each paired
images will be redefined as the average value of each paired
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Figure 6. Real HSI reconstruction comparison of a randomly selected channel from 3 scenes. HDNet restores more high-frequency details.

Avg LFD: 14.8721 Avg LFD: 14.6327 Avg LFD: 13.3389 Avg LFD: 13.5241

𝑝 = 1 𝑝 = 2 𝒑 = 3 𝑝 = 4

Figure 7. Patch-based spectrum visualization. p is the patch num-
ber in each direction. We calculate the average LFD of all patches.

Metric p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
LFD ↓ 14.7954 14.6287 13.3238 13.5982 14.6391 14.9625
SSIM ↑ 0.9193 0.9344 0.9572 0.9378 0.9304 0.9166
PSNR ↑ 32.96 33.29 34.34 33.69 33.15 32.67

Table 5. Model performance comparisons of different patch size.

patches in the current channel. The Eq. (18) is modified as:

L̂FDL(Fgt, Fpred) =
∑C−1

k=0 [
1
p2

∑p2

j=1d(F
kj
gt , F

kj
pred)].

We analyze the performance when p = {1, 2, 3, 4, 5, 6} in
Tab. 5 and visualize part of the spectra in Fig. 7. The smaller
patch-based subdivision brings a finer spectrum reconstruc-
tion, and the performance on narrowing the frequency do-
main gap shown by LFD also becomes better. However, the
HSI reconstruction worsens when p > 3. The visualization
of p = 4 in Fig. 7 shows that a too small patch brings lim-
ited spectrum representation and biased supervision. So we
set p = 3 to appropriately ameliorate the refinement of HSI.

4.4. Real HSI Reconstrcution
We also apply the proposed HDNet for real HSI recon-

struction. The dataset is collected by the real HSI system de-
signed in TSA-Net [27]. Each HSI has 28 spectral channels
with wavelengths ranging from 450nm to 650nm and has
54-pixel dispersion in the column dimension. The measure-

ment used as input is at a spatial size of 660×714. Follow-
ing TSA-Net [27], we re-train the HDNet with the real mask
on the CAVE and KAIST datasets jointly. We also inject
11-bit shot noise on the 2D compressive image to simulate
the real situations. Due to the lack of ground truth, we only
compare the qualitative results of our HDNet with other
methods. Reconstruction results of one channel randomly
selected from 3 real scenes are shown in Fig. 6. Previous
methods with only coarse spatial domain loss produce ex-
cessive smoothing and distortion of high-frequency details.
The proposed HDNet generates more visually pleasant re-
sults by recovering more HR structures and high-frequency
textures, which benefits from the pixel-level fine-grained
and frequency-level refinement. Our robust results in the
real dataset show good model generalization.

5. Conclusion
In this paper, we propose a high-resolution dual-domain

learning network (HDNet) that includes spatial-spectral do-
main learning and frequency domain learning for HSI re-
construction from compressive measurements. The fine-
grained pixel-level prediction is obtained by efficiently de-
signing the HR spatial-spectral attention and feature fusion
module. To solve the visual difference caused by the pixel-
level loss, we introduce dynamically adjusted frequency-
level supervision for the first time to narrow the frequency
domain discrepancy between reconstructed HSI and the
truth. HDNet exhausts the representation capacity within
the dual-domain. Extensive visual analysis and quantitative
experiments prove that the HDNet obtains superior results
in both pixel-level and frequency-level HSI reconstruction.
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