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Abstract

The past few years have witnessed an increasing interest
in improving the perception performance of LiDARs on au-
tonomous vehicles. While most of the existing works focus
on developing new deep learning algorithms or model ar-
chitectures, we study the problem from the physical design
perspective, i.e., how different placements of multiple Li-
DARs influence the learning-based perception. To this end,
we introduce an easy-to-compute information-theoretic sur-
rogate metric to quantitatively and fast evaluate LiDAR
placement for 3D detection of different types of objects. We
also present a new data collection, detection model training
and evaluation framework in the realistic CARLA simula-
tor to evaluate disparate multi-LiDAR configurations. Us-
ing several prevalent placements inspired by the designs of
self-driving companies, we show the correlation between
our surrogate metric and object detection performance of
different representative algorithms on KITTI through exten-
sive experiments, validating the effectiveness of our LiDAR
placement evaluation approach. Our results show that sen-
sor placement is non-negligible in 3D point cloud-based ob-
ject detection, which will contribute to 5% ∼ 10% perfor-
mance discrepancy in terms of average precision in chal-
lenging 3D object detection settings. We believe that this is
one of the first studies to quantitatively investigate the influ-
ence of LiDAR placement on perception performance.

1. Introduction
LiDAR sensors are becoming the critical 3D sensors for

autonomous vehicles (AVs) since they could provide accu-
rate 3D geometry information and precise distance mea-
sures under various driving conditions [26]. The point cloud
data generated from LiDARs has been used to perform a se-
ries of perception tasks, such as object detection and track-
ing [38, 39, 41], SLAM and localization [27, 51], etc.
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Figure 1. Different multi-LiDAR configurations used in different
autonomous vehicles [1–6].

High-quality point cloud data and effective perception
algorithms are usually both required to achieve accurate
3D object detection in practice [45]. A number of stud-
ies propose to improve the 3D object detection perfor-
mance for point cloud data by developing novel percep-
tion algorithms, which assume that the data is of high qual-
ity [15, 22, 39, 41, 46]. However, only a little literature con-
siders the LiDAR perception problem from the viewpoint of
data acquisition [21, 25, 28] and LiDAR placement. We be-
lieve that this new perspective should be equally crucial for
real-world AV applications since improper LiDAR place-
ment may cause poor-quality sensing data, and thus cor-
rupt the perception algorithm and lead to poor performance
[11, 21, 24, 25, 30, 45]. In addition, LiDAR is an expensive
sensor, so maximizing its utility to save the deployment cost
is also important for mass production. Therefore, we aim to
investigate the interplay between LiDAR sensor placement
and perception performance for AVs. We use placement and
configuration interchangeably throughout this paper.

However, it is not easy to evaluate the efficacy of dif-
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ferent LiDAR placement layouts based on the perception
performance in the real world, which comes with effort-
costly and time-consuming full loops of LiDAR deploy-
ment, data collection, model training, and performance
evaluation. Moreover, as shown in Figure 1, many com-
panies’ self-driving vehicles are equipped with more than 2
LiDARs. As the LiDAR number increases, the cost of Li-
DAR configuration evaluation and optimization will also in-
crease exponentially. Therefore, it is a crucial but still open
problem to accelerate the quantitative evaluation of the Li-
DAR configurations regarding perception performance with
low cost. Thoroughly studying the interplay between Li-
DAR sensor placement and perception performance is es-
sential to AV perception systems, saving deployment cost
and without sacrificing driving safety.

In this paper, we study the perception system from the
sensing perspective and focus on investigating the relation-
ship between LiDAR configurations and 3D object detec-
tion using our evaluation framework shown in Figure 2. The
contributions of this paper are summarized as follows:

• We establish a systematic framework to evaluate
the object detection performance of different LiDAR
placements and investigate prevalent LiDAR place-
ments inspired by self-driving companies, showing
that LiDAR placement dramatically influences the per-
formance of object detection up to 10% in challenging
3D detection settings. As far as we know, we are one of
the first works to quantitatively study the interplay be-
tween LiDAR placement and perception performance.

• We propose a novel surrogate metric with maximum
information gain (S-MIG) to accelerate the evaluation
of LiDAR placement by modeling object distribution
through the proposed scalable Probabilistic Occupancy
Grids (POG). We show the correlation between the sur-
rogate metric and detection performance, which is the-
oretically explained via S-MIG and validates its effec-
tiveness for the LiDAR configuration evaluation.

• We contribute an automated multi-LiDAR data collec-
tion and detection model evaluation pipeline in the re-
alistic CARLA simulator and conduct extensive exper-
iments with state-of-the-art LiDAR-based 3D object
detection algorithms. The results reveal that LiDAR
placement plays an important role in the perception
system. The code for the framework is available on
https://github.com/HanjiangHu/Multi-
LiDAR-Placement-for-3D-Detection.

2. Related Work

The methods and frameworks proposed in this work re-
volve around evaluating the LiDAR sensor placement for

point cloud-based 3D object detection in autonomous driv-
ing. Although the literature is scarce in this combined area,
there has been some research on the 3D object detection and
the LiDAR placement optimization topics independently,
which we discuss in this section.

LiDAR-based 3D object detection. To keep up with
the surge in the LiDAR applications in autonomous vehi-
cles, researchers have tried to develop novel point cloud-
based 3D object detection from LiDAR. Over the years,
there has also been great progress in grid-based and point-
based 3D detection methods for point cloud data. 2D grid-
based methods project the point cloud data onto a 2D bird-
eye-view (BEV) to generate bounding boxes [14,22,23,43,
43, 49]. Another way to deal with point cloud is to use
3D voxels and 3D CNN, which is also called voxel-based
methods [15, 20, 41, 46, 52]. However, these grid-based
methods are greatly limited by the kernel size of the 2D
or 3D convolution, although the region proposal is pretty
accurate with fast detection speed. Point-based methods,
on the other hand, directly apply on the raw point cloud
based on PointNet series [32–34], which enables them to
have flexible perception leading to robust point cloud learn-
ing [31,44,47,48]. More receptive fields bring about higher
computation costs compared to grid-based methods. Re-
cent work [37, 38] combine voxel-based and point-based
methods together to efficiently learn features from raw point
cloud data, leading to impressive results on KITTI dataset
[19]. To evaluate the influence of point cloud of LiDAR
configuration, we use some representative voxel-based and
point-based methods [42] in Section 4. The majority of the
detection methods mentioned above are well-designed and
evaluated on high-quality point cloud datasets, but do not
consider the influence of the LiDAR sensing system.

LiDAR placement for autonomous vehicles. One of
the critical factors for autonomous vehicles is the percep-
tion and sensing ability. With this respect, LiDARs have
been widely used because of their high real-time precision
and their ability to extract rich information from the envi-
ronment [19, 29, 51]. However, the perception ability of
the LiDAR is sensitive to its placement [17, 50], it is crit-
ical to developing a scheme that minimizes the uncertainty
among all its possible placements. To this extent, Dybe-
dal et al. [18] proposed to find the optimal placement of
3D sensors using a Mixed Integer Linear Programming ap-
proach, which is not scalable to AVs because of the large
number of variables involved. Rahimian et al. [36] devel-
oped a dynamic occlusion-based optimal placement routine
for 3D motion capture systems, but do not consider variable
number of sensors during its optimization routine.

There have also been some prominent advances to op-
timize the placement of multiple LiDARs for AV while
considering the perception performance. Mou et al. [30]
formulated a min-max optimization problem for LiDAR
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Figure 2. Evaluation framework overview.

placement with a cylinder-based cost function proxy to con-
sider the worst non-detectable inscribed spheres formed
by the intersection of different laser beams. Liu et al.
[25] improved the previous work by using an intuitive vol-
ume to surface area (VSR) ratio metric and a black-box
heuristic-based optimization method to find the optimal
LiDAR placement. These methods assume a uniformly
weighted region around the AV to minimize the maximum
non-detectable area. They do not explicitly reveal the rela-
tion between the LiDAR placement and the perception per-
formance. Recent similar work [28] proposed the percep-
tion entropy metric for multiple sensor configuration eval-
uation. Although they use conditional entropy to measure
the sensor perception, they rely on empirical assumptions
from KITTI dataset in the formulation of perception en-
tropy, which weakens the generalizability to other scenes.
We formulate the problem under a full probabilistic frame-
work using a data-driven surrogate metric with a ray-tracing
acceleration approach to overcome these limitations.

3. Methodology
To avoid the huge effort of data collection and compli-

cated analysis of learning-based detection for evaluating
each multi-LiDAR placement, we introduce the method-
ology to efficiently evaluate LiDAR sensor placement for
perception performance based on information theory. The
problem of LiDAR placement evaluation is formulated with
the definitions of Region of Interest (ROI) and Probabilistic
Occupancy Grid (POG). Finally, we introduce probabilistic
surrogate metric for fast LiDAR configuration evaluation.

3.1. Problem Formulation

We begin this section by defining the LiDAR perception
model and the ROI, which form the basis of our LiDAR

configuration evaluation problem. As shown in Figure 3, we
model a LiDAR sensor as a collection of multiple beams.
Each beam owns a pitch angle to the XY plane and rotates
at a uniform speed along the positive Z axis. As each beam
completes one rotation, it forms a conical surface area, and
we assume its perception to be all points in this area. Thus,
the total perception of a LiDAR is the union of all these
conical areas formed by the rotation of its beams in the ROI,
which we will describe next.

Similar to previous work [25] and [30], we define the
ROI to be the space where we keep track of objects to be
detected. To account for LiDAR’s limited range of detec-
tion, we denote the cuboid size of the ROI to be [l, w, h] for
length l along the x-axis, width w along y-axis and height h
along the z-axis in the XY Z coordinate system, as shown
in Figure 4. The size of ROI is mainly determined by the
distribution of target objects (Car, Truck, Cyclist, etc.) in
the scenario. We then discretize the ROI into voxels with a
fixed resolution δ to represent ROI as a collection of voxels,

V = {v1, v2, . . . , vM},M =
l

δ
× w

δ
× h

δ
(1)

The ROI provides us with a fixed perception field around the
LiDAR, from which LiDAR beams accumulate most sens-
ing information for the following perception task.

Therefore, for the LiDAR-based 3D object detection
task, we only focus on the objects within ROI for each point
cloud frame when calculating the perception metrics. Then,
the problem of LiDAR placement evaluation is formulated
as comparing the object detection performance given Li-
DAR configuration candidate using common point cloud-
based 3D object detection algorithms and their metrics [19].
However, directly using 3D object detection metrics to eval-
uate the LiDAR placement in the real world is inaccurate
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Figure 3. Schematic showing a LiDAR sensor forming perception
cones in the ROI to collect point cloud data.
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Figure 4. LiDAR sensor mounted on an AV samples object voxels
according to 3D bounding boxes from the ROI and generate the
POG to evaluate detection performance.

and extremely inefficient, as it is impossible to make all the
scenarios and objects identical to collect point cloud data
fairly for evaluated LiDAR configuration candidate in the
practical application. Besides, it may take days for each
evaluation procedure to collect new data and train the de-
tection models based on new LiDAR placement to get the
final detection metrics. Therefore, we propose a new surro-
gate metric to accelerate the LiDAR placement evaluation
procedure based on the Probabilistic Occupancy Grid.

3.2. Probabilistic Occupancy Grid

Since we consider the 3D object detection in ROI among
all the frames, intuitively, the LiDAR configurations cover-
ing more objects will perform better in the object detection
task. To this end, we propose to model the joint distribution
of voxels in ROI as Probabilistic Occupancy Grid (POG) by
estimating the probability of each voxel to be occupied. For
each object of interest, like car, truck and cyclist, the POG
is defined as the joint probability of occupied voxels by 3D
bounding boxes (BBoxes) among all the frames from M
voxels in ROI. Similarly, let the LiDAR configuration be
random variable C, given LiDAR configuration C = C0,
conditional POG can represent the conditional joint distri-
bution of occupied voxels given the specific LiDAR config-
uration with the assumption of conditional independence.

3D Bboxes
mapped to POG

Figure 5. Schematic showing how 3D bounding boxes (Bboxes)
are mapped to the ROI to generate a POG. Each cube in the POG
has a probability given by Equation 4.

pPOG = p(v1, v2, . . . , vM ) (2)
pPOG|C=C0

= p(v1, v2, . . . , vM | C = C0) (3)

where vi ∼ pV . To make the notation compact and easy
to read, we denote the occupied voxel random variable
vi | C = C0 as vC0

i and denote the conditional distribu-
tion pV|C=C0

as pV|C0
, so we have , vC0

i ∼ pV|C0
.

To estimate POG from samples, given a dataset of the
ground truth of BBoxes YT = {y1, y2, . . . , yT }, where
T represents the number of ground truth frames. Each
frame yt(t ∈ {1, ..., T}) contains N (t) 3D BBoxes of the
target object {b(t)1 , b

(t)
2 , . . . , b

(t)

N(t)} within ROI of the ego-
vehicle, and each BBox is parameterized by its center co-
ordinates, size (length, width, height), and yaw orientation.
For each voxel coordinate vi = (xi, yi, zi) ∈ V , we de-
note vi ∈ yt if vi is within any of the bounding boxes
{b(t)1 , b

(t)
2 , . . . , b

(t)

N(t)}. Then, for each voxel vi ∈ V from
ROI, we estimate its probability to be occupied among all
the T frames as,

p̂(vi) =

∑T
t=1 (vi ∈ yt)

T
,i = 1, 2, . . . ,M (4)

vi ∈ yt := ∃ b(t) ∈ yt,s.t. vi ∈ b(t) (5)

where (·) is an indicator function and M is the number of
voxels in ROI. The POG can then be estimated by the joint
probability of all occupied voxels in ROI. Since the pres-
ence of an object in one voxel does not imply presence in
other voxels among all the frames in ROI, we could treat
these voxels as independent and identically distributed ran-
dom variables and calculate the joint distribution over all
voxels in the set V as,

p̂POG = p̂(v1, . . . , vM ) =

M∏

i=1,p̂(vi) �=0

p̂(vi) (6)

where M is the total number of non-zero voxels in ROI. One
such example of the POG of car is shown in Figure 5. Note
that notations of p̂ with ĥat are the estimated distribution
from observed samples, while notations of p without hat are
the unknown non-random true distribution to be estimated.
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For a particular LiDAR configuration C = C0, we em-
ploy ray tracing by Bresenham’s Line Algorithm [10] (de-
noted as Bresenham(V, C0)) to find all the voxels which
intersect with the perception field (ROI) of that LiDAR. We
denote the set of these beam-intersected voxels as,

V|C0 = Bresenham(V, C0) = {vC0
1 , . . . , vC0

M } (7)

where the discretized non-zero voxels from LiDAR beams
give the perception range of LiDAR configuration C0.

The conditional probability of occupied voxels among
all frames in ROI given the LiDAR configuration C0 can
represent the conditional distribution from which LiDAR
can get sensing information of the target object. Similar to
Equation 6, the conditional POG given LiDAR configura-
tion C0 can be estimated as,

p̂POG|C0
= p̂(vC0

1 , . . . , vC0

M ) =

M∏

i=1,p̂(v
C0
i ) �=0

p̂(vC0
i ) (8)

From the perspective for density estimation to find POG,
combine Equation 2, 3, 6 and 8, the true POG and condi-
tional POG given configuration C0 can be estimated as,

pPOG = p̂POG, pPOG|C=C0
= p̂POG|C0

(9)

3.3. Probabilistic Surrogate Metric

In this section, we derive our surrogate metric based on
information theory using the POG p(v1, ..., vM ) and condi-
tional POG p(v1, ..., vM | C = C0) given LiDAR config-
uration C0, evaluating how well the LiDAR placement can
sense objects’ location in ROI.

To maximize the perception capability, one intuitive way
is to reduce the uncertainty of the joint distribution of voxels
given specific LiDAR configuration. The total entropy of
POG (POG Entropy) is only determined by the scenarios
with bounding boxes.

HPOG = H(V) = Evi∼pV

M∑

i=1

Ĥ(vi) (10)

Mutual information (MI) of two random variables can rep-
resent uncertainty reduction given the condition. In this
case, we want to evaluate the information gain (IG) of vox-
els occupied by target objects given the LiDAR configura-
tion candidate. Our insight is that the more IG the LiDAR
configuration has, the more information it will contain so
the more uncertainty it will reduce. With p(C = C0) = 1,

IGV,C0
= H(V)−H(V|C0) = H(V) + SMIG (11)

SMIG = −H(V|C0) = −E
v
C0
i ∼pV|C0

M∑

i=1

Ĥ(vC0
i ) (12)

(a) (b)
Figure 6. Realistic simulation environments in CARLA.

where we introduce the maximum information gain-based
surrogate metric S-MIG, ignoring the total entropy H(V)
which is a constant given POG and the same for different
LiDAR configurations. The entropy of each voxel can be
found below.

Ĥ(vi) = −p̂(vi) log p̂(vi)− (1− p̂(vi)) log(1− p̂(vi))

4. Experiments
This section aims to address two questions: 1) Does Li-

DAR placement influence the final perception performance?
2) How can we quantify and evaluate the detection perfor-
mance of different LiDAR configurations using our easy-
to-compute probabilistic surrogate metric? To answer these
questions, we conduct extensive experiments in a realis-
tic self-driving simulator — CARLA [16]. Due to the re-
quirement of fairly evaluating different LiDAR placements
with all other environmental factors fixed, such as the ego-
vehicle’s and surrounding objects’ trajectories, we choose
to use realistic simulation scenarios in CARLA (Figure 6),
instead of a public real-world dataset.

4.1. Experimental Setup

Given CARLA scenarios and the target object, we obtain
the POG based on the bounding box labels and calculate the
surrogate metric S-MIG for every LiDAR placement. For
each evaluated LiDAR configuration candidate, we first col-
lect point cloud data in CARLA, then train and test all the
object detection models using the collected data. Finally,
we correlate the surrogate metric and the 3D detection per-
formance.

CARLA simulator. We use CARLA as the simulation
platform to collect data and evaluate our method. CARLA
is a high-definition open-source simulator for autonomous
driving research [12, 13] that offers flexible scenario se-
tups and sensor configurations. CARLA provides real-
istic rendering and physics simulation based on Unreal
Engine 4. Furthermore, the LiDAR sensor could gener-
ate accurate point cloud data and could be easily config-
ured with customized placement. We use CARLA’s in-
built ScenarioRunner module to simulate realistic traf-
fic scenarios, only changing LiDAR configurations for all
the experiments. We collect data in Town 1, 3, 4, 6
and each town contains 8 manually recorded routes. For
Sparse, Medium and Dense scenarios, we spawn 40,
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(a) Line-roll (b) Center

Figure 7. Point cloud data collected from different LiDAR config-
urations under the same scenarios with car (in black 3D bounding
box) and cyclist (in red 3D bounding box).

800, 120 Vehicles (including cars, motorcycles, trucks, cy-
clists, etc.) in each town and the default density is Medium.

Data format. The collected dataset for each LiDAR
configuration contains about 45000 point cloud frames with
3D bound boxes of normal-size vehicles as Car (including
Sedan, Pickup Truck, SUV, etc.) and other abnormal-size
vehicles as Van and Cyclist (including Box Truck, Cyclist,
Motorcycles, etc.). We use all collected bounding boxes
to calculate POG for each object type and estimate the
joint distribution of voxels in ROI. We use about 10% fixed
frames as the test set and the remaining data as the training
set in all the experiments. The point clouds from different
LiDARs are aggregated and transformed to the reference
frame of the ego-vehicle for computational convenience.
We make the data format consistent with KITTI 3D object
detection benchmark [19]. To calculate ROI and POG effi-
ciently for each target object, we customize the size of ROI
to be l = 80m,w = 40m,h = 4m for CARLA scenario.
Following the KITTI format, we use the half front view of
point cloud range (40m in length) for POG and surrogate
metric, and the 3D detection model training and testing.

3D object detection algorithms and metrics. To
fairly compare the object detection performance of differ-
ent LiDAR configurations, we adopt the recent open-source
LiDAR-based 3D object detection framework OpenPCDet
[42] and fine-tune the KITTI pretrained models of mul-
tiple representative 3D detection algorithms. For voxel-
based methods, we use one-stage SECOND [46] and two-
stage Voxel RCNN [15]. Also, we use PointRCNN [40]
as point-based method and PV-RCNN [37] as the integra-
tion of voxel-based and point-based method. Moreover, we
also compare the models with 3D Intersection-over-Union
(IoU) loss for SECOND [46] and PointRCNN [40]. For de-
tection metrics, we adopt the strictest metrics of Bird-Eye-

View (BEV) and 3D detection with average precision across
40% recall under IoU thresholds of 0.70 for Car and 0.50 for
Van and Cyclist [19,42]. We follow the default training hy-
perparameters and fine-tune all the KITTI pretrained mod-
els for 10 epochs on our training set for the fair comparison
between different LiDAR placements.

Different LiDAR Placements We evaluate several Li-
DAR placements as baselines to show the influence on ob-
ject detection performance. We mainly consider the place-
ment problem of 4 LiDARs and each LiDAR has 20Hz ro-
tation frequency and 90,000 points per frame from the 16
beams. In our experiments, we set beams to be equally dis-
tributed in the vertical FOV [−25.0, 5.0] degrees. Trape-
zoid LiDAR configuration is simplified from Toyota’s self-
driving cars with 4 LiDARs in the parallel front and back
(Figure 1a). Pyramid placement is motivated by Cruise and
Pony AI (Figure 1b, 1c) including 1 front LiDAR and 3 back
ones with a higher one in the middle. Center placement
is achieved by vertically stacking four LiDARs together at
the center of the roof, which is inspired by Argo AI’s au-
tonomous vehicle (Figure 1d). Line is motivated by Ford
(Figure 1e) and 4 LiDARs are placed in a horizontal line
symmetrically. The idea of Square comes from Zoox’s self-
driving cars (Figure 1f), which places the 4 LiDARs on the
4 roof corners. Furthermore, we investigate the influence
of roll rotation on sided LiDARs (Line-roll, Pyramid-roll).
The visualization of some baseline placements is shown in
Figure 7 and more details of LiDAR placement are pre-
sented in the supplementary material.

4.2. Experimental Results and Analysis

To answer the questions raised in Section 4, we demon-
strate our evaluation results first to show the influence of
different LiDAR placements on 3D object detection, then
analyze the relation between detection performance and our
surrogate metric in detail. Note that we limit the num-
ber of input points per frame to make the detection chal-
lenging enough for multi-LiDAR configuration, resulting in
lower detection metric values than original KITTI bench-
mark [19]. See supplementary material for more details.

LiDAR placement influence on 3D object detection.
From Table 1 and Figure 8, we present the 3D detection (3D
IoU) and bird-eye-view (BEV) performance of representa-
tive voxel-based and point-based detection algorithms using
point cloud collected with different LiDAR configurations.
Note that we use the most rigorous detection metrics in our
experiments from [42]. It can be seen that different LiDAR
placements clearly influence the detection performance for
all the algorithms, varying 10% at most. Moreover, for dif-
ferent target objects, the influence of LiDAR placement is
quite different as well. Pyrimid configuration perform bet-
ter on Car detection for most algorithms. In contrast, most
models trained with data collected with Trapezoid place-
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Models Car-3D (AP R40@0.70) Car-BEV (AP R40@0.70)
Center Line Pyramid Trapezoid Center Line Pyramid Trapezoid

PV-RCNN [37] 52.15 55.50 57.44 57.37 62.64 65.42 65.81 65.54
Voxel RCNN [15] 47.59 50.85 52.61 50.95 57.72 60.84 63.65 61.52
PointRCNN [40] 38.46 48.25 44.28 47.50 51.41 59.14 56.97 59.08

PointRCNN-IoU [40] 38.44 46.86 45.34 47.32 50.56 58.86 56.67 59.04
SECOND [46] 42.89 47.13 46.89 47.53 56.65 59.44 61.75 59.97

SECOND-IoU [46] 44.41 48.60 51.03 49.10 56.98 59.96 62.31 60.28

Models Van and Cyclist-3D (AP R40@0.50) Van and Cyclist-BEV (AP R40@0.50)
Center Line Pyramid Trapezoid Center Line Pyramid Trapezoid

PV-RCNN [37] 40.09 39.11 40.26 42.85 41.18 41.45 43.09 44.79
Voxel RCNN [15] 33.76 31.60 33.39 33.91 35.40 33.24 35.11 35.54
PointRCNN [40] 31.43 28.00 27.10 30.91 33.86 30.68 30.49 33.75

PointRCNN-IoU [40] 30.75 27.64 26.19 30.54 34.04 30.71 29.30 34.70
SECOND [46] 36.13 32.36 35.32 35.95 38.19 30.68 40.84 40.01

SECOND-IoU [46] 35.61 33.12 34.95 36.51 38.99 36.60 38.31 40.14

Table 1. Comparison of object detection performance under various LiDAR configurations using different algorithms.

3D PV-RCNN [37] PointRCNN [40]
S-MIG
(103)

Line 55.50 48.25 -5.02
Line-roll 54.53 45.12 -6.05
Pyramid 57.44 44.28 -5.64

Pyramid-roll 53.91 36.91 -6.69

BEV PV-RCNN [37] PointRCNN [40]
S-MIG
(103)

Line 65.42 59.14 -5.02
Line-roll 63.17 56.54 -6.05
Pyramid 65.81 56.97 -5.64

Pyramid-roll 63.89 50.74 -6.69

Table 2. Influence of roll rotation of sided LiDARs (as Figure 7a
shows) on Car detection performance.

ment has higher detection precision for Van and Cyclist ob-
ject. The reason lies in different POG and point cloud dis-
tribution between Car, Van and Cyclist, so the most suitable
placement for different target objects is different.

Relation between detection performance and surro-
gate metric. Now we will show why different LiDAR
placements will affect the detection performance using sur-
rogate metric S-MIG. As shown in Figure 8, we illustrate
the relation between Car, Van and Cyclist detection perfor-
mance and S-MIG with all the LiDAR placements using
both 3D and BEV average precision metrics. As S-MIG
increases, the 3D and BEV detection metrics under all al-
gorithms generally go up for Car, Van and Cyclist detec-
tion. The fluctuation in the plots comes from some noise
and outliers in data collection and model training, but the
increasing trend of detection performance with respect to
S-MIG is revealed, which explains the influence of LiDAR
placement. More specifically, S-MIG is more smooth in re-
flecting detection of small objects like cyclists or extremely
large objects like box trucks. From Figure 7 we can find that
point cloud collected through Center is more uniformly dis-

Density Dense Medium Sparse
PV-RCNN [37] 57.98 56.88 54.48

PointRCNN [40] 48.13 45.46 42.30
SECOND [46] 48.19 47.57 43.96

Voxel RCNN [15] 52.15 51.14 48.15
S-MIG (103) -10.68 -7.63 -6.27

HPOG(10) (103) 618.40 496.70 416.96
IG (11) (103) 607.072 489.06 410.70

Table 3. Influence of scenarios with different densities of Car on
Square 3D detection.

tributed so that cyclists get more points compared to Line-
roll, while points on large objects may get saturated so the
evaluation with S-MIG may be affected.

4.3. Ablation Study and Application Analysis

In this section, we further investigate the influence on
placement-detection correlation from some key factors in
self-driving, giving examples to evaluate the LiDAR con-
figurations using S-MIG towards potential applications.

Roll angles of sided LiDARs. Orientation of the sided
LiDARs are very common, so we investigate the influence
of such placement variance in Table 2. It can be found that
the placements of Line-roll and Pyramid-roll with roll an-
gles have worse detection performance as their S-MIG val-
ues are lower compared to Line and Pyramid respectively.
The finding is consistent with detection metrics of both 3D
and bird-eye-view, which further validates the effectiveness
of our surrogate metric and gives an example to fast evaluate
the LiDAR placement for object detection.

Density of surrounding road objects. We investigate
how scenarios with different object densities affect detec-
tion performance and surrogate metric under Square place-
ment. Since under scenarios of different object densities,
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Figure 8. The relationship between Car, Van and Cyclist detection performance and surrogate metric of different LiDAR placements.

the POG is different and S-MIG cannot be directly used. So
the original information gain IG (11) is adopted to involve
different POG entropy HPOG(10). From Table 3 we can see
that the performance gets better when the density of cars in-
creases because the information gain IG gets larger, which
shows that our surrogate metric generalizes well to evaluate
detection performance under different scenarios.

Potential application analysis. Based on the correlation
our surrogate metric and detection performance, the evalu-
ation of different LiDAR placement can be largely acceler-
ated without following the time-consuming procedure: Li-
DAR installation → massive data collection → model train-
ing → evaluation of perception performance. Instead, we
only needs a 3D bounding box dataset of object of interest
to generate the POG and evaluate the LiDAR placement,
which is fast and economical, and can also be customized
in different deployment scenarios.

Moreover, using the proposed surrogate metric, it is easy
to optimize the LiDAR placement given the number of Li-
DARs and their beams under specific scenarios with object
of interest. It can maximize the efficacy of the LiDAR sen-
sor and relevant to the AV research community and industry

since the current LiDAR placements are more or less intu-
ition driven. Besides, combining with some recent active
perception work [7–9,35], the proposed surrogate metric in
this paper could serve as a guidance for those active sen-
sors to focus on important areas around the AV for different
scenarios and target objects.

5. Conclusion
This paper investigates the interplay between LiDAR

placement and 3D detection performance. We proposed a
novel efficient framework to evaluate multi-LiDAR place-
ment and configuration for AVs. We proposed a data-driven
surrogate metric that characterizes the information gain in
the conical perception areas, which helps accelerate the Li-
DAR placement evaluation procedure for LiDAR-based de-
tection performance. Finally, we conducted extensive ex-
periments in CARLA, validating the correlation between
perception performance and surrogate metric of LiDAR
configuration through representative 3D object detection al-
gorithms. Research in this paper sets a precedent for future
work to optimize the placement of multiple LiDARs and
co-design the sensor placement and perception algorithms.
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