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Abstract

Structural re-parameterization has drawn increasing at-
tention in various computer vision tasks. It aims at improv-
ing the performance of deep models without introducing any
inference-time cost. Though efficient during inference, such
models rely heavily on the complicated training-time blocks
to achieve high accuracy, leading to large extra training
cost. In this paper, we present online convolutional re-
parameterization (OREPA), a two-stage pipeline, aiming to
reduce the huge training overhead by squeezing the complex
training-time block into a single convolution. To achieve
this goal, we introduce a linear scaling layer for better opti-
mizing the online blocks. Assisted with the reduced training
cost, we also explore some more effective re-param compo-
nents. Compared with the state-of-the-art re-param mod-
els, OREPA is able to save the training-time memory cost
by about 70% and accelerate the training speed by around
2×. Meanwhile, equipped with OREPA, the models out-
perform previous methods on ImageNet by up to +0.6%.
We also conduct experiments on object detection and se-
mantic segmentation and show consistent improvements on
the downstream tasks. Codes are available at https:
//github.com/JUGGHM/OREPA_CVPR2022.

1. Introduction

Convolutional Neural Networks (CNNs) have seen the
success of many computer vision tasks, including classifi-
cation [21, 27, 38, 25], object detection [33, 28, 32], seg-
mentation [7, 44], etc. The trade-off between accuracy and
model efficiency has been widely discussed. In general, a
model with higher accuracy usually requires a more compli-
cated block [25, 24, 18], a wider or deeper structure [41, 4].
However, such models are always too heavy to be deployed,
especially in the scenarios where the hardware performance
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Figure 1. Comparison of (a) a vanilla convolutional layer, (b) a
typical re-param block, and (c) our online re-param block in the
training phase. All of these structures are converted to the same
(d) inference-time structure.

is limited, and real-time inference is required. Taking ef-
ficiency into consideration, smaller, compacter, and faster
models are preferred.

In order to obtain a deploy-friendly model and keep a
high accuracy, structural re-parameterization based meth-
ods [14, 16, 17, 19] are proposed for a “free” performance
improvement. In such methods, the models have differ-
ent structures during the training phase and the inference
phase. Specifically, they [16, 1] use complicated training-
phase topologies, i.e., re-parameterized blocks, to improve
the performance. After training, they squeeze a complicated
block into a single linear layer through equivalent transfor-
mation. The squeezed models are usually with a neat archi-
tecture, e.g., usually a VGG-like [17] or a ResNet-like [16]
structure. From this perspective, the re-parameterization
strategies can improve model performances without intro-
ducing additional inference-time cost.

It is believed that the normalization (norm) layer is the
crucial component in re-param models. In a re-param
block (Fig. 1(b)), a norm layer is always added right-after
each computational layer. It is observed that the removal of
such norm layers would lead to severe performance degra-
dation [17, 16]. However, when considering the efficiency,
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the utilization of such norm layers unexpectedly brings
huge computational overhead in the training phase. The
complicated block could be squeezed into a single convolu-
tional layer in the inference phase. But, during training, the
norm layers are non-linear, i.e., they divide the feature map
by its standard deviation, which prevents us from merging
the whole block. As a result, there exist plenty of interme-
diate computational operations (large FLOPS) and buffered
feature maps (high memory usage). Even worse, the high
training budget makes it difficult to explore more complex
and potentially stronger re-param blocks. Naturally, the fol-
lowing question arises,

• Why does normalization matter in re-param?

According to the analysis and experiments, we claim that it
is the scaling factors in the norm layers that counts most,
since they are able to diversify the optimization direction of
different branches.

Based on the observations, we propose Online Re-
Parameterization (OREPA) (Fig. 1(c)), a two-stage pipeline
which enables us to simplify the complicated training-time
re-param blocks. In the first stage, block linearization, we
remove all the non-linear norm layers and introduce the lin-
ear scaling layers. Such layers are with similar property
as norm layers, that they diversify the optimization of dif-
ferent branches. Besides, these layers are linear, and can
be merged into convolutional layers during training. The
second stage, named block squeezing, simplifies the com-
plicated linear block into a single convolutional layer. The
OREPA significantly shrinks the training cost by reduc-
ing the computational and storage overhead caused by the
intermediate computational layers, with only minor com-
promising on performance. Moreover, the high-efficiency
makes it feasible to explore much more complicated re-
parameterized topologies. To validate this, we further pro-
pose several re-parameterized components for better perfor-
mance.

We evaluate the proposed OREPA on the ImageNet [13]
classification task. Compared with the state-of-the-art re-
param models [16], OREPA reduces the extra training-time
GPU memory cost by 65% to 75%, and speeds up the train-
ing process by 1.5× to 2.3×. Meanwhile, our OREPA-
ResNet and OREPA-VGG consistently outperform previous
methods [16, 17] by +0.2%∼+0.6%. We evaluate OREPA
on the downstream tasks, i.e., object detection and seman-
tic segmentation. We find that OREPA could consistently
bring performance gain on these tasks.

Our contributions can be summarized as follows:

• We propose the Online Convolutional Reparameteri-
zation (OREPA) strategy, which greatly improves the
training efficiency of re-parameterization models and
makes it possible to explore stronger re-param blocks.

• According to our analysis on the mechanism by which
the re-param models work, we replace the norm layers
with the introduced linear scaling layers, which still
provides diverse optimization directions and preserves
the representational capacity.

• Experiments on various vision tasks demonstrate
OREPA outperforms previous re-param models in
terms of both accuracy and training efficiency.

2. Related Works
2.1. Structural Re-parameterization

Structural re-parameterization [16, 17] is recently at-
tached greater importance and utilized in lots of computer
vision tasks, such as compact model design [18], architec-
ture search [9, 43], and pruning [15]. Re-parameterization
means different architectures can be mutually converted
through equivalent transformation of parameters. For ex-
ample, a branch of 1×1 convolution and a branch of 3×3
convolution, can be transferred into a single branch of
3×3 convolution [17]. In the training phase, multi-branch
[14, 16, 17] and multi-layer [19, 5] topologies are designed
to replace the vanilla linear layers (e.g. conv or full con-
nected layer [1]) for augmenting models. Cao et al. [5]
have discussed how to merge a depthwise separable convo-
lution kernel during training. Afterwards during inference,
the training-time complex models are transferred to sim-
ple ones for faster inference. While benefiting from com-
plex training-time topologies, current re-parameterization
methods[14, 16, 19] are trained with non-negligible extra
computational cost. When the block becomes more compli-
cated for stronger representation, the GPU memory utiliza-
tion and time for training will grow larger and longer, finally
towards unacceptable. Different from previous re-param
methods, we focus more on the training cost. We propose
a general online convolutional re-parameterization strategy,
which make the training-time structural re-parameterization
possible.

2.2. Normalization

Normalization [26, 40, 2, 35] is proposed to alleviate the
gradient vanishing problem when training very deep neural
networks. It is believed that norm layers are very essen-
tial [36] as they smooth the loss landscape. Recent works
on norm-free neural networks claim that norm layers are
not indispensable [42, 37]. Through good initialization and
proper regularization, normalization layers can be removed
[42, 12, 37, 3] elegantly.

For the re-parameterization models, it is believed that
norm layers in re-parameterized blocks are crucial [16,
17]. The norm-free variants would suffer from perfor-
mance degradation. However, the training-time norm lay-
ers are non-linear, i.e., they divide the feature map by its
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Figure 2. An overview of the proposed Online Re-Parameterization (OREPA), a two-stage pipeline. In the first stage (Block Linearization),
we remove all the non-linear components in the prototype re-param block. In the second stage (Block Squeezing), we merge the block to
a single convolutional layer (OREPA Conv). Through the steps, we significantly reduce the training cost while keep the high performance.

standard deviation, which prevents us from merging the
blocks online. To make it feasible to perform online re-
parameterization, we remove all the norm layers in re-
param blocks, In addition, we introduce the linear alterna-
tive of norm layers, i.e., the linear scaling layers.

2.3. Convolutional Decomposition

Standard convolutional layers are computational dense,
leading to large FLOPs and parameter numbers. There-
fore, convolutional decomposition methods [30, 39, 34]
are proposed and widely applied in light-weighted models
for mobile devices [23, 10]. Re-parameterization methods
[14, 16, 19, 5, 9, 43] could be regarded as a certain form
of convolutional decomposition as well, but towards more
complicated topologies. The difference of our methods is
that we decompose convolution at the kernel level rather
than structure level.

3. Online Re-Parameterization
In this section, we introduce the proposed On-

line Convolutional Re-Parameterization. First, we an-
alyze the key components, i.e., the normalization lay-
ers in re-parameterization models, as preliminaries in
Sec. 3.1. Based on the analysis, we propose the Online
Re-Parameterization (OREPA), aiming to greatly reduce
the training-time budgets of re-parameterization models.
OREPA is able to simplify the complicated training-time
block into a single convolutional layer and preserve the
high accuracy. The overall pipeline of OREPA is illus-
trated in Fig. 2, which consists of a Block Linearization
stage (Sec. 3.2) and a Block Squeezing stage (Sec. 3.3).
Next, in Sec. 3.4, we dig deeper into the effectiveness of
re-parameterization by analyzing the optimization diversity
of the multi-layer and multi-branch structures, and prove
that both the proposed linear scaling layers and normal-

Table 1. Effectiveness of normalization layers in re-param mod-
els. To stabilize the training process, when removing the branch-
wise norm layers, we add a post-addtion norm layer.

Variants DBB-18 RepVGG-A0

Original 71.77 72.41
W/o branch-wise norm 71.35 71.15
W/o re-param 71.21 71.17

ization layers have the similar effect. Finally, with the re-
duced training budget, we further explore some more com-
ponents for a stronger re-parameterization (Sec. 3.5), with
marginally increased cost.

3.1. Preliminaries: Normalization in Re-param

It is believed that the intermediate normalization layers
are the key components for the multi-layer and multi-branch
structures in re-parameterization. Taking the SoTA models,
i.e., DBB [16] and RepVGG [17] as examples, the removal
of such layers would cause severe performance degradation,
as shown in Table 1. Such an observation is also experimen-
tally supported by Ding et al. [16, 17]. Thus, we claim that
the intermediate normalization layers are essential for per-
formances of re-parameterization models.

However, the utilization of intermediate norm layers un-
expectedly brings higher training budgets. We notice that
in the inference phase, all the intermediate operations in
the re-parameterization block are linear, thus can be merged
into one convolutional layer, resulting in a simple structure.
But during training, the norm layers are non-linear, i.e., they
divide the feature map by its standard deviation. As a re-
sult, the intermediate operations should be calculated sep-
arately, which leads to higher computational and memory
costs. Even worse, such high cost would prevent the com-
munity from exploring stronger training blocks.
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Figure 3. Three steps of block linearization. i) We first remove all the training-time non-linear normalization layers in the ra-param
block. ii) Second, we add a linear scaling layer at the end of each branch to diversify the optimization directions. iii) Last, we add a
post-normalization layer right after each block to stabilize training.

3.2. Block Linearization

As stated in Sec. 3.1, the intermediate normalization lay-
ers prevent us from merging the separate layers during train-
ing. However, it is non-trivial to directly remove them due
to the performance issue. To tackle this dilemma, we in-
troduce the channel-wise linear scaling operation as a linear
alternative of normalization. The scaling layer contains a
learnable vector, which scales the feature map in the chan-
nel dimension. The linear scaling layers have the similar
effect as normalization layers, that they both encourage
the multi-branches to be optimized towards diverse direc-
tions, which is the key to the performance improvement in
re-parameterization. The detailed analysis of the effect is
discussed in Sec. 3.4. In addition to the effects on perfor-
mance, the linear scaling layers could be merged during the
training, making the online re-parameterization possible.

Based on the linear scaling layers, we modify the re-
parameterization blocks as illustrated in Fig. 3. Specifically,
the block linearization stage consists of the following three
steps. First, we remove all the non-linear layers, i.e., nor-
malization layers in the re-parameterization blocks. Sec-
ond, in order to maintain the optimization diversity, we add
a scaling layer, the linear alternative of normalization, at the
end of each branch. Finally, to stabilize the training pro-
cess, we add a post-addition normalization layer right after
the addition of all the branches.

Once finishing the linearization stage, there exist only
linear layers in the re-param blocks, meaning that we can
merge all the components in the block during the training
phase. Next, we describe how to squeeze such a block into
a single convolution kernel.

3.3. Block Squeezing

Benefiting from block linearization (Sec. 3.2), we ob-
tain a linear block. In this section, we describe the standard
procedure for squeezing a training-time linear block into a
single convolution kernel. The block squeezing step con-
verts the operations on intermediate feature maps, which
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Figure 4. Simplification of sequential and parallel structures. Such
simplifications convert the heavy computations on the feature
maps to the lighter ones on the convolutional kernels.

are computation and memory expensive, into operations on
kernels that are much more economic. This implies that we
reduce the extra training cost of re-param from O(H ×W )
to O(KH × KW ) in terms of both computation and mem-
ory, where (H,W ), (KH ,KW ) are the spatial shapes of
the feature map and the convolutional kernel.

In general, no matter how complicated a linear re-param
block is, the following two properties always hold.

• All the linear layer in the block, e.g., depth-wise con-
volution, average pooling, and the proposed linear
scaling, can be represented by a degraded convolu-
tional layer with a corresponding set of parameters.
Please refer to the supplementary materials for details.

• The block can be represented by a series of parallel
branches, each of which consists a sequence of convo-
lutional layers.

With the above two properties, we can squeeze a block
if we can simplify both i) a multi-layer (i.e., the sequential
structure) and ii) a multi-branch (i.e., the parallel structure)
into a single convolution. In the following part, we show
how to simplify the sequential structure (Fig. 4(a)) and the
parallel structure (Fig. 4(b)).

We first define the notations of convolution. Let Ci, Co

denote the input and output channel numbers of a KH ×
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KW sized 2d convolution kernel. X ∈ RCi×H×W , Y ∈
RCo×H′×W ′

denote the input and output tensors. We omit
the bias here as a common practice, the convolution process
is denoted by

Y = W ∗X. (1)

Simplify a sequential structure. Consider a stack of con-
volutional layers denoted by

Y = WN (WN−1 ∗ · · · (W2 ∗ (W1 ∗X))), (2)

where Wj ∈ RCj×Cj−1×KHj
×KWj satisfies C0 =

Ci, CN = Co. According to the associative law, such lay-
ers can be squeezed into one by convolving the kernels first
according to Eq. (3).

Y = (WN (WN−1 ∗ · · · (W2 ∗W1)) ∗X
= We ∗X,

(3)

where Wj is the weight of the jth layer. We denotes the
end-to-end mapping matrix. The pixel-wise form of Eq. (3)
is shown in the supplementary materials.

Simplify a parallel structure. The simplification of a
parallel structure is trivial. According to the linearity of
convolution, we can merge multiple branches into one ac-
cording to Eq. (4).

Y =

M−1∑
m=0

(Wm ∗X) = (

M−1∑
m=0

Wm) ∗X, (4)

where Wm is the weight of the mth branch, and
(
∑M−1

m=0 Wm) is the unified weight. It is worth noting that
when merging kernels with different sizes, we need to align
the spatial centers of different kernels, e.g., an 1×1 kernel
should be aligned with the center of a 3×3 kernel.

Training overhead: from features to kernels. No matter
how complex the block is, it must be constituted by no more
than multi-branch and multi-layer sub-topologies. Thus, it
can be simplified into a single one according to the two sim-
plification rules above. Finally, we could get the all-in-one
end-to-end mapping weight and only convolve once during
training. According to Eq. (3) and Eq. (4), we actually con-
vert the operations (convolution, addition) on intermediate
feature maps into those on convolutional kernels. As a re-
sult, we reduce the extra training cost of a re-param block
from O(H ×W ) to O(KH ×KW ).

3.4. Gradient Analysis on Multi-branch Topology

To understand why the block linearization step is fea-
sible, i.e. why the scaling layers are important, we con-
duct analysis on the optimization of the unified weight re-
parameterized. Our conclusion is that for the branches with

norm layers removed, the utilization of scaling layers could
diversify their optimization directions, and prevent them
from degrading into a single one.

To simplify the notation, we take only single dimension
of the output Y. Consider a conv-scaling sequence (a sim-
plified version of conv-norm sequence):

ΦConv−Scale := {y = γWx|W ∈ Ro,i, γ ∈ Ro}, (5)

where I = Ci × KH × KW , x ∈ RI is vectorized pixels
inside a sliding window, y ∈ RO, O = 1, W is a convo-
lutional kernel corresponding to certain output channel, and
γ is the scaling factor. Suppose all parameters are updated
by stochastic gradient descent, the mapping Wcs := γW
is updated by:

W(t+1)
cs := γ(t+1)W(t+1)

= (γ(t) − ηW(t)x⊤ ∂L

∂y
)(W(t) − ηγ(t)x⊤ ∂L

∂y
)

= W(t)
cs − η(vec(diag(W(t))2) +

∥∥∥γ(t)
∥∥∥2
2
)x⊤ ∂L

∂y

(6)

where L is the loss function of the entire model and η is the
learning rate. For a multi-branch topology with a shared γ,
i.e.:

ΦConv−Scale
M := {y = γ

M∑
j=1

Wjx|Wj ∈ Ro,i, γ ∈ Ro},

(7)
the end-to-end weight We1,cs := γ

∑M
j=1 Wj is optimized

equally from that of Eq. (6):

W(t+1)
e1,cs −W(t)

e1,cs = W(t+1)
cs −W(t)

cs , (8)

with the same forwarding tth-moment end-to-end matrix
W

(t)
cs = W

(t)
e1,cs. Hence, ΦConv−Scale

M introduces no op-
timization change. This conclusion is also supported exper-
imentally [16]. On the contrary, a multi-branch topology
with branch-wise γ provide such changes, e.g.:

ΦConv−Scale
M,2 := {y =

M∑
j=1

γjWjx|Wj ∈ Ro,i, γj ∈ Ro}.

(9)
The end-to-end weight We2,cs :=

∑M
j=1 γjWj is updated

differently from that of Eq. (6):

W(t+1)
e2,cs −W(t)

e2,cs ̸= W(t+1)
cs −W(t)

cs , (10)

with the same precondition W
(t)
cs = W

(t)
e2,cs and Condition

1 satisfied:

Condition 1 At least two of all the branches are active.

∃ S ⊆ {1, 2, · · · ,M}, |S| ≥ 2,

such that ∀j ∈ S, vec(diag(W
(t)
j )2) +

∥∥∥γ(t)
j

∥∥∥2
2
̸= 0

(11)
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Condition 2 The initial state of each active branch is dif-
ferent from that of each other.

∀j1, j2 ∈ S, j1 ̸= j2, W
(0)
j1

̸= W
(0)
j2

. (12)

Meanwhile, when Condition 2 is met, the multi-branch
structure will not degrade into single one for both forward-
ing and backwarding. This reveals the following proposi-
tion explaining why the scaling factors are important. Note
that both Condition 1 and 2 are always met when weights
W

(0)
j of each branch is random initialized [20] and scaling

factors γ(0)
j are initialized to 1.

Proposition 1 A single-branch linear mapping, when re-
parameterizing parts or all of it by over-two-layer multi-
branch topologies, the entire end-to-end weight matrix will
be differently optimized. If one layer of the mapping is re-
parameterized to up-to-one-layer multi-branch topologies,
the optimization will remain unchanged.

So far, we have extended the discussion on how re-
parameterization impacts optimization, from multi-layer
only [1] to multi-branch included as well. Actually, all
current effective re-parameterization topology [14, 16, 17,
19, 5] can be validated by either [1] or Proposition 1. For
detailed derivation and discussion about this subsection,
please refer to supplementary materials.

3.5. Block Design

Since the proposed OREPA saves the training cost by
a large margin, it enables us to explore more compli-
cated training blocks. Hereby, We design a novel of re-
parameterization models, i.e., OREPA-ResNet, by lineariz-
ing the state-of-the-art model DBB [16], and inserting the
following components (Fig. 5).
Frequency prior filter. In previous work [16], pooling
layers are utilized in the block. According to Qin et al. [31],
the pooling layer is a special case of the frequency filters. To
this end, we add a Conv1×1 - Frequency Filter branch.
Linear depthwise separable convolution. [5] We
slightly modify the depthwise separable convolution [10] by
removing the intermediate non-linear activation layer, mak-
ing it feasible to be merged during training.
Re-parameterization for 1×1 convolution. Previous
works mainly focus on the Re-parameter for 3×3 convo-
lutional layers but ignore the 1×1 ones. We propose to
re-parameterize 1×1 layers because they play an important
role in the bottleneck structures [21, 4]. Specifically, we add
an additional Conv1×1 - Conv1×1 branch.
Linear deep stem. Large convolutional kernels are usu-
ally placed in the very beginning layers, e.g., 7×7 stem lay-
ers [21], aiming at achieving a larger receptive field. Guo
et al. replace the 7×7 conv layer with stacked 3×3 layers
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Figure 5. Illustration of the proposed four components in Sec. 3.5.
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Figure 6. The design of the proposed OREPA block, correspond-
ing to a 3×3 convolution during training and inference.

for a higher accuracy [19]. However, the stacked convs at
the very beginning layers require larger computational over-
head due to the high-resolution. Note that we can squeeze
the stacked deep stem with our proposed linear scaling lay-
ers to a 7×7 conv layer, which can greatly reduce the train-
ing cost while keep the high accuracy.

For each block in the OREPA-ResNet (Fig. 6), i) we
add a frequency prior filter and a linear depthwise seper-
able convolution. ii) We replace all the stem layers (i.e.,
the initial 7×7 convolution) with the proposed linear deep
stem. iii) In the bottleneck [21] blocks, in addition to i) and
ii), we further replace the original 1×1 convolution branch
with the proposed Rep-1×1 block.

4. Experimental Results
4.1. Implementation Details

We conduct experiments on the ImageNet-1k [13]
dataset. We follow the standard data pre-processing
pipeline, including random cropping, resizing (to
224×224), random horizontal flipping, and normal-
ization. By default, we apply an SGD optimizer to train the
models, with initial learning rate 0.1 and cosine annealed in
120 epochs. We also linearly warm up the learning rate [22]

573



Table 2. Effectiveness of different components in OREPA. We use
Top-1 Accuracy to measure the performance. Note that Rep-1×1
is design for the bottleneck blocks, thus not used in ResNet-18.

Model ResNet-18 ResNet-50

Baseline [21] 71.21 76.70
+ Offline DBB blocks [16] 71.77 76.89

+ Online 71.75 76.86
+ Frequency prior filter 71.78 76.92
+ Linear depthwise separable 71.82 76.98
+ Linear deep stem 72.13 77.09
+ Rep-1×1 - 77.31

(a) Without Scaling Layer (b) With Scaling Layer

Figure 7. Visualization of branch-level similarity. We calculate
cosine similarities between the weights from different branches.

in the initial 5 epochs. We use a global batch size 256 on 4
Nvidia Tesla V100 (32G) GPUs. Unless specified, we use
ResNet-18 as the base structure. For a fair comparison, we
report results of different models trained under the same
settings as described above. For more details, please refer
to our supplementary materials.

4.2. Ablation Study

Linear scaling layer and optimization diversity. We
first conduct experiments to validate our core idea, that the
proposed linear scaling layers play a similar role as the nor-
malization layers. According to the analysis in Sec. 3.4, we
show both the scaling layers and the norm layers are able
to diversify the optimization direction. To verify this, we
visualize the branch-wise similarity of all the branches in
Fig. 7. We find that the use of scaling layer can significantly
increase the diversity of different branches.

We validate the effectiveness of such diversity in Table 2.
Take the ResNet-18 structure as an example, the two kinds
of layers (norm and linear scaling) bring similar perfor-
mance gain (i.e., 0.42 vs. 0.40). This strongly supports our
claim that it is the scaling part, rather than the statistical-
normalization part, that counts most in re-parameterization.

Various linearization strategies. We attempt various lin-
earization strategies for the scaling layer. Specifically, we
visit four variants.

Table 3. Comparison with linearization variants on the ResNet-
18 model. Note that “NaN” means the gradient explosion and the
model fails to converge.

Linearization Variants Top1-Accuracy(%)

Vector scaling 72.13
Scalar scaling 72.04
W/o scaling 71.87
W/o post-addition norm NaN
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Figure 8. Comparison of training cost between offline re-param
method and OREPA.

• Vector: utilize a channel-wise vector and perform the
scaling operation along the channel axis.

• Scalar: scale the whole feature map with a scalar.

• W/o scaling: remove the branch-wise scaling layers.

• W/o post-addition norm: remove the post-addition
norm layer.

From Table 3 we find that deploying either scalar scaling
layers or no scaling layers leads to inferior results. Thus,
we choose the vector scaling as the default strategy.

We also study the effectiveness of the post-addition norm
layers. As stated in Sec. 3.2, we add such layers to stabilize
the training process. To demonstrate this, we remove such
layers, as shown in the last row in Table 3, the gradients
become infinity and the model fails to converge.

Each component matters. Next, we demonstrate the ef-
fectiveness of the proposed components Sec. 3.5. We con-
duct experiments on both the structures of both ResNet-18
and ResNet-50. As shown in Table 2, each of the compo-
nents helps to improve the performance.

Online vs. offline. We compare the training cost of
OREPA-ResNet-18 with its offline counterpart (i.e., DBB-
18). We illustrate both the consumed memory (Fig. 8(a))
and the training time (Fig. 8(b)). With the increased number
of components, the offline re-parameterized model suffers
from rapidly increasing memory utilization and the long
training time. We can not even introduce deep stem to a
ResNet-18 model due to the high memory cost. In contrast,
the online re-param strategy accelerates the training speed
by 4×, and saves up to 96+% extra GPU memory. The
overall training overhead roughly lies in the same level as
that of the base model (vanilla ResNet).
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Table 4. Comparison with other re-parameterization models. Note
that instead of directly quote results from the original papers, we
report models trained on our machine for a fairer comparison.

Model Re-param
Top1- GPU- Training
Acc Mem time/batch

ResNet-18
None 71.21 4.2G 0.086s
DBB 71.77 7.5G 0.241s

OREPA 72.13 5.2G 0.120s

ResNet-34
None 74.13 5.2G 0.116s
DBB 74.83 11.1G 0.424s

OREPA 75.04 6.7G 0.182s

ResNet-50
None 76.70 10.3G 0.204s
DBB 76.89 13.7G 0.380s

OREPA 77.31 11.2G 0.252s

ResNet-101
None 77.71 14.5G 0.382s
DBB 78.02 19.7G 0.641s

OREPA 78.29 16.1G 0.445s

RepVGG-A0
RepVGG 72.41 3.8G 0.100s
OREPA 73.04 4.2G 0.136s

RepVGG-A1
RepVGG 74.46 4.8G 0.121s
OREPA 74.85 5.5G 0.147s

RepVGG-A2
RepVGG 76.48 5.8G 0.170s
OREPA 76.72 7.4G 0.210s

4.3. Comparison with other Re-Param methods

We compare our methods with previous structural
re-parameterization methods on ImageNet. For the
ResNet structure, we compare OREPA-ResNet series with
DBB [16]. For a fairer comparison, we report results of
DBB trained using our setting. This makes the perfor-
mances slightly higher than those reported in [16].

From Table 4, we observe that on the ResNet-series,
OREPA can consistently improve performances on various
models by up to +0.36%. At the same time, it accelerates
the training speed by 1.5× to 2.3× and saves around 70+%
extra training-time memory caused by re-param. We also
conduct experiments on the VGG structure, we compare
OREPA-VGG with RepVGG [17]. For the OREPA-VGG
models, we simply replace the Conv-3×3 branch with the
one we used in OREPA-ResNet. Such a modification only
introduces marginal extra training cost, while brings clear
performance gain (+0.25%∼+0.6%).

4.4. Object Detection and Semantic Segmentation

To validate the generalization of online re-parameterized
models, we apply the pretrained OREPA-ResNet-50 to
conduct experiments on the object detection and seman-
tic segmentation tasks. On MS-COCO [29], we train the
commonly-used detectors, i.e., Faster RCNN [33] and Reti-
naNet [28] with default settings in mmdetection [6] for 12

Table 5. Performance on COCO and Cityscapes validation set
with pretrained ResNet-50 backbones. “Mem” is the GPU mem-
ory (GB) cost during training and “Time” denotes the average
training time of a step (minutes per 50 steps).

Re-param
Faster-RCNN RetinaNet

mAP Mem Time mAP Mem Time

None 36.5 5.0 0.37 36.2 5.0 0.29
DBB 36.5 6.5 0.46 36.6 6.5 0.40
OREPA 37.0 5.7 0.39 36.9 5.9 0.36

Re-param
PSPNet DeepLabV3+

mIoU Mem Time mIoU Mem Time

None 74.47 11.5 0.31 76.63 13.1 0.50
DBB 74.50 13.0 0.54 77.15 14.6 0.71
OREPA 75.47 12.3 0.41 77.59 13.8 0.56

epochs. On Cityscapes, we train the PSPNets [44] and
DeepLabV3+ [8] models using mmsegmentation [11] for
40K steps. As show in Table 5, OREPA consistently im-
proves performances on the two tasks.

4.5. Limitations

When simply transferring the proposed OREPA from
ResNet to RepVGG, we find inconsistent performances
between the residual-based and residual-free (VGG-like)
structures. Therefore, we reserve all the three branches
in the RepVGG block to maintain a competitive accuracy,
which brings marginally increased computational cost. This
is an interesting phenomenon, and we will briefly discuss
this in the supplementary materials.

5. Conclusion
In this paper, we present online convolutional re-

parameterization (OREPA), a two-stage pipeline aiming to
reduce the huge training overhead by squeezing the com-
plex training-time block into a single convolution. To
achieve this goal, we replace the training-time non-linear
norm layers with linear scaling layers, which maintains op-
timization diversity and the enhancement of the represen-
tational capacity. As a result, we significantly reduce the
training-budgets for re-parameterization models. This is es-
sential for training large-scale neural network with complex
topologies, and it further allows us to re-parameterize mod-
els in a more economic and effective way. Results on vari-
ous tasks demonstrate the effectiveness of OREPA in terms
of both accuracy and efficiency.
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