
Point Density-Aware Voxels for LiDAR 3D Object Detection

Jordan S. K. Hu Tianshu Kuai Steven L. Waslander
University of Toronto Robotics Institute

{jordan.hu, tianshu.kuai}@mail.utoronto.ca, steven.waslander@robotics.utias.utoronto.ca

Abstract

LiDAR has become one of the primary 3D object de-
tection sensors in autonomous driving. However, LiDAR’s
diverging point pattern with increasing distance results in
a non-uniform sampled point cloud ill-suited to discretized
volumetric feature extraction. Current methods either rely
on voxelized point clouds or use inefficient farthest point
sampling to mitigate detrimental effects caused by density
variation but largely ignore point density as a feature and
its predictable relationship with distance from the LiDAR
sensor. Our proposed solution, Point Density-Aware Voxel
network (PDV), is an end-to-end two stage LiDAR 3D object
detection architecture that is designed to account for these
point density variations. PDV efficiently localizes voxel
features from the 3D sparse convolution backbone through
voxel point centroids. The spatially localized voxel features
are then aggregated through a density-aware RoI grid pool-
ing module using kernel density estimation (KDE) and self-
attention with point density positional encoding. Finally, we
exploit LiDAR’s point density to distance relationship to re-
fine our final bounding box confidences. PDV outperforms
all state-of-the-art methods on the Waymo Open Dataset
and achieves competitive results on the KITTI dataset.

1. Introduction
3D object detection is one of the key perception prob-

lems in the autonomous vehicle space as object pose estima-
tion directly impacts the effectiveness of downstream tasks
in the perception pipeline. Within the autonomous driving
sensor stack, LiDAR has become one of the most popular
sensors used for 3D object detection [23,25,37], because of
the accurate 3D point cloud it produces through laser light.

However, the reliance on LiDAR data comes at the cost
of point density variations across distance. Other factors
such as occlusion play a role, but the primary reason is
the natural divergence of points from the LiDAR with in-
creasing distance due to the angular offsets between the Li-
DAR lasers. Thus, objects located at farther distances return
fewer points than objects located closer to the LiDAR.

(a) (b) (c)

Figure 1. Voxel feature localization using (a) voxel centers, (b) far-
thest point sampling, and (c) voxel point centroids on a vehicle in
the Waymo Open Dataset [29]. By using the raw point cloud to
localize voxel features, voxel point centroids provide dense geo-
metric information for second-stage proposal refinement.

Voxel-based methods [4,37,40,43] typically ignore point
density, solely relying on the quantized representation of
the point cloud. When a high voxel resolution is afforded,
as is the case on the KITTI dataset [6], voxel-based meth-
ods [41] have outperformed point-based and point-voxel-
based methods. However, on datasets with larger input
spaces such as the Waymo Open Dataset [29], the voxel
resolution is limited due to memory constraints. Fine ob-
ject details are therefore lost due to spatial misalignment
between the voxel features and the point cloud as shown in
Figure 1 (a), resulting in a degradation in performance.

Other methods [23, 25] attempt to remedy point density
variations through farthest point sampling (FPS) as seen
in Figure 1 (b). Although effective at sampling locations
on non-uniformly distributed point clouds, the computation
scales poorly as a function of the number of points in the
point cloud, increasing runtime and limiting the number of
sampled points for second-stage proposal refinement.

Point density also affects detection of smaller objects
such as pedestrians and cyclists. These objects have less
surface area to intersect the LiDAR’s laser beams, resulting
in poorer object localization. Perhaps informatively, cur-
rent state-of-the-art methods have largely ignored detection
performance for pedestrians and cyclists, focusing solely on
the car or vehicle class [4, 14, 15, 41]. As we move towards

8469

datasets with higher environment coverage, it is necessary
for architectures to be scalable to larger input spaces and to
serve as a multi-class solution for 3D object detection.

We therefore propose Point Density-Aware Voxel net-
work (PDV) to resolve these identified issues by leveraging
voxel point centroid localization and feature encodings that
directly account for point density in multi-class 3D object
detection. We summarize our approach with the following
three contributions.
(1) Voxel Point Centroid Localization. PDV partitions the
LiDAR points in each non-empty voxel to calculate a point
centroid for each voxel feature, as shown in Figure 1 (c).
By localizing the voxel features with point centroids for
second-stage proposal refinement, PDV uses the point den-
sity distributions to retain fine-grained position informa-
tion in the feature encodings without requiring an expensive
point cloud sampling method such as FPS.
(2) Density-Aware RoI Grid Pooling. We augment region
of interest (RoI) grid pooling [23] to encode local point
density as an additional feature. First, we use kernel den-
sity estimation (KDE) [17, 21] to encode local voxel fea-
ture density at each grid point ball query, followed by self-
attention [33] between grid points with a novel point density
positional encoding. Density-aware RoI grid pooling cap-
tures localized point density information in the context of
the whole region proposal for second-stage refinement.
(3) Density Confidence Prediction. We further refine
our bounding box confidence predictions by using the fi-
nal bounding box centroid location and the number of raw
LiDAR points within the final bounding box as additional
features. Thus, we use the inherent relationship between
distance and point density established by LiDAR for more
informed confidence predictions.

PDV outperforms all current state-of-the-art methods
on the Waymo Open Dataset [29] with an increase of
+0.65%/+1.25%, +0.53%/+0.46%, and +0.49%/+0.71% on
the vehicle, pedestrian, and cyclist LEVEL 1/LEVEL 2
mAPH classes, respectively, and achieves competitive per-
formance on the KITTI dataset [6].

2. Related Work
Point-based LiDAR 3D Object Detection. Point-based
methods use the raw point cloud to extract point-level fea-
tures for bounding box predictions. F-PointNet [18] applies
PointNet [19, 20] on the point cloud, segmented via image-
based 2D object detections. PointRCNN [25] directly gen-
erates RoIs at the point-level through a PointNet++ [20]
backbone and uses point-level features for bounding box re-
finement. STD [39] proposes PointsPool for RoI feature ex-
traction while 3DSSD [38] adopts a new sampling strategy
on the raw point cloud to preserve enough interior points for
objects in the downsampled point cloud. Point-GNN [27]
constructs a graph using the raw point cloud and aggre-

gates node-level features to generate predictions. Point-
based methods utilize expensive point cloud sampling and
grouping, which inevitably require long inference times.

Voxel-based LiDAR 3D Object Detection. Voxel-based
methods divide the point cloud into a voxel grid to di-
rectly apply 3D and 2D convolutions for generating pre-
dictions [11, 37, 43]. CIA-SSD [40] adopts a light network
on the bird’s eye biew (BEV) grid to extract robust spatial-
semantic features with a confidence rectification module for
better post-processing. Voxel-RCNN [4] proposes Voxel
RoI pooling to generate RoI features by aggregating voxel
features. VoTr [15] proposes a transformer-based 3D back-
bone as an alternative to the standard sparse convolution
layers [7, 37]. The performance of voxel-based methods is
limited by the quantized point cloud as fine-grained point-
level information is lost from the voxelization process.

Point-Voxel-based LiDAR 3D Object Detection. Point-
voxel-based methods utilize both voxel and point represen-
tations of the point cloud. SA-SSD [8] uses an auxiliary net-
work during training that interpolates point-level features
from intermediate voxel layers. PV-RCNN [23] adopts RoI
grid pooling to effectively aggregate FPS-sampled keypoint
features on evenly spaced grids inside each bounding box
proposal. PV-RCNN++ [24] proposes a modified version of
FPS for faster point sampling and VectorPool aggregation
for RoI grid pooling. CT3D [22] constructs a cylindrical-
shaped RoI at each bounding box proposal. It adopts a
transformer-based encoder-decoder architecture to extract
RoI features directly from the nearby points without using
intermediate voxel features. Pyramid-RCNN [14] extends
the idea of RoI grid pooling over a single set of evenly
spaced grids to multiple sets of grids at different scales with
adaptive ball query radius at a significantly higher compu-
tation cost. Current point-voxel based methods do not ex-
plicitly account for variations in point cloud density within
each RoI and typically require long inference times due to
the dependence on point cloud sampling.

Point Density Estimation. KDE [17, 21] estimates a prob-
ability distribution function of a random variable using a
finite set of samples and a chosen kernel function and
bandwidth. A couple methods have used KDE for fea-
ture encoding in point clouds. MC Convolution [9] uses a
Monte Carlo estimation of the convolution integral to han-
dle non-uniform sampled point clouds and uses KDE to
estimate the likelihood of a point within a local convolu-
tion. PointConv [36] also uses KDE, but estimates the like-
lihood of each sample with an additional feed-forward net-
work (FFN). Rather than restricting the density estimate for
reweighting, we use KDE as an additional feature within
each grid point ball query in density-aware RoI grid pool-
ing.

8470

Figure 2. PDV architecture. The input point cloud is first voxelized and processed through 3D sparse convolutions and a RPN head to
produce initial bounding box proposals. Voxel features in each layer l = 1, . . . , L are then localized via voxel point centroids, which are
then aggregated through density-aware RoI grid pooling. The RoI grid features are used to refine the bounding box proposals and their
associated confidence, with additional adjustments from density confidence prediction.

3. Methodology
PDV uses a two-stage approach with a 3D sparse convo-

lution backbone for initial bounding box proposals which
are then refined in a second stage through voxel features
in each voxel layer and the raw point cloud data. Figure 2
shows an overview of the PDV framework.

3.1. 3D Voxel Backbone

We use a similar voxel backbone for initial bound-
ing box proposals to SECOND [37]. The input to PDV
is a point cloud which is defined as a set of 3D points
{pi = {xpi

, fpi
} | i = 1, . . . , Np} where xpi

∈ R3 are the
xyz spatial coordinates, fpi ∈ RF are additional features
such as the intensity or elongation of each point, and Np

is the number of points in the point cloud. First, the point
cloud is voxelized and subsequently encoded using a se-
ries of 3D sparse convolutions [7, 37], followed by a region
proposal network (RPN) for initial bounding box proposals.
Each voxel layer has a different spatial resolution with 1x,
2x, 4x, and 8x downsampled resolutions based on the orig-
inal voxel grid size. The voxel features in each layer are
used for bounding box refinement in the second stage.

3.2. Voxel Point Centroid Localization

Inspired by grid-subsampling in KPConv [31, 32], the
voxel point centroid localization module spatially locates
non-empty voxel features for aggregation in density-aware

RoI grid pooling.
Let V l = {Vl

k = {hVl
k
, fVl

k
} | k = 1, . . . , Nl} be the

set of non-empty voxels in the l-th voxel layer where hVl
k

is the 3D voxel index, fVl
k

is the associated voxel feature
vector, and Nl is the number of non-empty voxels for voxel
layers l = 1, . . . , L. First, points that are within the same
voxel are grouped together into a set N (Vl

k) by calculating
their voxel index hVl

k
from their spatial coordinates xi and

voxel grid dimensions. The point centroid of each voxel
feature is then calculated as

cVl
k
=

1

|N (Vl
k)|

∑
xpi

∈N (Vl
k)

xpi
. (1)

Since the voxels in the convolution layers are in a sparse
format, an intermediate hash table is used to efficiently map
each calculated voxel point centroid to its corresponding
feature vector. As shown in Figure 3, both voxel point cen-
troids and sparse voxel features are associated with a shared
voxel index. The intermediate hash table links the centroid
cVl

k
with Vl

k using the matching voxel index hVl
k
.

An advantage with using voxels is that we can use
the previous voxel layer centroid calculations to efficiently
compute the subsequent voxel point centroids based on the
stride, padding, and kernel size of the convolution block.
Let Cl+1

k = {cVl
j
| Kl+1(hVl

j
) = hVl+1

k
} be the set of

voxel point centroids where Kl+1 is the convolution block
that maps voxel index hVl

j
to hVl+1

k
. We can then perform

8471

Figure 3. Voxel point centroids (red) are assigned to their respec-
tive voxel grid index. A 3D hash table maps the voxel index to the
associated voxel feature in the sparse convolution layer.

a weighted average of the grouped voxel point centroids to
calculate the centroids in the subsequent layer:

cVl+1
k

=
1∣∣N (Vl+1
k)

∣∣ ∑
c
Vl

j
∈Cl+1

k

∣∣N (Vl
j)
∣∣ cVl

j
(2)

where
∣∣N (Vl+1

k)
∣∣ is calculated from∣∣N (Vl+1
k)

∣∣ = ∑
c
Vl

j
∈Cl+1

k

∣∣N (Vl
j)
∣∣. (3)

By avoiding recomputing centroids using the entire point
cloud for each layer, voxel point centroid localization scales
to larger point clouds more efficiently.

3.3. Density-aware RoI Grid Pooling

Density-aware RoI grid pooling builds upon RoI grid
pooling [23] by augmenting the pooling method with a com-
bination of KDE and self-attention to encode point density
features into each proposal. First, U × U × U uniform grid
points Gb = {g1, . . . ,gU3} are sampled for each bounding
box proposal b.
Local Feature Density. We use KDE to estimate local fea-
ture density within each grid point ball query. Rather than
limiting the estimated density as a feature reweighting like
MC Convolution [9] and PointConv [36], density-aware RoI
grid pooling encodes the estimated probability density as an
additional feature in the ball query for a more implicit fea-
ture encoding. First, we aggregate neighbouring features
near each grid point where N (gj) is the set of voxel point
centroids in a sphere of radius r centered around gj :

Ψl
gj

=

 fVl

k

cVl
k
− gj

p(cVl
k
|gj)

⊤

, ∀cVl
k
∈ N (gj)

 (4)

where the local offset cVl
k
− gj and likelihood p(cVl

k
|gj)

are appended as additional features, as shown in Figure 4.

(a) (b)

Figure 4. Two types of features are added to each grid point ball
query: (a) the relative offset from the ball query center, and (b) the
probability density of each point calculated through KDE. Red and
blue indicate higher and lower probability density, respectively.

The likelihood is calculated for each grid point using KDE:

p(cVl
k
|gj) ≈

1

|N (gj)|σ3

∑
c
Vl

i
∈N (gj)

W(cVl
k
, cVl

i
) (5)

where σ is the bandwidth and W is

W(cVl
k
, cVl

i
) =

3∏
d=1

w
(cVl

k,d
− cVl

i,d

σ

)
(6)

with an independent kernel w on each xyz dimension d.
Once the features are appended, a PointNet multi-scale
grouping (MSG) module [19, 20] is used to obtain a feature
vector f lgj

for each grid point gj :

f lgj
= maxpool(FFN(Ψl

gj
)). (7)

We use multiple radii r to capture feature density at dif-
ferent scales for each grid point and concatenate the output
features together. Finally, features are appended from dif-
ferent voxel layers to obtain the final features for each grid
point:

fgj
=

[
f1gj

, . . . , fLgj

]
. (8)

Grid Point Self-Attention. The features encoded at each
RoI grid point are localized to the size of the ball query
but lack interdependent relationships between different grid
points. An easy solution is to use self-attention [33] to cap-
ture long-range dependencies between the grid points but
simply adding an attention module lacks the geometric in-
formation of the LiDAR point cloud. Thus, we also intro-
duce a novel type of positional encoding that takes into con-
sideration the point density within the point cloud.

As shown in Figure 5, the self-attention module per-
forms self-attention between the non-empty grid point fea-
tures fGb =

{
fgi

∣∣∣ |N (gi)| > 0, ∀gi ∈ Gb
}

using a stan-
dard transformer encoder layer [33] and a residual connec-
tion similar to a non-local neural network block [34]:

f̃gi
= Tgi

(fGb) + fgi
(9)

8472

Figure 5. Density-aware RoI grid pooling performs self-attention
on the grid point features (green) to capture long-range dependen-
cies. Point density positional encoding uses the relative offset of
the grid point and number of points (blue) in each grid voxel as
inputs.

where Tgi
is the transformer encoder layer output for fgi

and f̃gi is the output grid feature. Empty grid point features
|N (gi)| = 0 are untouched by the self-attention module
and are kept as their original feature encoding.
Point Density Positional Encoding. We add positional en-
coding to the self-attention module by using the local grid
point positions and the number of points in the box pro-
posal. The bounding box proposal is divided into voxels
Vgj using the same U ×U ×U grid resolution to establish
voxels for each grid point. The positional encoding for each
grid feature is then calculated as

PE(fgj
) = FFN

([
δgj

, log
(∣∣N (

Vgj

)∣∣+ ϵ
)])

(10)

where δgj = xgj −cb is the relative position of gj from the
bounding box proposal centroid cb, |N (Vgj

)| is the num-
ber of points in each grid point voxel Vgj

, and ϵ is a con-
stant offset. By leveraging the local offsets and number of
points within each voxel, density-aware RoI grid pooling is
able to capture point densities within each region proposal.

3.4. Density Confidence Prediction

PDV also uses the relationship between the distance and
the number of LiDAR points on scanned objects to pre-
dict the confidence of the final bounding box predictions.
A shared FFN first encodes the flattened features from the
density-aware RoI grid pooling module. Then, two separate
FFN branches encode the features for the box refinement
and box confidence outputs. In the box confidence branch,
we additionally append two features to predict the output
confidence pb̃ for the final bounding box b̃:

pb̃ = FFN
([

fs
b̃
, cb̃, log

(
|N (b̃)|

)])
(11)

where fs
b̃

is the output feature vector from the shared FFN,
cb̃ is the centroid of the final bounding box, and |N (b̃)| is
the number of raw points in the final bounding box.

3.5. Training Losses

We use an end-to-end training strategy for PDV with
a region proposal loss LRPN and proposal refinement loss
LRCNN that are trained jointly. The LRPN is calculated as

LRPN = Lcls(yb,y
⋆
b) + βLreg(rb, r

⋆
b) (12)

where Lcls is the focal loss [12], Lreg is the smooth-L1 loss,
yb is the predicted class vector, y⋆

b is the ground truth class,
rb is the predicted RoI anchor residual, r⋆b is the ground
truth anchor residual, and β is a scaling factor. LRCNN is
composed of

LIoU = −p⋆
b̃

log(pb̃)− (1− p⋆
b̃
)log(1− pb̃) (13)

where p⋆
b̃

is the confidence training target scaled by the 3D
RoI and their associated ground truth bounding box as done
in PV-RCNN [23]. Thus LRCNN is

LRCNN = LIoU + Lreg(rb̃, r
⋆
b̃
) (14)

where rb̃ is the predicted bounding box residual and r⋆
b̃

is the ground truth residual. A smooth-L1 loss is used to
regress the bounding box residuals. We use the same confi-
dence and regression targets as PV-RCNN [23].

4. Experimental Results
Datasets. We evaluate PDV on the Waymo Open
Dataset [29] and the KITTI 3D Object Detection bench-
mark [6]. The Waymo Open Dataset is one of the biggest
and most diverse autonomous driving datasets available,
containing 798 training sequences (approximately 158k
point cloud samples) and 202 validation sequences (approx-
imately 40k point cloud samples), with annotations for ob-
jects in full 360◦ field of view. The Waymo Open Dataset
uses standard mean average precision (mAP) as well as
mAPH, which factors in heading angle. The predictions
are split into LEVEL 1, which only includes 3D labels with
more than five LiDAR points, and LEVEL 2, which also in-
cludes 3D labels with at least one LiDAR point. The KITTI
dataset contains 7,481 training samples and 7,518 testing
samples and uses standard average precision (AP) on easy,
moderate and hard difficulties. We adopt the standard train-
ing and val split sets from Chen et al. [3].
Input Parameters. For the Waymo Open Dataset [29], the
detection range is [-75.2m, 75.2m] for the X and Y axes,
and [-2m, 4m] for the Z axis. We divide the raw point cloud
into voxels of size (0.1m, 0.1m, 0.15m). Since the KITTI
dataset [6] only provides annotations in front camera’s field
of view, its detection range is set to be [0, 70.4m] for the X
axis, [-40m, 40m] for the Y axis, and [-3m, 1m] for the Z
axis. We set the voxel size to be (0.05m, 0.05m, 0.1m).
Network Architecture. PDV uses the last two voxel lay-
ers l = 3, 4 for voxel point centroid localization. Density-
aware RoI grid pooling uses a grid size of U = 6. Each

8473

Veh. (LEVEL 1) Veh. (LEVEL 2) Ped. (LEVEL 1) Ped. (LEVEL 2) Cyc. (LEVEL 1) Cyc. (LEVEL 2)
Method

mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH
SECOND [37] 72.27 71.69 63.85 63.33 68.7 58.18 60.72 51.31 60.62 59.28 58.34 57.05
PointPillar [11] 56.62 - - - 59.25 - - - - - - -
MVF⋆ [42] 62.93 - - - 65.33 - - - - - - -
Pillar-OD⋆ [35] 69.8 - - - 72.51 - - - - - - -
AFDet [5] 63.69 - - - - - - - - - - -
Part-A2-Net† [26] 74.82 74.32 65.88 65.42 71.76 63.64 62.53 55.3 67.35 66.15 65.05 63.89
PV-RCNN† [23] 75.17 74.6 66.35 65.84 72.65 63.52 63.42 55.29 67.26 65.82 64.88 63.48
PV-RCNN++ [24] 76.14 75.62 68.05 67.56 73.97 65.43 65.64 57.82 68.38 67.06 65.92 64.65
Voxel-RCNN [4] 75.59 - 66.59 - - - - - - - - -
CT3D [22] 76.3 - 69.04 - - - - - - - - -
VoTr-TSD [15] 74.95 74.25 65.91 65.29 - - - - - - - -
Pyramid-PV [14] 76.3 75.68 67.23 66.68 - - - - - - - -
PDV (Ours) 76.85 76.33 69.30 68.81 74.19 65.96 65.85 58.28 68.71 67.55 66.49 65.36
Improvement +0.55 +0.65 +0.26 +1.25 +0.22 +0.53 +0.21 +0.46 +0.33 +0.49 +0.57 +0.71

Table 1. Performance comparison on the Waymo Open Dataset with 202 validation sequences for 3D vehicle (IoU = 0.7), pedestrian
(IoU = 0.5) and cyclist (IoU = 0.5) detection. ⋆: Results are on Waymo Open Dataset 1.0 version. †: Results are from [24].

Method
LEVEL 1 mAP/mAPH

0-30m 30-50m 50m-Inf
PV-RCNN⋆ [23] 91.92/91.34 69.21/68.53 42.17/41.31
Voxel-RCNN [4] 92.49/- 74.09/- 53.15/-
CT3D [22] 92.51/- 75.07/- 55.36/-
VoTr-TSD [15] 92.28/91.73 73.36/72.56 51.09/50.01
Pyramid-PV [14] 92.67/92.20 74.91/74.21 54.54/53.45
PDV (Ours) 93.13/92.71 75.49/74.91 54.75/53.90

Method
LEVEL 2 mAP/mAPH

0-30m 30-50m 50m-Inf
PV-RCNN⋆ [23] 91.58/91.00 65.13/64.49 36.46/35.70
Voxel-RCNN [4] 91.74/- 67.89/- 40.80/-
CT3D [22] 91.76/- 68.93/- 42.60/-
PDV (Ours) 92.41/91.99 69.36/68.81 42.16/41.48

Table 2. Performance comparison on the Waymo Open Dataset
with 202 validation sequences for 3D vehicle detection across dis-
tance. ⋆: Results are on Waymo Open Dataset 1.0 version.

ball query uses a set of radii r = [[0.8, 1.2] , [1.2, 2.4]] to
aggregate voxel point centroid features at each layer with
two 32-layer FFNs for l = 3 and two 64-layer FFNs for
l = 4. KDE for each ball query is calculated using a Gaus-
sian kernel, w, with bandwidth σ = 0.25. The self-attention
module uses one transformer encoder layer with a single at-
tention head. We follow Pointformer [16] for the FFN size
for point density positional encoding with the added density
feature from the number of points in each RoI grid voxel.
Training and Inference Details. PDV is trained end-to-end
with the Adam optimizer [10]. We start with an initial learn-
ing rate of 0.01 and update it using one-cycle policy [28]
and cosine annealing [13]. We train the model for 50 epochs
on the Waymo Open Dataset [29] with a batch size of 24 on
6 NVIDIA Tesla V100 GPUs and 80 epochs on the KITTI
Dataset [6] with a batch size of 4 on 2 NVIDIA Tesla P100
GPUs. We adopt commonly used data augmentation strate-

Model LEVEL 2 mAPH
Veh. Ped. Cyc.

PV-RCNN† [23] 68.41 57.61 63.98
PV-RCNN++ [24] 69.71 59.72 65.17
PDV (Ours) 69.98 60.00 67.88

Table 3. Performance comparison on the Waymo validation set for
3D multi-class with first and second LiDAR return. †: Results are
from [24].

gies for LiDAR 3D object detection, including random flip-
ping about the X axis or Y axis, random global scaling
with random scaling factor between 0.95 and 1.05, random
global rotations about the Z axis between −π

4 and π
4 , and

ground truth data augmentation [37]. For post-processing,
we use a non-maximum-suppresion (NMS) threshold of 0.1
for both Waymo and KITTI to remove redundant boxes.

4.1. Waymo Dataset Results

We report the multi-class Waymo Open Dataset results
on the validation set in Table 1. PDV achieves state-of-the-
art results on all classes on both LEVEL 1 and LEVEL 2
mAP/mAPH metrics. We outperform methods that use PV-
RCNN as a base architecture [14,15,23] by at least +2.13%
on vehicle LEVEL 2 mAPH. PDV performs well on the
other classes as well, increasing performance by +2.99%
and +1.88% on pedestrian and cyclist LEVEL 2 3D mAPH,
respectively, compared to PV-RCNN. We also outperform
PV-RCNN++ [24] by +1.25%, +0.46%, and +0.71% on ve-
hicle, pedestrian, and cyclist LEVEL 2 3D mAPH, respec-
tively. PDV effectively captures fine point details lost in the
voxel backbone through point density for accurate bounding
box refinement in the second stage.

Table 2 shows PDV’s performance across distance on the

8474

Car 3D (IoU = 0.7) Pedestrian 3D (IoU = 0.5) Cyclist 3D (IoU = 0.5)Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
PV-RCNN⋆ [23] 92.10 84.36 82.48 64.26 56.67 51.91 88.88 71.95 66.78
CT3D⋆ [22] 92.34 84.97 82.91 61.05 55.57 51.10 89.01 71.88 67.91
PDV (Ours) 92.56 85.29 83.05 66.90 60.80 55.85 92.72 74.23 69.60
Improvement +0.22 +0.32 +0.14 +2.64 +4.13 +3.94 +3.71 +2.28 +1.69

Table 4. 3D detection results on the KITTI val set for car, pedestrian, and cyclist classes using AP|R40 . ⋆: Results are taken from publicly
released models [22, 23, 30].

Method Car 3D (IoU=0.7) Cyclist 3D (IoU=0.5)
Easy Mod. Hard Easy Mod. Hard

SECOND [37] 83.34 72.55 65.82 71.33 52.08 45.83
PointPillar [11] 82.58 74.31 68.99 77.10 58.65 51.92
STD [39] 87.95 79.71 75.09 78.69 61.59 55.30
3DSSD [38] 88.36 79.57 74.55 82.48 64.10 56.90
SA-SSD [8] 88.75 79.79 74.16 - - -
SE-SSD [41] 91.49 82.54 77.15 - - -
PV-RCNN [23] 90.25 81.43 76.82 78.60 63.71 57.65
PV-RCNN++ [24] 90.14 81.88 77.15 82.22 67.33 60.04
Voxel-RCNN [4] 90.90 81.62 77.06 - - -
DSA-PV [1] 88.25 81.46 76.96 82.19 68.54 61.33
CT3D [22] 87.83 81.77 77.16 - - -
VoTr-TSD [15] 89.90 82.09 79.14 - - -
Pyramid-PV [14] 88.39 82.08 77.49 - - -
PDV (Ours) 90.43 81.86 77.36 83.04 67.81 60.46

Table 5. 3D detection results on the KITTI test set for car and
cyclist using AP|R40 . Bolded and underlined values are best and
second-best performance, respectively.

Waymo Open Dataset for the vehicle class. PDV outper-
forms all methods by +0.46%/+0.51% and +0.42%/+0.70%
at 0-30m and 30-50m for LEVEL 1 mAP/mAPH, re-
spectively, and +0.65%/+0.99% and +0.43%/+4.32%
for LEVEL 2 mAP/mAPH, respectively, better utilizing
Waymo’s close-range LiDAR data for accurate detection.
We also report the results on the Waymo validation set us-
ing first and second LiDAR return in Table 3, surpassing
both PV-RCNN and PV-RCNN++. Detailed second LiDAR
return results can be found in the supplementary materials.

4.2. KITTI Dataset Results

Table 4 shows the results on the KITTI val set. PDV
achieves state-of-the-art multi-class results, improving 3D
AP|R40

performance by +0.32%, +4.13%, and +2.28% on
car, pedestrian, and cyclist classes, respectively, on the
moderate difficulty. As shown in Table 5, PDV also ob-
tains competitive results on the KITTI test set, showing
improvements over PV-RCNN [23], Voxel-RCNN [4], and
CT3D [22] with an increase of at least +0.09% on the mod-
erate 3D AP|R40

car class, but falling short compared to
other methods [14, 15, 24, 41]. We hypothesize that since
detection architectures can use a higher voxel resolution for
the truncated KITTI point cloud, PDV’s modules provide
smaller improvements compared to other methods.

4.3. Ablation Studies

We provide ablation studies to study the effects of each
component in PDV. All models and variations are trained
on 10% of the Waymo training dataset for 60 epochs.
Components. Table 6 shows the relative performance gain
of each component on LEVEL 2 mAPH on the Waymo
Open Dataset validation set. Experiment 1 uses voxel cen-
ters to localize voxel features. By localizing voxel features
using voxel point centroids instead, Experiment 2 provides
an improvement of +0.83%, +3.86%, and +3.67% for the
vehicle, pedestrian, and cyclist classes, respectively. Voxel
feature localization is extremely beneficial for smaller ob-
jects since voxel centers do not have proper alignment with
the point cloud. By localizing the features closer to the ob-
ject’s scanned surface, voxel point centroids contain mean-
ingful geometric shape information for proposal refinement.

Local feature density estimation improves scores by
+0.07%, 4.45%, +1.78% as shown in Experiment 3. By
capturing feature density relationships via KDE, local fea-
ture density estimation provides a large improvement for the
deformable pedestrian class, where encoded features have
variable spatial configurations. Experiment 4 shows atten-
tion improves results by +0.45%, +0.61%, +1.43% pro-
viding a large increase in the pedestrian and cyclist class
by establishing long-range dependencies between RoI grid
points. Finally, Experiment 5 shows the effect of den-
sity confidence prediction, improving performance on the
pedestrian and cyclist classes by +0.23% and +0.74%, re-
spectively, with a small drop on the vehicle class of -0.01%.
Point Density Positional Encoding. Table 7 shows the ef-
fects of point density positional encoding in density-aware
RoI pooling. Experiment 1 shows the baseline performance
without any positional encoding. Experiment 2 uses a si-
nusoidal encoding similar to DETR [2, 33] where each spa-
tial dimension is encoded with independent sine and cosine
functions at different frequencies, showing an improvement
on the pedestrian and cyclist by +0.14% and +0.50%, but
a reduction on vehicle by -0.25%. A FFN with spatial grid
point coordinates as input provides an overall increase in
performance of +0.17%, +0.18%, and +0.27% on vehicles,
pedestrians, and cyclists, respectively, as shown in Experi-
ment 3. In Experiment 4, the density feature, in the form of

8475

Exp. VC LD GA DC LEVEL 2 mAPH
Veh. Ped. Cyc.

1 64.01 43.15 56.41
2 ✓ 64.84 47.01 60.08
3 ✓ ✓ 64.91 51.46 61.86
4 ✓ ✓ ✓ 65.36 52.07 63.29
5 ✓ ✓ ✓ ✓ 65.35 52.30 64.03

Table 6. PDV ablation experiments trained on 10% of the Waymo
training set. VC indicates voxel point centroids, LD indicates local
feature density estimation, GA indicates grid point self-attention,
and DC indicates density confidence prediction.

Exp. PE LEVEL 2 mAPH
Veh. Ped. Cyc.

1 None 65.20 51.23 62.21
2 Sinusoidal 64.95 51.37 62.71
3 FFN (XYZ) 65.37 51.41 62.48
4 FFN (D) 65.42 51.96 62.88
5 FFN (XYZD) 65.35 52.30 64.03

Table 7. Positional encoding (PE) ablation experiments trained on
10% of the Waymo training dataset. XYZ indicates spatial grid
locations and D indicates number of points in each grid voxel.

number of points within each grid point voxel, shows sim-
ilar improvements over the baseline with +0.22%, +0.73%,
and +0.67%. When we combine both local spatial coordi-
nates and density in Experiment 5, we obtain the best per-
formance with increases of +0.15%, +1.07%, +1.82%.

4.4. Runtime Analysis

Table 8 shows the runtime comparisons of PDV. We train
the models for 60 epochs on 10% of the training data for
Waymo and 80 epochs on the training set for KITTI. Each
model is evaluated with an Intel i7-6850K processor, a sin-
gle Titan Xp GPU, and a batch size of 1. For a fair compari-
son, we use the same number of K proposals from the RPN
(K = 275 for Waymo and K = 100 for KITTI) for all mod-
els. PDV outperforms PV-RCNN on inference speed and
performance, reducing runtime by 14% and 5% for Waymo
and KITTI, respectively, and improving mAPH by +2.42%
and mAP by +1.51% on Waymo and KITTI, respectively.

Table 8 also shows the issue with voxel-based methods
on larger input spaces. Although Voxel-RCNN is computa-
tionally efficient and performs well on the KITTI dataset,
its performance degrades significantly, performing worse
than PV-RCNN by -0.67% on Waymo. On the other hand,
voxel point centroids provide an efficient alternative that re-
tains spatial fidelity across the two datasets. Using voxel
point centroids only (VC Only) results in an efficient ar-
chitecture with a decrease in runtime by 61% and better
performance on LEVEL 2 mAPH by +1.22% compared to

Method
Waymo KITTI

Speed (ms) mAPH Speed (ms) 3D mAP
PV-RCNN⋆ [23] 396 58.14 142 71.93
Voxel-RCNN⋆ [4] 91 57.47 74 72.97
VC Only (Ours) 154 59.36 90 72.82
PDV (Ours) 340 60.56 135 73.44

Table 8. Runtime comparison and performance on the Waymo and
KITTI validation sets. We average the LEVEL 2 3D mAPH for
Waymo and moderate difficulty 3D AP for KITTI across classes.
⋆: Models are trained using the publicly released code [30].

0 10 20 30 40 50 60 70 80
Distance (m)

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f F
al

se
 P

os
iti

ve
s PDV

PV-RCNN

Figure 6. Number of false positive predictions on the vehicle class
(IoU < 0.7) across distance for PDV and PV-RCNN evaluated on
10% of the Waymo validation set.

PV-RCNN on Waymo. VC Only also scales to the large
Waymo dataset, with only an increase of 64 ms in runtime
from KITTI, showing voxel point centroid localization as an
efficient alternative to FPS for spatially locating voxel fea-
tures. PDV overcomes the limitations of voxel-based meth-
ods when scaling to larger datasets, while retaining compu-
tational efficiency.

4.5. False Positives across Distance

Figure 6 shows the number of false positives (IoU < 0.7)
predicted by PDV and PV-RCNN across distance for vehi-
cles on the Waymo dataset. As the distance from the sensor
increases, the gap between PDV and PV-RCNN increases.
We attribute the increased differential to using point density
to refine bounding box regression and confidence values,
which is more beneficial at detecting challenging objects at
farther ranges.

5. Conclusion
We present PDV, a novel LiDAR 3D object detection

method that uses voxel features and raw point cloud data to
account for point density variations in LiDAR point clouds.
PDV is particularly useful on large input spaces where
point cloud sampling is expensive and voxel resolutions are
low, resulting in state-of-the-art performance on the Waymo
dataset and competitive results for the KITTI dataset.

8476

References
[1] Prarthana Bhattacharyya, Chengjie Huang, and Krzysztof

Czarnecki. Sa-det3d: Self-attention based context-aware 3d
object detection. arXiv preprint, 2021. 7

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. ECCV, 2020. 7

[3] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G
Berneshawi, Huimin Ma, Sanja Fidler, and Raquel Urta-
sun. 3d object proposals for accurate object class detection.
NeurIPS, 2015. 5

[4] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou,
Yanyong Zhang, and Houqiang Li. Voxel r-cnn: Towards
high performance voxel-based 3d object detection. AAAI,
2021. 1, 2, 6, 7, 8

[5] Runzhou Ge, Zhuangzhuang Ding, Yihan Hu, Yu Wang, Si-
jia Chen, Li Huang, and Yuan Li. Afdet: Anchor free one
stage 3d object detection. arXiv preprint, 2020. 6

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. CVPR, 2012. 1, 2, 5, 6

[7] Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. CVPR, 2018. 2, 3

[8] Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua,
and Lei Zhang. Structure aware single-stage 3d object detec-
tion from point cloud. CVPR, 2020. 2, 7

[9] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar
Vinacua, and Timo Ropinski. Monte carlo convolution for
learning on non-uniformly sampled point clouds. ACM
Transactions on Graphics (TOG), 2018. 2, 4

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint, 2014. 6

[11] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. CVPR, 2019. 2, 6, 7

[12] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. CVPR,
2017. 5

[13] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv preprint, 2016. 6

[14] Jiageng Mao, Minzhe Niu, Haoyue Bai, Xiaodan Liang,
Hang Xu, and Chunjing Xu. Pyramid r-cnn: Towards better
performance and adaptability for 3d object detection. ICCV,
2021. 1, 2, 6, 7

[15] Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi
Feng, Xiaodan Liang, Hang Xu, and Chunjing Xu. Voxel
transformer for 3d object detection. ICCV, 2021. 1, 2, 6, 7

[16] Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao
Huang. 3d object detection with pointformer. CVPR, 2021.
6

[17] Emanuel Parzen. On Estimation of a Probability Density
Function and Mode. The Annals of Mathematical Statistics,
1962. 2

[18] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and
Leonidas J. Guibas. Frustum pointnets for 3d object detec-
tion from rgb-d data. CVPR, 2018. 2

[19] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. CVPR, 2017. 2, 4

[20] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. NeurIPS, 2017. 2, 4

[21] Murray Rosenblatt. Remarks on Some Nonparametric Esti-
mates of a Density Function. The Annals of Mathematical
Statistics, 1956. 2

[22] Hualian Sheng, Sijia Cai, Yuan Liu, Bing Deng, Jianqiang
Huang, Xian-Sheng Hua, and Min-Jian Zhao. Improving 3d
object detection with channel-wise transformer. ICCV, 2021.
2, 6, 7

[23] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. CVPR,
2020. 1, 2, 4, 5, 6, 7, 8

[24] Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu
Guo, Jianping Shi, Xiaogang Wang, and Hongsheng Li. Pv-
rcnn++: Point-voxel feature set abstraction with local vector
representation for 3d object detection. arXiv preprint, 2021.
2, 6, 7

[25] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. CVPR, 2019. 1, 2

[26] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. From points to parts: 3d object detec-
tion from point cloud with part-aware and part-aggregation
network. TPAMI, 2020. 6

[27] Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural net-
work for 3d object detection in a point cloud. CVPR, 2020.
2

[28] Leslie N Smith. A disciplined approach to neural network
hyper-parameters: Part 1–learning rate, batch size, momen-
tum, and weight decay. arXiv preprint, 2018. 6

[29] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. CVPR, 2020.
1, 2, 5, 6

[30] OpenPCDet Development Team. Openpcdet: An open-
source toolbox for 3d object detection from point clouds.
https://github.com/open-mmlab/OpenPCDet,
2020. 7, 8

[31] Hugues Thomas, François Goulette, Jean-Emmanuel De-
schaud, Beatriz Marcotegui, and Yann LeGall. Semantic
classification of 3d point clouds with multiscale spherical
neighborhoods. 3DV, 2018. 3

[32] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. ICCV, 2019. 3

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 2017. 2, 4,
7

[34] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. CVPR, 2018. 4

8477

[35] Yue Wang, Alireza Fathi, Abhijit Kundu, David A Ross,
Caroline Pantofaru, Tom Funkhouser, and Justin Solomon.
Pillar-based object detection for autonomous driving. ECCV,
2020. 6

[36] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. CVPR, 2019. 2,
4

[37] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely em-
bedded convolutional detection. Sensors, 2018. 1, 2, 3, 6,
7

[38] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd:
Point-based 3d single stage object detector. CVPR, 2020. 2,
7

[39] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya
Jia. Std: Sparse-to-dense 3d object detector for point cloud.
ICCV, 2019. 2, 7

[40] Wu Zheng, Weiliang Tang, Sijin Chen, Li Jiang, and Chi-
Wing Fu. Cia-ssd: Confident iou-aware single-stage object
detector from point cloud. AAAI, 2021. 1, 2

[41] Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. Se-
ssd: Self-ensembling single-stage object detector from point
cloud. CVPR, 2021. 1, 7

[42] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang
Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay Va-
sudevan. End-to-end multi-view fusion for 3d object detec-
tion in lidar point clouds. CoRL, 2020. 6

[43] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. CVPR, 2018. 1, 2

8478

