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Abstract

In recent years, we have witnessed significant perfor-
mance boost in the image captioning task based on vision-
language pre-training (VLP). Scale is believed to be an im-
portant factor for this advance. However, most existing
work only focuses on pre-training transformers with mod-
erate sizes (e.g., 12 or 24 layers) on roughly 4 million im-
ages. In this paper, we present LEMON , a LargE-scale
iMage captiONer, and provide the first empirical study on
the scaling behavior of VLP for image captioning. We use
the state-of-the-art VinVL model as our reference model,
which consists of an image feature extractor and a trans-
former model, and scale the transformer both up and down,
with model sizes ranging from 13 to 675 million parame-
ters. In terms of data, we conduct experiments with up to
200 million image-text pairs which are automatically col-
lected from web based on the alt attribute of the image
(dubbed as ALT200M1). Extensive analysis helps to char-
acterize the performance trend as the model size and the
pre-training data size increase. We also compare different
training recipes, especially for training on large-scale noisy
data. As a result, LEMON achieves new state of the arts
on several major image captioning benchmarks, including
COCO Caption, nocaps, and Conceptual Captions. We
also show LEMON can generate captions with long-tail vi-
sual concepts when used in a zero-shot manner.

1. Introduction
Recent advances in image captioning [1, 5, 35] can

be largely attributed to vision-language pre-training
(VLP) [26, 30, 37, 40], the current prevailing training
paradigm for vision-language (VL) research. VLP [6]
is usually conducted on a combined image-text dataset
comprising of several or tens of millions images in total,
e.g., Visual Genome [20], SBU [32] and Conceptual Cap-
tions [4, 35]. While previous studies [29, 48, 49] have ana-

1The dataset is released at https://github.com/xiaoweihu/
ALT200M.
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Figure 1. Image captioning performance on COCO when up-
scaling model for each dataset size. The x-axis plots the num-
ber of parameters for each model size (e.g., tiny, small, huge) in
a logarithmic scale. The definition of model sizes is detailed in
Table 2. Increasing the model size is not significantly beneficial
at small pre-training dataset scales. However, when we use suf-
ficiently large datasets, we see strong performance boost from a
larger model.

lyzed various choices of pre-training objectives and model
architectures, it remains unclear to what extent the pre-
training dataset would impact the performance, and how it
correlates with different model settings. Along the journey
of pushing the limit of VLP, it becomes increasingly impor-
tant to answer this question.

Scale is believed to be an important ingredient in attain-
ing excellent performance [17, 33, 43]. Recent work has in-
vestigated the Pareto frontier of training transformer mod-
els, often referred to as the neural scaling law, in the do-
mains of natural language processing [2, 18, 41] and com-
puter vision [12,47], via unsupervised or weakly-supervised
learning methods. These studies have observed consistent
benefits of increasing the model size to billions of parame-
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(a) finetuned and evaluated on COCO (b) finetuned on COCO, evaluated on nocaps

Figure 2. Image captioning performance in data upscaling for each model size. The x-axis shows the number of image-text pairs used
in pre-training. The y-axis shows the evaluation score (CIDEr) on COCO “Karpathy” test split and nocaps validation set, respectively.
The models are first pre-trained, then finetuned on COCO caption training split. Note that x-axis is plotted in a logarithmic scale.

ters, given billion magnitude of pre-training data available.
More recently, contrastive image-text pre-training [17,

33] has also been scaled up to 400 million and 1.8 billion
data sizes for image representation learning and image-text
retrieval. Both CLIP [33] and ALIGN [17] employ two in-
dividual networks to encode the image and the text sepa-
rately for alignment, which well fits the image-text retrieval
task, but little is known about the scaling properties when it
comes to image captioning.

To study the characteristics of this scaling trend on the
captioning task, we first construct a large-scale image-text
dataset (dubbled as ALT200M), consisting of up to 200 mil-
lion image-text pairs from web based on the alt attribute
of the images. Then, we conduct extensive experiments
to scale VLP for image captioning from both the data and
model perspectives, and name our model as LEMON ,
short for a LargE-scale iMage captiONer. To simulate
the process of data scaling, we create multiple subsets of
ALT200M, ranging from 3 to 200 million. In terms of
model, we use the state-of-the-art image captioning model
VinVL [48] as our reference model, composed of an image
feature extractor and a transformer model. We adapt the
pre-training task to be consistent with the captioning task,
and then scale the width and depth of the transformer model
with the number of parameters ranging from 13 (i.e., tiny) to
675 (i.e., huge) millions. Combining different models and
pre-training data sizes, we summarize our results in Fig-
ure 1 and 2, which characterize the linear-logarithmic scal-
ing trend. Larger models tend to benefit more when we have
more than 10 million data for pre-training. However, with
only 3 million data, the performance starts to saturate early
as the model size increases. Moreover, we also investigate
other design choices of VLP, e.g., model architectures and

training objectives.
Our contributions are summarized as follows.

• We present the VLP scaling rule for image captioning.
Not only does this prove the effectiveness of learning
from large-scale noisy data, but it also sheds lights on
how performance can be efficiently improved by increas-
ing the model and pre-training data sizes together to avoid
a saturation plateau.

• We achieve new state-of-the-art results for image caption-
ing across several major benchmarks, including COCO
Caption, nocaps, and Conceptual Captions.

2. Related Work
Vision-Language Pre-training. Since the birth of ViL-
BERT [30] and LXMERT [40], we have witnessed a boom
of methods for vision-language pre-training [6,7,13,22,26,
37, 45, 46]. Prominent examples include UNITER [6], VL-
BERT [37], OSCAR [29], UNIMO [28], and VinVL [48].
Along the journey of VLP, researchers have investigated dif-
ferent training strategies [11,31], robustness [25], compres-
sion [9, 10, 42], probing analysis [3, 27], and the extension
to video-text modeling [21, 24, 38, 39, 50]. More recently,
instead of using object detectors for image feature extrac-
tion, end-to-end VLP based on convolution networks and
transformers are becoming popular [14, 15, 19, 23, 44].

However, as another important factor in achieving supe-
rior performance, the scaling behavior of VLP is less stud-
ied. While most works pre-train transformer of base/large
sizes on no more than 4M images, we train models from tiny
to huge, on up to 200M images. CLIP [33] and ALIGN [17]
scaled up contrastive pre-training to 400M and 1.8B images,
and SimVLM [43] further use 1.8B images for prefix lan-
guage modeling pre-training. However, CLIP and ALIGN
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Dataset #images (M) #cap./image
Unigram Caption lengths

#unique #unique in 0.1% tail mean ± std P5%/50%/95%

COCO Caption [5] 0.1 5 19, 264 1, 184 10.44± 2.24 8/10/14
CC3M [35] 3.1 1 49, 638 22, 677 10.25± 4.64 5/9/19
CC12M [4] 12.2 1 1, 319, 284 193, 368 17.17± 12.76 6/13/43
ALT200M (Ours) 203.4 1 2, 067, 401 1, 167, 304 13.01± 8.85 2/11/27

Table 1. Statistics of existing and our collected datasets. The number of images in CC3M and CC12M are calculated for valid RGB
images at the time we downloaded them. The unigrams are counted and sorted by occurrences from large to small to form a distribution
curve for each dataset. Our dataset features much more long-tail concepts, as indicated by the number of unigrams included in the 0.1%
distribution tail. The datasets used in CLIP [33] and ALIGN [17] are not included, since we do not know the corresponding statistics.

focus on image-text retrieval, while SimVLM did not study
its scaling behavior w.r.t. pre-training data sizes. Compared
with them, we focus on image captioning, provide a more
comprehensive study on the scaling behavior via altering
data and model sizes, and show that by using 200M images,
we can outperform SimVLM on image captioning.

Scaling Law. With the success of large-scale pre-trained
models in both the language and vision domains, there has
been a surging research interest in discovering the empiri-
cal scaling law of these models. [18] presented that the lan-
guage model performance scales as power-law across many
orders of magnitude with dataset size, model size, and com-
putation used in training. [12] further studied the scaling of
autoregressive generative modeling. Aside from the model
size, [41] showed that the model shape also matters for ef-
ficient transfer from upstream pre-training to downstream
finetuning. In the vision domain, [47] scaled a series of vi-
sion transformer models evaluated on image classification
tasks. While the scaling protocols have been investigated
for many NLP and vision tasks, we are the first to study
the scaling behavior of VLP for image captioning, and push
multimodal transformer pre-training to a much larger scale.

In Appendix, we also provide a detailed related work re-
view on non-pretraining-based image captioning methods.

3. Method
In this section, we present the pre-training dataset in Sec-

tion 3.1, the model structure in Section 3.2, and training ob-
jective in Section 3.3.

3.1. Pre-training Dataset

We construct a data collection pipeline to crawl the im-
ages from the Internet and the associated alt attribute, which
usually provides the description of the image content. In or-
der to scale up easily, we follow the natural distribution of
images without re-balancing, and apply only minimal rule-
based filtering. We keep images with the longer side more
than 200 pixels and aspect ratio smaller than 3. As some alt-
texts are too long, we split them up by punctuation marks,
such as period and exclamation mark, and select the longest
part. To filter out some rare or misspelled words, we build

Figure 3. Word cloud of the top 200 words in our pre-training
dataset ALT200M, excluding the stop words, e.g., a, the, of, etc.

a vocabulary of unigrams with English Wikipedia titles and
body text. We remove unigrams that are present less than
5 times, resulting in approximately 250 million unique uni-
grams. We remove the alt-text if any of its unigrams cannot
be found in the vocabulary. Afterwards, we count the fre-
quency of all the remaining sentences, and filter out some
boilerplate sentences that are too generic, e.g., stock image,
3D illustration, vector photo. For the sake of privacy, we
use a Named Entity Recognition model spaCy2 to identify
person and location names, and replace them with special
tokens 〈PERSON〉, 〈LOC〉, respectively. At last, we per-
form duplication check on all the collected images to en-
sure that they do not overlap with existing test sets, such as
COCO, nocaps, and Conceptual Captions.

The final dataset, named as ALT200M, contains more
than 200 million images, each corresponding to one alt-text.
The word cloud of 200 most frequent words is visualized
in Figure 3. As shown in Table 1, compared to CC12M,
ALT200M has nearly 16× more images. The vocabulary
is almost doubled. We observe that 56% of unigrams sum
up to only 0.1% of total occurrences, characterizing an ex-
tremely long tail of rarely occurring unigrams. The average
length of the captions is 13.01, more than that of the COCO
caption dataset (10.44). We also observe that our dataset
contains much more shorter captions with only 2 or 3 uni-
grams. This indicates a shift in the distribution of captions
from pre-training to finetuning.

2https://github.com/explosion/spaCy

17982

https://github.com/explosion/spaCy


M
od

el

L
ay

er
s

W
id

th

M
L

P

H
ea

ds

Pa
ra

m
(M

)

FL
O

Ps

tiny 6 256 1024 4 13.4 1.1
tiny12 12 256 1024 4 18.1 1.5
small 12 384 1536 6 34.3 2.9

small24 24 384 1536 6 55.6 4.8
base 12 768 3072 12 111.7 9.5

base24 24 768 3072 12 196.7 16.8
large 24 1024 4096 16 338.3 28.9
huge 32 1280 5120 16 675.4 57.7

Table 2. Details of model architecture. FLOPs are calculated
via taking 50 image region features and 35 text tokens as input in
one forward pass. The dimension of image region feature is 2054,
which is mapped to the transformer width via a linear layer.

Besides CC12M, there also exist some other large-
scale image-text datasets, such as WIT [36], WenLan [16],
LAION-400M [34], and the datasets used in CLIP [33] and
ALIGN [17]. More detailed discussions on them are pro-
vided in Appendix.

3.2. VLP Model for Captioning

We use the pre-trained Faster R-CNN detector from [48]
to extract image region features, which are concatenated
with scaled bounding boxes as position encoding. Follow-
ing [29, 48], we also add the detected object tags as input.
The text input, including the caption and objects tags, are
tokenized by WordPiece, with a vocabulary of 30522 to-
kens. A multi-layer transformer model is used for mul-
timodal fusion, which consists of a stack of encoder lay-
ers, each of which has a multi-head self-attention (MSA)
layer followed by a feed-forward layer. To enable text gen-
eration with the encoder layers, we use the sequence-to-
sequence attention mask [49] in each self-attention layer
for the captioning module. Specifically, the input consists
of image embeddings V = {vi}Ni=1, object tag embed-
dings T = {tj}Mj=1, and token embeddings for the caption
W = {wk}Lk=1, where N,M,L are the number of image
regions, tags, and caption tokens, respectively. The corre-
sponding outputs are:

Rvi := MSA(vi,V ∪T) , (1)
Rtj := MSA(tj ,V ∪T) , (2)

Rwk
:= MSA(wk,V ∪T ∪ {wl}kl=1) , (3)

where MSA(x,Y) is the MSA layer with x mapped to
query, and Y mapped to key/value. ∪ means concatena-
tion of matrices, and the index of Rvi denotes the position
corresponding to vi. The output representation is fed into
the next layer, or used for prediction at the end. In this way,
during inference, the model can decode the token from left

Figure 4. Comparison of training objectives. (Top) Language
Modeling (LM), to predict the next token at each position. (Bot-
tom) Masked Language Modeling (MLM), to predict the masked
and/or possibly polluted tokens at the masked positions. Both use
causal masking for model training.

to right in an auto-regressive manner. To study the scaling
trend, we experiment with 8 model configurations, ranging
from “tiny” of 13M parameters to “huge” of 674M parame-
ters, detailed in Table 2.

3.3. Training Objective

While bidirectional Masked Language Modeling (MLM)
has been widely used in both language and vision-language
pre-training, its bidirectional nature makes it sub-optimal
for text generation. In contrast to VLP works that are mostly
evaluated on VL understanding tasks, we use sequence-
to-sequence MLM for generation tasks. During training,
we randomly mask out 15% of caption tokens following
BERT [8] to form a “corrupted” caption W̃ = {w̃k}Lk=1,
where w̃k is either equal to wk, or replaced with [MASK]
token or another token sampled from vocabulary. The train-
ing loss is defined as:

L(W,V,T) =
∑
k∈D

CE(wk,Rw̃k
) (4)

=
∑
k∈D

(− log p(wk|V,T, {w̃l}kl=1)) ,

where CE(·, ·) is the cross-entropy loss with softmax, D is
the subset of masked positions. The loss for the recovery
of the possibly polluted tokens by intuition fits into the sce-
nario of training with noisy captions. Note that we use the
same loss in pre-training and finetuning. During inference,
at step s, given the previous predicted tokens {ŵk}s−1

k=1, we
set w̃s to [MASK], and w̃k = ŵk for k < s. Therefore, the
generation process simulates recovering the [MASK] token
at the end in each step. Since the representations of caption
tokens do not depend on the subsequent tokens, the inter-
mediate representations of predicted tokens can be saved to
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# Model Pre-training data
in-domain near-domain out-of-domain overall

CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

Validation Set
1 Encoder-Decoder [4] CC3M [35] 81.8 11.6 73.7 11.1 65.3 10.1 73.2 11.0
2 CC12M [4] 88.3 12.3 86.0 11.8 91.3 11.2 87.4 11.8
3 CC3M+CC12M 92.6 12.5 88.3 12.1 94.5 11.9 90.2 12.1

4 VinVLbase
∗ [48] N/A 96.8 13.5 90.7 13.1 87.4 11.6 90.9 12.8

5 VinVLbase
† 5.65M combined 103.1 14.2 96.1 13.8 88.3 12.1 95.5 13.5

6 VinVLlarge
† 5.65M combined 106.3 14.5 98.0 14.0 88.8 12.6 97.3 13.8

7 SimVLMhuge [43] 1.8B 113.7 - 110.9 - 115.2 - 112.2 -

8 LEMONbase N/A 91.4 13.3 81.4 12.5 62.6 10.6 79.0 12.3
9 LEMONbase CC3M 96.0 13.8 91.7 13.2 88.1 11.8 91.6 13.0
10 LEMONbase CC12M 104.5 14.6 100.7 14.0 96.7 12.4 100.4 13.8
11 LEMONlarge CC12M 103.6 14.4 101.1 13.8 102.7 12.6 101.8 13.6
12 LEMONbase ALT200M 107.7 14.7 106.2 14.3 107.9 13.1 106.8 14.1
13 LEMONlarge ALT200M 116.9 15.8 113.3 15.1 111.3 14.0 113.4 15.0
14 LEMONhuge ALT200M 118.0 15.4 116.3 15.1 120.2 14.5 117.3 15.0

Test Set
15 Human 80.6 15.0 84.6 14.7 91.6 14.2 85.3 14.6

16 SimVLMbase 1.8B - - - - - - 94.8 13.1
17 SimVLMlarge 1.8B - - - - - - 108.5 14.2

18 SimVLMhuge
‡ 1.8B 109.0 14.6 110.8 14.6 109.5 13.9 110.3 14.5

19 LEMONlarge ALT200M 111.2 15.6 112.3 15.2 105.0 13.6 110.9 15.0
20 LEMONhuge ALT200M 112.8 15.2 115.5 15.1 110.1 13.7 114.3 14.9

Table 3. Results on nocaps validation and test sets. All our models are trained with cross-entropy loss only, without CIDEr optimization.
The VinVL model with ∗ is not pre-trained, but use SCST+CBS as reported in the paper. The VinVL results with † are reproduced by us
via finetuning from the released checkpoints, which are pre-trained on the combined datasets including 5.65M images, 2.5M QAs, 4.68M
captions and 1.67M pseudo-captions. The numbers with ‡ are copied from the nocaps leaderboard.

avoid duplicate computation, thereby making the generation
efficient. We also experimented with other model structures
and training objectives, such as predicting the next token
with language modeling, as shown in Figure 4 and will be
detailed later in Section 4.3.

4. Experiments
In this section, we first present our experimental setup

in Section 4.1, and then detail our results in Section 4.2,
followed by comprehensive analysis in Section 4.3.

4.1. Setup

Datasets. To measure the progress brought about by
large-scale pre-training, we aim to evaluate the model’s
capability of describing varieties of (long-tail) visual con-
cepts, which is essential for captioning in the wild. For this
purpose, we choose nocaps [1] as the evaluation bench-
mark, which is developed to evaluate object captioning at
scale. The dataset consists of 15100 images from Open
Images, and covers more than 600 object categories, of
which nearly 400 of them are unseen from the training set
in COCO [5]. Based on whether the image contains novel

objects unseen in the COCO training set, the nocaps im-
ages are divided into three domains: “in”, “near”, and “out”.
None of the objects in the out-domain are seen in COCO.
This discrepancy raises the importance of learning from ex-
ternal resources for recognizing novel objects, rather than
relying on the clean and fully annotated captioning training
data. As the external training resources may vary for differ-
ent methods, in Table 3, we only compare our model with
other models that also use extra image-caption pairs, and
take the pre-training dataset size into account.

Implementation details. To study the scaling trend, we
experiment with 8 model configurations and 5 pre-training
data sizes. We train all the models from scratch if not oth-
erwise specified. In the pre-training, we do not include
COCO or Visual Genome data, to exclude the possible im-
pact of data quality when plotting the scaling trend, as these
datasets are manually annotated instead of web collected.
To create pre-training dataset of different sizes, we ran-
domly sample from ALT200M at different data scales. Note
that the larger dataset is a superset of the smaller ones.

We use AdamW optimizer with linearly decaying learn-
ing rate. During pre-training, the batch size is 8192. The
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Model Pre-training data
Cross-entropy optimization CIDEr optimization

B@4 M C S B@4 M C S

Encoder-Decoder [4] CC12M - - 110.9 - - - - -

VinVLbase 5.65M combined
38.2 30.3 129.3 23.6 40.9 30.9 140.4 25.1

VinVLlarge 38.5 30.4 130.8 23.4 41.0 31.1 140.9 25.2

SimVLMbase 39.0 32.9 134.8 24.0 - - - -
SimVLMlarge 1.8B 40.3 33.4 142.6 24.7 - - - -
SimVLMhuge 40.6 33.7 143.3 25.4 - - - -

LEMONbase 40.3 30.2 133.3 23.3 41.6 31.0 142.7 25.1
LEMONlarge ALT200M 40.6 30.4 135.7 23.5 42.3 31.2 144.3 25.3
LEMONhuge 41.5 30.8 139.1 24.1 42.6 31.4 145.5 25.5

Table 4. Results (single model) on COCO “Karpathy” test split. B@4: BLEU@4, M: METEOR, C: CIDEr, S: SPICE.

initial learning rate is set to 2× 10−4 for the base and large
model, and to 1 × 10−4 for the huge model. The mod-
els are trained for 60 epochs. The maximum length of im-
age regions, tags and caption tokens are 50, 15, 20, respec-
tively. During finetuning, the model is trained for 40 epochs
with batch size 512. The initial learning rate is 1 × 10−5,
1× 10−6, and 8× 10−7 for the base, large, and huge mod-
els, respectively. During inference, the caption is generated
with beam search and the beam size is 5. The generation
ends when the ⟨EOS⟩ token is predicted, or the maximum
length of 20 tokens is reached. More training details are
provided in Appendix.

4.2. Captioning Results

Results on nocaps validation and test sets are shown
in Table 3. By leveraging large-scale pre-training on the
automatically collected alt-texts, LEMON has achieved re-
markable improvement, especially for out-of-domain im-
ages. Compared to the baseline trained on COCO only
(row 8), after pre-training on ALT200M (row 12), the
CIDEr score is improved by 16.3 for the in-domain part,
and 45.3 for the out-of-domain part. This evidences that
large-scale pre-training improves the model’s ability to rec-
ognize a wide range of long-tailed visual objects. We
also present results of models pre-trained on CC3M and
CC12M. Compared to the best reported results on these
datasets (row 1, 2), our evaluated CIDEr scores (row 9, 10)
are increased by 18.4 and 13.0, respectively. This demon-
strates the performance improvement in our captioning re-
sults brought about by the proposed training scheme when
the pre-training dataset is the same. On the leaderboard3 test
set, our large and huge models (row 19, 20) both surpassed
the top-ranking model (row 18) that is pre-trained on 1.8B
image-text pairs, creating the new state-of-the-art of 114.3
in CIDEr. We also achieve the state of the art on other im-
age captioning benchmarks, including COCO Caption and
Conceptual Captions, as summarized in Table 4 and 5.

3https://eval.ai/web/challenges/challenge-page/
355/leaderboard/1011

Model B@4 M C S

w/o pre-training [4] - - 100.9 -
pre-trained on CC12M [4] - - 105.4 -

LEMONbase w/o PT 10.1 12.1 104.4 19.0
LEMONbase on CC12M 10.1 11.9 108.1 19.8
LEMONbase 10.1 12.0 111.9 20.5
LEMONlarge 10.8 12.3 117.4 21.0
LEMONhuge 13.0 13.9 136.8 23.2

Table 5. Results on the Conceptual Captions (CC3M) dev set.
All the models are finetuned on CC3M with cross-entropy loss
only. We compare with the best results reported on the dev set
with and without pre-training. PT: pre-training.

Large-scale pre-training not only benefits VL representa-
tion learning, but also equips the model with the capability
to zero-shot generalization. We use the pre-trained model
to generate captions directly without further finetuning. The
prefix “a picture of” is added as prompt to improve the qual-
ity of generated captions. Some examples are illustrated in
Figure 5. The pre-trained model demonstrates strong abil-
ity in recognizing various long-tail visual concepts. Com-
pared to the model trained only on small clean set, it shows
the knowledge of many fine-grained categories (e.g., “metal
instrument” vs. “tuba”), which are learned from the large-
scale noisy supervision of alt-texts from web. We also no-
tice that our pre-trained model tends to generate very short
descriptions when used in a zero-shot manner, but this is
mitigated after finetuning on COCO. We posit that the rea-
son for this is the relatively large proportion of short alt-
texts in our pre-training datasets.

4.3. Ablation and Analysis

Scaling law: influence of data and model sizes. We con-
duct comprehensive experiments to understand how much
gain can be obtained in the downstream tasks by scaling
up pre-training. Figure 2 shows the relationship between
the number of images used in pre-training and the CIDEr
scores evaluated in the downstream captioning tasks. All
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B: a woman holding a 
pink umbrella over her 
head.
F: a woman in a kimono
holding a purple 
umbrella.
Z: a picture of a geisha

B: a close up of a tree 
branch
F: a close up of a dinosaur 
skull with a black 
background
Z: a picture of a dinosaur 
skeleton

B: a picture of a cat 
with a red tail.
F: a black and white 
image of a killer 
whale.
Z: a picture of a killer 
whale

B: a man wearing a hat and 
a straw hat standing in front 
of a large metal instrument.
F: a man in a green hat 
playing a tuba.
Z: a picture of a bavarian
musician playing a tuba

B: a collection of 
wooden tools on a white 
background.
F: a collection of swords
on display in a museum.
Z: a picture of ancient 
swords

Figure 5. Examples of generated captions on nocaps validation set. B: the baseline model trained on COCO caption only without
pre-training. F: the model finetuned on COCO after pre-training on ALT200M. Z: the pre-trained model without finetuning, where we add
the prefix “a picture of” during inference as the prompt to improve the quality of zero-shot generation following [43].

(a) pre-training accuracy (b) finetuned/evaluated on COCO (c) finetuned on COCO, evaluated on nocaps

Figure 6. Comparison of sample efficiency for different model sizes. Figure (a) shows the learning curve in pre-training, measured by
the accuracy of cross-entropy loss for masked token prediction. Figures (b) and (c) show the results of finetuned intermediate checkpoints,
evaluated on COCO “Karpathy” test set and nocaps validation set, respectively. The larger model can consistently achieve better results
in downstream tasks with far fewer pre-training epochs, especially for out-of-domain data.

the models are pre-trained from scratch, and then finetuned
on COCO. While all the models can be improved after pre-
training with more data, the improvement is obviously less
significant for the smaller models than for the larger mod-
els. On COCO, the gap between “small” and “large” models
is negligible at 3M scale, but it becomes large as the data
size increases. Moreover, when evaluating on nocaps,
the gap in out-of-domain set is consistently larger than that
in in-domain. This implies the advantage of large models
in transferring knowledge from pre-training to downstream
tasks, especially when the finetuning data are too limited to
cover all test scenarios.

Besides, we observe that the model capacity becomes the
performance bottleneck as the amount of available data in-
creases. Figure 1 plots the scaling trend w.r.t. the number
of model parameters. When pre-training with 3M data, the

“base” size appears to be sufficient, and there is no signif-
icant benefit to using larger models. However, with more
than 40M data, the larger models start to outperform the
smaller ones by a significant margin. When the data magni-
tude reaches hundreds of millions, and if the observed trend
from “base” to “huge” can be kept, there is promise in train-
ing an even larger model to push the limits of VLP for cap-
tioning tasks.

At last, to have a better understanding of the data quality,
we perform pre-training with the same settings on CC12M
and the 12M subset of ALT200M. With the only difference
in pre-training data source, the models yield fairly simi-
lar results (0.1 to 0.3 differences in CIDEr) on COCO and
nocaps. This indicates that our data quality is comparable
to that of CC12M. The observed performance improvement
should be attributed to the pre-training scale.
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Arch. Obj.
COCO CC3M

CIDEr SPICE CIDEr SPICE

Enc-Dec
LM 120.9 21.8 94.9 18.1

s2s-MLM 120.4 22.1 99.9 18.9

Encoder
LM 119.2 21.5 96.1 18.0

s2s-MLM 119.9 21.9 104.4 19.0

Table 6. Ablation of models with different architectures, and
trained with different objectives. Results are reported on COCO
Caption “Karpathy” test split and Conceptual Captions val split.
All the models are trained from scratch. s2s-MLM indicates
sequence-to-sequence MLM as described in Sec. 3.3.

Sample efficiency. We examine the improvement of
learned representations along with the progress of pre-
training. Progress is measured quantitatively by the number
of image-text paired samples seen in pre-training, i.e., the
effective batch size multiplied by the training steps. In Fig-
ure 6, we report the results on COCO Caption after finetun-
ing intermediate pre-trained checkpoints. We also evaluate
the finetuned models on nocaps, indicating the ability of
generalization under domain shift. We present two models
in the figure, one with “base” size, the other with “huge”
size. Both models are pre-trained on ALT200M.

We observe that both models continue to improve af-
ter seeing more samples in pre-training, but the larger
model learns much “faster”. To achieve similar results in
the downstream COCO captioning task, the base model
must see more than 2 to 8 times more samples in pre-
training. This factor is even greater when evaluating on the
nocaps out-of-domain images. The result of the “base”
model seeing 19 billion samples is still slightly worse than
that of the “huge” model seeing 0.8 billion samples. This
demonstrates the efficiency of large models in learning from
large-scale data, as well as the robustness in generalization.

Further ablation. We compare with other common
model structures and training objectives, such as the
encoder-decoder transformer model and unidirectional lan-
guage modeling (LM). Experiments are conducted with
models of “base” size as specified in Table 2. For the
encoder-decoder structure, we use 6 encoder layers (with
self-attention) followed by 6 decoder layers (with cross-
attention after self-attention), while other model configu-
rations remain unchanged. The training objectives are illus-
trated in Figure 4. For each experiment setting, we sweep
the hyperparameters, e.g., pre-training epochs from 40 to
200, finetuning epochs from 10 to 60, and learning rates
from 1 × 10−6 to 3 × 10−5. The results of the best hyper-
parameters are reported.

We train the models under 4 different settings on COCO
and CC3M, respectively. Results are summarized in Ta-
ble 6. On COCO, the differences among the 4 settings
are small (1.41% relative change in CIDEr), with the worst

Figure 7. Comparison of different training objectives by pre-
training on CC12M and finetuning on COCO. The models are fine-
tuned from intermediate checkpoints using the same objective as
used in pre-training.

being 119.2 from encoder+LM, and the best being 120.9
from encoder-decoder+LM. In contrast, on CC3M, the dif-
ference is much larger (9.10% relative change in CIDEr).
The worst is 94.9 from encoder-decoder+LM, while the best
is 104.4 from encoder+MLM. As CC3M is collected over
the Internet and contains much more noise, we assume that
the model that tends to overfit is prone to error when data
quality is low, even though it performs well given well-
annotated data.

Moreover, to compare training objectives, we first pre-
train the models on CC12M, using s2s-MLM or LM, then
finetune the intermediate checkpoints on COCO. As shown
in Figure 7, we observe that although the model trained with
LM converges faster at the beginning, it enters saturation
early, and does not achieve scores as high as the model using
s2s-MLM. We also find that training with LM is very sen-
sitive to learning rates. Given the above results, we choose
the s2s-MLM model and the encoder structure to scale up
with the noisy pre-training data.

5. Conclusions
In this paper, we study the scaling behavior of VLP

models for image captioning, and construct our own large-
scale dataset ALT200M. Our experiments show that scal-
ing up pre-training leads to remarkable improvement for
the downstream captioning tasks. Our model LEMON has
achieved new state-of-the-arts on multiple benchmarks, in-
cluding COCO Caption, nocaps, and Conceptual Cap-
tions. LEMON also has impressive capability of recog-
nizing a wide range of long-tail visual objects, even in the
zero-shot manner. Moreover, our study on large transformer
models indicates that with orders of magnitude larger train-
ing data available, the model capacity tends to be the bot-
tleneck. It is a promising direction to train a substantially
larger model to take more advantage from the large amounts
of alt-text data widely circulated on the Internet.
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