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Abstract

Counting repetitive actions are widely seen in human ac-
tivities such as physical exercise. Existing methods focus
on performing repetitive action counting in short videos,
which is tough for dealing with longer videos in more re-
alistic scenarios. In the data-driven era, the degradation
of such generalization capability is mainly attributed to the
lack of long video datasets. To complement this margin,
we introduce a new large-scale repetitive action counting
dataset covering a wide variety of video lengths, along with
more realistic situations where action interruption or action
inconsistencies occur in the video. Besides, we also pro-
vide a fine-grained annotation of the action cycles instead
of just counting annotation along with a numerical value.
Such a dataset contains 1,451 videos with about 20,000 an-
notations, which is more challenging. For repetitive action
counting towards more realistic scenarios, we further pro-
pose encoding multi-scale temporal correlation with trans-
formers that can take into account both performance and ef-
ficiency. Furthermore, with the help of fine-grained annota-
tion of action cycles, we propose a density map regression-
based method to predict the action period, which yields bet-
ter performance with sufficient interpretability. Our pro-
posed method outperforms state-of-the-art methods on all
datasets and also achieves better performance on the un-
seen dataset without fine-tuning. The dataset and code are
available 1.

1. Introduction

Planetary motion, the change of seasons, and heartbeats,
these periodic movements that are everywhere in our lives.

*These authors contributed equally to this work.
†Corresponding authors.
1https://svip-lab.github.io/dataset/RepCount_

dataset.html

They can be modeled by the Newtonian mechanics, or de-
tected with the aid of sensors for the understanding of the
world or our bodies. In computer vision, the detection
of repetitive/periodic motions also plays an important role,
such as in human activity, where the counting of some phys-
ical exercise movements benefits people in fitness detec-
tion and planning. Although one can use some sensors
(e.g., gravity sensors) on the human body, vision-based ap-
proaches enable non-invasive and thus make third-view-
based video analysis possible and promising. Repetitive
action counting in computer vision is also useful as an aux-
iliary cue for other human-centric video analysis applica-
tions, such as pedestrian detection [26] and 3D reconstruc-
tion [17, 28].

Despite this importance, repetitive action counting meth-
ods in computer vision has rarely been explored. Previ-
ous papers [5, 38] tend to count repetitive actions in short
videos, such as some simple videos grabbed from the Ki-
netics dataset [10]. However, these videos lack some realis-
tic scenarios, which limits the application of the method in
more realistic scenarios due to the following two points:

• Restricted video length. The previous datasets [5,16,
29, 38] typically contain only short videos (e.g., 0.4-
30 s), however, methods are likely to be deployed to
long videos in real scenarios. For instance, we count
push-ups or jump-jacks with a video length of 60 s.
Counting actions in such long videos is more challeng-
ing because there might exist various anomalies in real
scenarios, such as the action being interrupted with in-
ternal or external reasons (Fig. 1(a) ), or the incon-
sistency between action periods (Fig. 1(b) ). These
anomalies might cause the previous algorithm to fail
or obtain sub-optimal performance, affecting the gen-
eralization of the algorithm to real scenarios.

• Inadequate annotations. In previous datasets [5, 16,
29, 38], the number of repetitive actions in a video
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(a) Interruption during the actions (squats) (b) Inconsistent action cycles (push up)

(c) Long video with numerical cycles (60 seconds) (punch jacks) (d) Annotations in the form of start and end of each cycle (front raise)

Figure 1. The features of our proposed dataset RepCount: (a) anomaly case (interruption during actions); (b) anomaly case (inconsistent
action cycles); (c) long video that consists of numerical action cycles; (d) the fine-grained labeling protocol.

is simply labeled as a numerical value. Although
the count number serves as an ultimate predictive
goal, such coarse-grained annotation deprives the in-
terpretability of the algorithm. The model only pre-
dicts a numerical value during training or inference,
which makes it difficult to evaluate the model more
completely. As argued in some crowd counting pa-
pers [20, 27, 36, 40], the total number of repetitive ac-
tions is correct, but the position of the intermediate cy-
cles might be wrong.

In data-driven deep learning approaches, the dataset is
the key to algorithmic innovation. To tackle the above prob-
lems, we collect a large-scale human-centric dataset, which
is closer to the real one. As shown in Fig. 1(c), there are a
large number of variations in video length, while the inter-
ruptions or inconsistent action cycles occur in some videos.
For more accurate performance evaluation and model in-
terpretability, we provide a more fine-grained annotation of
the action cycles, such as Fig. 1(d). Further, we also col-
lect a part containing student activity videos captured in a
fully realistic scenario (in local school), which is signifi-
cantly different from the previous datasets where the videos
are crawled from YouTube. Fig. 2 provides an overview of
our dataset. Such a dataset is more challenging and has the
potential to become a new benchmark for repetitive action
counting.

To perform repetitive action counting, previous meth-
ods [5] generally take a fixed number of frames for pre-
diction. Such an approach might be reasonable in relatively
short videos. For example, TSN [37] extracts three frames
for action recognition of trimmed videos, where the infor-
mation characterizing the action is concentrated on certain
keyframes. However, for long videos in the real scenario,
extracting fixed frames will result in sub-optimal perfor-

mance. Since the video duration varies very much (e.g.
from 4s to 88s) and if the number of selected frames is
too small, high-frequency actions will be neglected. On the
contrary, if too many frames are selected, it might cause
a waste of computational resources. Another alternative is
to sample the video with the same frequency for both long
and short videos. However, some actions are very fast (e.g.,
jumping rope) and some are very slow (e.g., push-ups).
Sampling with a fixed frequency would either lead to perfor-
mance degradation or would not be efficient enough. To bal-
ance performance and efficiency, we propose a multi-scale
temporal correlation encoding network with transformers
that can take care of not only high and low-frequency ac-
tions but also long and short videos. This approach allows
the model to automatically select its adapted scale to com-
pute the correlation matrix for final count prediction. Fur-
thermore, thanks to the fine-grained annotation of action cy-
cles in our dataset (see Fig. 1(d) ), we also propose a den-
sity map regression-based method to predict action periods,
which not only yields better performance but is also more
beneficial for the interpretability of the model.

We summarize our contributions in three-fold:

• We introduce a new dataset, named RepCount, which
consists of 1,451 videos and about 20,000 fine-grained
annotations. Such a dataset allows for a large number of
video length variations and contains anomaly cases, thus
is more challenging.

• A new multi-scale temporal correlation encoding network
with transformers, which can take care of not only high
and low frequency actions, but also long and short videos,
is designed for repetitive action counting.

• The proposed method outperforms state-of-the-art meth-
ods on our proposed dataset and all other datasets. Fur-
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thermore, we also achieve better performance on the un-
seen dataset without fine-tuning.

2. Related Works
Temporal auto-correlation. The temporal auto-correlation
function is widely used in motion recognition [3, 13, 14]
and human identification [12]. Auto-correlation in time se-
ries contains periodic information [24, 35]. The most com-
mon method to represent auto-correlation is the vector in-
ner product. Vaswani et al. [34] obtain the auto-correlation
matrices by multiplying query matrices and key matrices.
Panagiotakis et al. [24] implement attention mechanism for
video frame series to construct the auto-correlation matrices
of video frames. With auto-correlation matrices, the cycle
information from time series can be found to count the num-
ber of repetitive actions.
Video feature extraction. For a long time, spatial and tem-
poral convolution dominated the area of video feature ex-
traction, such as C3D [33], I3D [2], P3D [25]. However,
limited by the small receptive field of the convolution ker-
nel, a convolution-based method is hard to capture the long-
range dependencies on the temporal domain. ViT [4] and its
variants bring a pioneering change for the Computer Vision
field. However, Due to the quadratic computational com-
plexity and complex structure, training of the transformer-
based model is costly [11]. Video Swin Transformer is a
useful backbone due to its trade-off which has pre-trained
on large dateset. Video Swin Transformer [22] is a proper
backbone due to its trade-off, which was pre-trained on a
large dataset.
Counting in computer vision. Counting from images or
videos [1, 16, 18, 19, 23, 29, 38, 39] is a very important field
in Computer Vision. It has high application value in object
detection [30], public transport [15] and physical exercises
[31]. Zhang et al. [38] propose a context-aware and scale-
insensitive framework for temporal repetition counting. [39]
incorporate visual signal with corresponding sight signal to
motion counting for the first time.
Density map. The application of a density map enhances
the effect of crowd counting [20, 27, 36, 40]. The den-
sity map is generated from plot maps by convolving with
a Gaussian kernel. The density map applies 2D planar spa-
tial distribution to represent the spatial distribution and the
local probability distribution. [40] apply 2D density maps
to achieve dense crowd counting. In [32], the extracted fea-
tures are passed to the density regressor to generate a den-
sity map. In many neural network architectures, it could
be regarded as an intermediate representation layer. A peri-
odic density map preserves more information and gives the
spatial distribution.
Period annotation. Currently, data-driven learning meth-
ods have become an essential approach in computer vision.
In the scenario of repetition counting, most datasets only la-

bel the period cycle count [5, 10, 38]. Researchers have to
use generated data synthesized from real data and artificial
data for training. [16] first proposed Synthetic data for the
training model. However, such data are based on the as-
sumption that the motion is continuous, uninterrupted, uni-
formly distributed, and with similar periods. [5] naively di-
vided the count of periods by the number of frames to get
the period length. This is far from the real motion situation.
Therefore, a dataset with periodic fine-grained annotation is
invaluable.

3. Our Proposed Dataset
Existing repetition counting datasets, mainly including

Countix [5] and UCFRep [38], have been widely consumed
for the evaluation of repetition counting models. In these
datasets, video clips that are collected from YouTube cover
a variety of perspectives, dimension sizes and action cate-
gories. Typically, the total number of repetitive actions in a
video clip is labeled as its ground truth. While these datasets
significantly contributed to modeling the repetition count-
ing problem, there still exist several non-negligible limita-
tions that increase the gap between the scenarios illustrated
in the videos and realistic ones, such as i) no interruption
to actions, either from internal or external; ii) only contain-
ing uniform action frequency in an individual video; iii) the
lack of long-range videos; iv) coarse-grained ground truth
annotation, etc. In particular, the last point hinders the de-
velopment of more sophisticated models.

To overcome these limitations, we introduce a novel
repetition counting dataset called RepCount that contains
videos with significant variations in length and allows for
multiple kinds of anomaly cases, as demonstrated in Fig. 2.
These video data collaborate with fine-grained annotations
that indicate the beginning and end of each action period.
Furthermore, the dataset consists of two subsets namely
Part-A and Part-B. The videos in Part-A are fetched from
YouTube, while the others in Part-B record simulated phys-
ical examinations by junior school students and teachers.
Therefore, flexible strategies of data splitting for training
and evaluation could be adopted according to the specific
demand. Then we introduce the data collection, annotation
and statistics in detail.
Dataset collection. According to the source of data, our
dataset consists of two parts. For part-A, we collected
1,041 video clips from YouTube. The type of actions
includes workout activities (squatting, pulling-up, front-
raising, etc.), athletic events (rowing, pommel horse, etc.)
and other repetitive actions (soccer juggling). We select the
video that represents at least one integral series of actions
in line with human habits. Also, the videos usually con-
tain some irrelevant actions like speaking and relaxation.
For the most important, the interruption during an action
series is preferable, which may result in difficulties for ac-
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(a) Dataset Part-A (b) Dataset Part-B

(c) Data analysis

Figure 2. The summary of proposed benchmark RepCount: The first two columns represent the part-A and part-B respectively, the
right column shows the statistics of video length and repetition count of our dataset.

UCFRep Countix Ours
part-A part-B part-A + part-B

Sources Subset of UCF101 Subset of Kinetics Youtube Local school Collected by ourselves
Num. of videos 526 8757 1041 410 1451
Duration Avg. ± Std. 8.15 ± 4.29 6.13 ± 3.08 30.67 ± 17.54 28.53 ± 16.06 29.359± 16.02
Duration Min./Max 2.08/33.84 0.2/10.0 4.0/88.0 5.56/79.16 4.0/88.0
Count Avg. ± Std. 6.66 6.84± 6.76 14.99 ± 14.70 9.27 ± 4.36 15.932 ± 15.65
Count Min./ Max 3/54 2/73 1/141 1/32 1/141

Table 1. Dataset statistic of Countix [5], UCFRep [38] and the proposed RepCount. Our dataset is lager than the previous datasets in
terms of average duration and average annotations.

curate counting. We use the open-source script YouTube-
download2 to download the videos and edit them to keep
only useful clips. The length of each video clip is 20-40
seconds in major. For part B, we record the videos of exer-
cises such as sitting- and pulling-up done by volunteers.
Dataset annotation. The existing repetition counting
datasets simplify the problem by assuming that the actions
are periodically uniform and not interrupted by irrelevant
situations. Thus they have only coarse-grained annotations
in the form of a single-valued total [5] or two timestamps
that indicating the start and end time of the whole action
[38]. Our protocol for fine-grained annotation is as follows:
i) each individual video is assigned to two volunteers; ii)
start and end time of every action cycle are labeled; iii) the
annotations are cross-validated by comparing that from two
volunteers, which should be inspected and revised if they
differ more than 1 in total. Following the protocol, each
movement cycle is precisely positioned on the time axis,
which enables the design and training for models with bet-
ter interpretability.
Dataset statistics. The summary of our dataset is shown

2https://ytdl-org.github.io/youtube-dl/index.
html

in Tab. 1. In brief, we provide 1,451 videos collaborated
with 19,280 annotations. The videos from our dataset have
an average length of 39.359 seconds, which is 4-5 times the
length of videos from other datasets. Each video clip in our
dataset contains 15.932 action cycles in average, while that
is 6.66 for UCFRep and 6.84 for Countix. Furthermore,
part-B is constructed for the validation of model general-
ization. The graphical statistics is shown in the right part of
Fig. 2. Our dataset is featured with more realistic scenarios
and fine-grained annotations.

4. TransRAC Model

Given a long-duration video that has more than 15 repet-
itive activities happening in the content, our goal is to count
the number of repetitive actions. To achieve this, we pro-
pose the model called TransRAC that contains three stages:
the encoder, temporal correlation, and period predictor. The
video subsequences V are fed into the encoder, then the
output X is used to calculate the correlation matrix C by
C = ϕ(X). At last, using period predictor D = τ(C) pre-
dict the final output density map.

19016



Video Video 
Sequence

Encoder

Embeddings
Correlation

Matrix

Concat

Density
Map

𝑪 = 𝝍(𝑿)V 𝑿 = 𝜱(𝑽) X C DF

64

64

3×3
conv

2 FC 
layers

Period Predictor

64

𝑫 = 𝝉 𝑪

64

64

64

64

32

64

64

512

Transformer

Temporal 
Correlation 

512

64

512

64

512

64

𝝍

𝝍

𝝍

𝜱

𝜱

𝜱

…

…

𝟔𝟒 × 𝟏 × 𝑯 ×𝑾

𝟑𝟐 × 𝟒 ×𝑯 ×𝑾

𝟏𝟔 × 𝟖 × 𝑯×𝑾

…

𝟔𝟒 ×𝑯 ×𝑾

Figure 3. TransRAC architecture. We used three sliding windows with step sizes 1, 2, and 4 to generate the video sequence with an
overlap: red, orange, and yellow. Then extract features from multi-scale video sequences by the encoder. Calculate the correlation matrix
in three scales, respectively. After concatenating three correlation matrices into one, make it throughout the remaining network and output
the final density map.

4.1. Encoder

As shown in Fig. 3, the encoder is X = ϕ(V ). In or-
der to explain the function ϕ, firstly, assuming that we have
a sequence of N frames F = [f1, f2, . . . , fN ]. we ex-
tract the three scale video subsequence V from the origi-
nal as the input of ϕ. Then we feed the video sequence
V into the encoder ϕ to produce multi-scale embeddings
X = [X1, X4, X8]

T , where X1 = [x1
1, x

2
1, . . . , x

N
1 ]T . X4

and X8 are similar to X1.
Video sequences of multi-scale. We extract three scale
subsequences from the video: single-frame, 4-frames, and 8
frames indicating the video subsequence of multi-scale (V)
in Fig. 3. As Eq. (1), V1, V4, V8 indicates the element length
of the V. In the video sampling, we use a sliding window
with a step size of 2 to obtain V4 and a step size of 4 to get
V8. And we also need to pad the video to ensure the same
temporal dimension of output three scale sequences. V1 = {{f1}; {f2}; . . . }

V4 = {{f1, . . . , f4}; {f3, . . . , f6}; . . . }
V8 = {{f1, . . . , f8}; {f5, . . . , f12}; . . . }

(1)

Spatio-temporal features. The video swin transformer
[22] is used to extract 3d features from individual video sub-
sequences of different scales. It can easily capture the long-
range dependencies using the self-attention mechanism; at
the same time, with the hierarchical design, it can also cap-
ture the local dependencies, which is more suitable for the
image.

Let video subsequence Vi, where i ∈ {1, 4, 8}, pass
through the feature extraction block to extract the features.
Three kinds of video clips with different scales can match
different period lengths (e.g. jump jacks and squat) better.

The resulting features of each scale are of size 7×7×t×768,
where the t is equal to a 2-fold compression in the tempo-
ral dimension. Then all these feature were concatenated in
temporal dimension as a feature block .
Temporal context. To take into account more temporal
context, we apply a layer of 3D convolution after the fea-
ture extractor, which has 3× 3× 512 filters with ReLU ac-
tivation. After that, we use a Global 3D Max-pooling layer
over the spatial dimensions to reduce model parameters and
obtain the final result X of encoder ϕ as the embeddings in
Fig. 3. The above operations are carried on different scale
video subsequences to the extent that we can obtain more
information on the time domain.

4.2. Temporal correlation and Self-attention

The correlation of embeddings can be expressed as Ci =
Ψ(Xi). We need to compute every correlation cip between
xi
p embeddings with other xj

p, where j ∈ {1, 2, . . . , N} and
j ̸= i, such that we can use the embedding Xp to obtain the
correlation matrix Cp = [c1p, c

2
p, . . . , c

H
p ]T , p ∈ {1, 4, 8}

and H is the number of attention-head.
Correlation matrix. For the temporal locations of the ac-
tivities, we use transformers [34] with correlation-matrix
and self-attention mechanism to encode multi-scale tempo-
ral correlation layers. After encoder the video sequences,
we can get embeddings Xi for each scale Vi, where i ∈
1, 4, 8. And the shape of all embeddings for every scale is
64 × 512 as Fig. 3. Then We use the self-attention mech-
anism to calculate the correlation matrix. One scale em-
beddings Xi is multiplied with two matrices of weights for
obtaining keys matrix called K and query matrix called Q.
Then we could use K and Q to calculate attention scores,
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which should be called correlation in this paper.
Self-attention. We construct the correlation matrix C by
C = f(Q,K), where f(.) is known as dot product atten-
tion. And as Fig. 3 showed, these are two more impor-
tant points that We use 4-heads with 512 dimensions (not
eight heads which is more usual [34]) and multi-scale em-
beddings to calculate the correlation. Therefore, after the
self-attention layer, concatenating three scales’ features into
one, we could get the shape of output is [N,N,M ×H]. M
means how many scales we have. H and N are the num-
bers of heads and input frames independently. Furthermore
in details, N , M and H in TransRAC are 64, 3 and 4, re-
spectively.

4.3. Period Predictor

In Fig. 3, D = τ(C) shows feed C, where C is con-
catenated from C1, C2 and C3, to the density map predictor
which outputs none element for each video subsequence :
the value of density the D = [d1, d2, . . . , dN ] represents
the distribution of period. A more detailed version can be
seen in Fig. 3.
Density map. The most straightforward advantage of the
approach of density map is that it has a strong ability for
explanation.. Therefore, We use the density map predicto as
our period predictor. The density map contains the global
information of the entire video. Each row of the density
map indicates the frame’s position in the local cycle and
the distribution of the frame in the global video. We also
compared density map regressor with classifiers in ablation
experiments and found density maps performed. And more
details for comparisons between the two predictors can be
seen in Sec. 5. For more implementation details can be seen
in the supplementary material.

4.4. Losses

Our dataset, RepCount, is annotated with each position
of each motion period in the temporal dimension. Pass
those labels through the Gaussian function G(x) to get
the ground truth. The process of Gaussianization can be
seen in the supplementary material. Therefore, using MSE
(Mean Squared Error) as the loss function tends to be a good
choice.

4.5. Inference

To compare the network’s performance purely from an
academic view, we have not taken any measures to improve
the prediction accuracy which is used in previous work [5].
The way to infer the counting of repetitions has the follow-
ing operations:
Sample video. For a video with any length of fewer than
two minutes, we directly sample 64 frames. If the input
video has less than 64 frames, we will implement padding
in the temporal domain.

Calculating. These frames are input into the model
to obtain the prediction results of density map D =
[d1, d2, . . . , dN ]. Applying a linear sum to obtain the pre-
dicted value p̂ of the number of action periods, where di
means the value of density map.

5. Experiments
There are five central parts in this section. First of all,

we explain some existing benchmarks and the evaluation
matrices used in popular repetition counting. Secondly, We
illustrate the advantages and capabilities of fine-grained an-
notations in detail. By visualizing and comparing the pre-
dictions for different sports, we propose conjectures and so-
lutions. Then we evaluate our model performance and com-
pare it to other methods, which were trained on our dataset
RepCount, on the existing benchmarks. At last, we make an
ablation study to justify our model design.

5.1. Benchmarks and Evaluation Matrices

We evaluate our method on the four video datasets: our
test set of RepCount part-A, ours RepCount part-B and UCF
Rep [38]. As illustrated in Tab. 1, Ours (part-A+part-B)
contains videos with more count and longer duration than
all existing datasets. The previous work [5, 38] mainly uses
two matrices for evaluating repetition counting in videos:
Off-By-One (OBO) count error. If the predicted count is
within one count of the ground truth, we can consider this
video are counted correctly. Otherwise, it is a situation of
counting error. It represents the error rate of repetition count
over the entire dataset.
Mean Absolute Error. This metric means normalized ab-
solute error between the ground truth count and the pre-
dicted count. OBO and MAE are defined as follows:

OBO =
1

N

N∑
i=1

[|c̃i − ci| ≤ 1], (2)

MAE =
1

N

N∑
i=1

|c̃i − ci|
c̃i

, (3)

where c̃ is the ground truth repetition counts. N is the num-
ber of given videos.

5.2. Implementation Details

We implement our method with PyTorch. The encoder,
Video Swin Transformer tiny [22], was pre-trained on the
Kinetics. We use three columns to obtain input video se-
quences and feed them into the encoder. The hidden layer
dimension of transformer-based period predictor is 512.
Limited by the memory of GPU, the parameters of the pre-
trained encoder were frozen during the training process. We
train our remaining layers of the model for 16K steps with a
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declining learning rate of 8 × 10−6 and optimized by the
Adam optimizer using a batch size of 16 (each with 64
frames). Additional details are provided on the code.

5.3. Fine-grained Annotation

Observing from the Fig. 4, it is easy to find accurate pe-
riodic location information on the ground truth, which is
essential for accurately counting. As each kind of action
has different characteristics, some activities, such as bench
press, will be completed speed rate highly, due to the excel-
lent energy of people at the beginning. However, at the end
of the action, the rate will slow down. On the other hand,
the period length of specific actions can be more uniform.
As the examples of Fig. 4 shown, ”front-raise” is easier for
the man to finish in a statable period. It is because we anno-
tated the data in a more fine-grained way, by which we can
get the locations of all kinds of actions from our dataset,
we have the opportunity to fine-tune the structure of the
model for different needs. Of course, there is no chance
to set the density map as a predictor of our model without
fine-grained annotations. Overall, a more fine-grained an-
notation is necessary to precisely help the model count the
number of periods.

Figure 4. Visualization of density map. Here are comparisons
between the ground truth and prediction result from our model.
We can see from the first pair that the duration of videos in our
dataset varies.

5.4. Evaluation and Comparison

We evaluate the effectiveness of the model from multiple
aspects. When we compare the TransRAC proposed with
RepNet on RepCount (Part-A and Part-B) and UCFRep
datasets, for a fair comparison, we modify the last fully-
connection layer of RepNet [5] to make it capable of han-
dling those videos containing more than 32 action periods.
Unless otherwise specified, we train the networks on Rep-
Count Part-A and validate them on the test set of Part-A,
obtaining the results shown in Tab. 2. In addition, we com-
pare some SOTA action recognition methods [6, 7, 22] and
change output layers accordingly to adapt to our task. Far-

ther more, we also compare the SOTA method [9] in the
action segmentation field. More detail can be seen in the
supplementary materials. One can observe that TransRAC,
our model outperforms them by a notable margin on all the
considered datasets.
Generalization. From Tab. 3, it also can be seen that the
TransRAC model generalizes well on multiple datasets.

RepCount A
Method MAE↓ OBO ↑
X3D [7] 0.9105 0.1059

TANet [6] 0.6624 0.0993
Video SwinT [22] 0.5756 0.1324
Huang et al. [9] 0.5267 0.1589

RepNet [5] 0.9950 0.0134
Zhang et al. [38] 0.8786 0.1554

Ours 0.4431 0.2913

Table 2. Performance of different method on RepCount part-A test
when trained on the same train set of RepCount.

RepCount B UCFRep
Method MAE ↓ OBO ↑ MAE ↓ OBO ↑

RepNet [5] 0.9994 0.0025 0.9985 0.009
Ours 0.7839 0.091 0.6401 0.324

Table 3. Performance of different method on RepCount part-B and
UCFRep when trained on the same train set of RepCount part-A.

Figure 5. Visualization of bad cases. Here are results of two
bad cases our model predicted. In the first case, another people is
moving

While our TransRAC performs well on the major part of
the data, there still are some failure cases, as Fig. 5 shown.
For the top one in Fig. 5, we achieve a bad predicted re-
sult because there is more than one person moving in the
video. The failure case on the bottom indicates that the
frame extracting strategy could diminish the performance
of our model in some extreme situations. It can be seen that
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there is an apparent difference between the predicted den-
sity map and the ground truth, especially in the left part. As
this sample video has a total number of frames of 772, most
of the actions concentrate in the first 400 frames, neither
the ground truth density map nor the output of our model is
capable of handling such imbalance.

5.5. Ablation Studies

We perform several ablations to justify the decisions
made while designing TransRAC. We train our model on
a train set of part-A and then evaluate the model on the test
set of part-A. More ablation experiments can be seen in the
supplementary material.
Correlation matrix. In Tab. 4, We compare the impact of
applying different correlation matrix to our model. Tem-
poral self-similarity matrix (TSM) [5] applies squared eu-
clidean distance as the similarity function. But we found
using the self-attention mechanism to calculate the correla-
tion matrix is better. Since the experiment illustrates the
self-attention mechanism could substantially improve the
performance of our model, our model uses the self-attention
mechanism.

RepCount A
Correlation matrix MAE ↓ OBO ↑

TSM 0.5678 0.2251
Self-attention (Ours) 0.4431 0.2913

Table 4. Result of our model applying different correlation matrix
when trained on training set of RepCount part-A.

Density map. We build four models to verify the effec-
tiveness of the density map, as shown in the first four rows
of Tab. 5. We could conclude that using density map re-
gressor as the period predictor is significantly better than
original classifiers. As shown in the third and the four rows
of Tab. 5, if we replace the classifiers with density map re-
gressor, RepNet’s performance has been significantly im-
proved. The comparison result indicates that the Density
map is more suitable for repetitive action counting.
Multi-scale. In Tab. 5, we compare the impact of applying
different scales. We find that the multi-scale model per-
forms better than the single-scale model when the number
of frames is equal. The experiment demonstrates that more
temporal features at different scales can obtain more period
information.

6. Conclusion
In this paper, considering the tough problems of exist-

ing methods in dealing with long videos in more realis-
tic scenarios, we propose a new large-scale repetitive ac-
tion counting dataset. Such a dataset covers a wide variety
of video lengths where action interruption or action incon-

RepCount A
Method MAE↓ OBO ↑

ResNet [8] + CLS 0.9950 0.0134
ResNet [8] + DM 0.6905 0.0811
SwinT [21] + CLS 0.7027 0.118
SwinT [21] + DM 0.6781 0.138

Ours (Scale-1) 0.6595 0.1854
Ours (Scale-4) 0.5434 0.2649
Ours (Scale-8) 0.6657 0.192
Ours (Multi) 0.4431 0.2913

Table 5. The result of abliation study when models trained on
RepCount part-A. ResNet+CLS indicates the original structure of
RepNet [5]. ResNet + DM indicates replacing the last layers with
the density map regressor. The same applies to swinT which in-
dicates swin-transformer. Ours (Scale-X) indicates the single col-
umn without multi-scale correlation, where X represent V1, V2,
and V3. Ours (Multi) indicates our proposed structure.

sistencies situations occur in the video, this is more real-
istic. For model interpretability and more accurate eval-
uation, we further provide fine-grained annotation. The
overall dataset contains 1,451 videos with about 20,000 an-
notations, which is more challenging and has the poten-
tial to be a new benchmark. To balance the performance
and efficiency, we propose to encode multi-scale temporal
correlation with a transformer to tackle the repetitive ac-
tion counting problems in realistic scenarios. We also pro-
pose a density map regression-based method to predict the
action period, which yields better performance with suf-
ficient interpretability. Extensive experiments show that
our method achieves state-of-the-art results on all datasets
and also achieves better performance on the unseen dataset
without fine-tuning.
Broader Impact and Limitations. The proposed dataset
is about the counting of repetitive actions, which means
videos from our dataset are human-centric. The abuse of our
dataset may cause privacy leaks. The usage of our dataset
is limited to academic research. The proposed method pre-
dicts results based on the dataset, which may include some
negative social impacts. Thus, the results conducted by our
method may reflect the bias from the dataset. Other techni-
cal limitations are talked about in the Sec. 5.
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