
Arch-Graph: Acyclic Architecture Relation Predictor for Task-Transferable
Neural Architecture Search

Minbin Huang1 Zhijian Huang1 Changlin Li3 Xin Chen4 Hang Xu2

Zhenguo Li2 Xiaodan Liang1*

1Shenzhen Campus of Sun Yat-sen University 2Huawei Noah’s Ark Lab
3ReLER, AAII, UTS 4The University of Hong Kong

{huangmb5,huangzhj56}@mail2.sysu.edu.cn, changlinli.ai@gmail.com, cyn0531@connect.hku.hk,

chromexbjxh@gmail.com, li.zhenguo@huawei.com, xdliang328@gmail.com

Abstract
Neural Architecture Search (NAS) aims to find efficient

models for multiple tasks. Beyond seeking solutions for a
single task, there are surging interests in transferring net-
work design knowledge across multiple tasks. In this line
of research, effectively modeling task correlations is vital
yet highly neglected. Therefore, we propose Arch-Graph,
a transferable NAS method that predicts task-specific opti-
mal architectures with respect to given task embeddings. It
leverages correlations across multiple tasks by using their
embeddings as a part of the predictor’s input for fast adap-
tation. We also formulate NAS as an architecture relation
graph prediction problem, with the relational graph con-
structed by treating candidate architectures as nodes and
their pairwise relations as edges. To enforce some basic
properties such as acyclicity in the relational graph, we add
additional constraints to the optimization process, convert-
ing NAS into the problem of finding a Maximal Weighted
Acyclic Subgraph (MWAS). Our algorithm then strives to
eliminate cycles and only establish edges in the graph if the
rank results can be trusted. Through MWAS, Arch-Graph
can effectively rank candidate models for each task with
only a small budget to finetune the predictor. With exten-
sive experiments on TransNAS-Bench-101, we show Arch-
Graph’s transferability and high sample efficiency across
numerous tasks, beating many NAS methods designed for
both single-task and multi-task search. It is able to find top
0.16% and 0.29% architectures on average on two search
spaces under the budget of only 50 models.1

1. Introduction
Neural Architecture Search (NAS) methods [2, 40] have

the potential to democratize deep learning and reduce costly
*Corresponding author.
1Code: https://github.com/Centaurus982034/Arch-Graph

...
Pairwise
Relation
Predictor

Finetune

Architecture
Relation
Graph Output

ranking

Architecures

Maximal Weighted
Acyclic Subgraph

Source task Target task

...

...

Figure 1. Overview of our Arch-Graph that trains a pairwise re-
lation predictor on a source task and transfers to target task by
finetuning. It constructs an architecture relation graph based on
the pairwise relation predictor. After selecting the MWAS of the
architecture relation graph, Arch-Graph can give a proper ranking
of different candidate architectures.

human labor in designing neural networks. By automati-
cally searching for optimal architectures, many NAS meth-
ods have discovered models exceeding human-designed
ones on various tasks. However, many NAS solutions are
computationally expensive as they require training over nu-
merous candidate architectures. Under cases where net-
works for multiple tasks are needed, searching for an archi-
tecture for each task requires repeatedly running NAS meth-
ods from scratch to find the top performing network, throw-
ing away potentially valuable knowledge accumulated over
the course of searching. There are many recent attempts
[15, 34] investigating transferable NAS problems over dif-
ferent tasks by mining task correlations. For instance, [15]
proposes to use meta-learning to generate architectures for
a given new task. However, it makes a strong assumption
that information on top-performing architectures for each
pretrain task is always available, which can limit its use
case. [34] proposed to use task embeddings to inform an
RNN controller of the task information and framed NAS
as a reinforcement learning (RL) problem, which inherits
the sample inefficiency problem from RL. Weight-sharing

11881

techniques [16–18, 25] are recently more popular among
researchers due to their efficiency in cost reduction, typ-
ically by training a supernet and then inheriting weights
from it. However, due to their restrictions in supernet de-
sign, weight-sharing methods are usually constrained in the
choice of network search space.

Predictor-based NAS methods [23, 28, 33, 35, 37] alle-
viate these concerns by sampling architecture-performance
pairs and fitting a proxy accuracy predictor to reduce com-
putation costs. However, training a large number of archi-
tectures for fitting a good predictor can also be computa-
tionally challenging. Besides, this approach is ultimately
converting NAS into a regression problem, which can be
hard to solve since the model space is usually highly non-
convex, making accurately identifying top performers ex-
tremely difficult. In this paper, we instead argue that ap-
proaching NAS as a ranking problem can bring along many
extra benefits compared to other methods, largely due to its
added constraints that provide extra learning signals.

This key observation motivated us to develop a predic-
tor that captures pairwise relations among architectures and
formulate NAS as a graph ordering problem. Our method,
Arch-Graph, treats architectures as nodes and order infor-
mation as directed edges, such that an edge pointing from
archa to archb represents the superiority of archa in its
performance when compared to archb. We propose to use
a pairwise relation predictor to construct this graph. This
predictor is optimized with objective of finding the correct
pairwise order of nodes in the graph, which greatly im-
proves data efficiency and prediction accuracy comparing
to previous pointwise predictor that directly predict archi-
tecture performance.

To allow transfering among different tasks without re-
training the predictor, another key ingredient task embed-
ding that represents a task during the predictor training pro-
cess stablizes the knowledge transfer between tasks. Previ-
ous works on task embedding mostly focus on classification
tasks [1], whereas our proposed task embedding method is
more general and can be applied to many other vision do-
mains such as autoencoding and semantic segmentation.

After constructing the relation graph through the pair-
wise predictor, the architecture selection can then be for-
mulated as a topological ordering problem on this graph.
Under this setting, it is vital to enforce that the graph fol-
lows basic properties of a partial order, such as acyclicity,
which prohibits circular ordering (A > B > C while C > A).
Therefore, a central component of our work is the definition
of a Maximal Weighted Acyclic Subgraph (MWAS) prob-
lem with Trust Score to make sure the constructed graph
follows the irreflexive, transitive, and anti-symmetric prop-
erties of a partial order. We propose an approximation solu-
tion to it by iteratively applying the max-MAS algorithm.

Our experiments on TransNAS-Bench-101 proves the ef-

fectiveness of Arch-Graph, identifying architectures with
average rank 5.24 (top 0.16%) and 12.2 (top 0.29%) on
macro and micro search space respectively, with only ran-
domly sampling 50 architectures, saving at least 37.5% of
samples in other methods to achieve comparable results.

To conclude, the contributions of our work can be sum-
marized as follows:

• We propose Arch-Graph, a task transferable NAS
method by formulating NAS from a novel perspective:
A graph ordering problem, and solve this problem by
training a pairwise relation predictor, which is more
data efficient, saving at least 37.5% training samples.

• We generalize task embeddings to any kind of tasks,
and further enables task-transferable NAS by predict-
ing architecture relation on any given task embeddings.

• To remove incorrect edges in the relation graph con-
structed by the predictor, we define the Maximal
Weighted Acyclic Subgraph problem and propose an
approximation algorithm to solve it.

• Extensive experiments demonstrate that Arch-Graph
can beat many existing transferable NAS methods by
a large margin, finding top 0.16% and 0.29% architec-
tures on two search spaces.

2. Related Work
Predictor-based NAS. NAS has achieved many break-
throughs in the past few years. Its early works utilized re-
inforcement learning [30, 38, 39, 41] and evolutionary algo-
rithms [20, 26, 27, 29, 36] and found many top-performing
architectures at a high computational cost. Later works
then strive to reduce the search cost while improving perfor-
mance. Among numerous directions, predictor-based NAS
methods are most relevant to our work. They try to predict
the performance of a given neural architecture both accu-
rately and efficiently. These methods usually involve two
steps: 1) Sampling pairs of architectures and their accura-
cies, and 2) learning the accuracy predictor. The objective
of fitting the predictor can be regarded as a regression [33]
or ranking [23, 37] problem, and there is a wide range of
choices for predictors [9, 21, 22, 32]. Shi et al. [28] adopted
a bayesian sigmoid regression as the surrogate model for
Bayesian Optimization (BO) to select candidates. As ap-
plying BO on the whole search space is difficult, weakNAS
[35] replaced one strong predictor with a set of weaker pre-
dictors to get oversimplified BO. Different from these previ-
ous works, we propose pairwise relation predictor and for-
mulate NAS problems as a graph ordering problem where
the graph is given by the predictor.
Transferable NAS. Transfer learning for NAS mainly fo-
cuses on transferring between tasks using the same search
space and between search space on a specified task. There
are some recently proposed cross-task NAS benchmarks

11882

Pairwise Relation
Predictor Training

Architecture Relation
Graph Ordering

Architecures Labeled relation Predicted relation

Pretrain

Source task Target task

Finetune

Weight MatrixArch. relation graph

MWAS
selection

Target task

Figure 2. Framework of our proposed Arch-Graph. In the Pairwise Relation Predictor Training stage, given a source task and architectures
of interest, we sample a small budget of architectures to fit the predictor then finetune it on a target task. Next, in the Architecture Relation
Graph Ordering stage, we construct a relation graph according to the prediction, treating each architecture as a node and directed edge as
ranking information. To get a proper ordering from the relation graph, we assign weights related to the confidence to the edges and select
the Maximum Weighted Acyclic Subgraph and get a Directed Acyclic Graph (DAG) from the relation graph. Finally, we evaluate the top
architectures given by the topological sorting of this DAG.

[7,31] for improving the transferability and generalizability
of NAS algorithms. Though relatively neglected when com-
pared to single-task NAS, there are still some outstanding
algorithms. CAS [24] applies continuous learning on multi-
task architecture search based on a weight sharing strategy,
trying to find a single cell structure that can generalize well
to unseen tasks. Catch [4] combined meta-learning with RL
to swiftly adapt to new tasks. Different from [22] for sin-
gle task, Lee et al. [15] proposed to generate graphs from
datasets in a meta-learning style to make the methods gen-
eralize well across multiple datasets. However, it requires
top-performing architectures during training to learn char-
acteristics of good models, which can incur high computa-
tional costs. Contrary to this, our method achieves remark-
able results only by random sampling.

3. Arch-Graph

Transferable NAS methods aim to reuse the architec-
ture selection knowledge from source tasks and find top-
performing architectures on a target task. Consistent with
this setting, the Arch-Graph algorithm consists of two parts:
pairwise relation predictor training and architecture relation
graph ordering, as illustrated in Fig. 2. We train the pairwise
relation predictor (Sec. 3.1) on the source task using sam-
pled architecture pairs and task embeddings (Sec. 3.2), then
finetune it on the target task. After constructing architec-
ture relation graphs using the finetuned predictor, we rank
the architectures by finding a Maximum Weighted Acyclic
Subgraph (MWAS) (Sec. 3.3).

3.1. Pairwise Relation Predictor

For a predictor-based NAS algorithm, the predicted
ranking of models might matter more than absolute num-
bers of model performance prediction, since we only care
about the top-ranking ones. Many predictor-based NAS

methods focus on directly predicting the accuracy of mod-
els [33] or the ranking of all models of interest through a
ranking loss [23,37]. However, since model spaces are usu-
ally highly non-linear, these predictors typically cannot be
trained to have high accuracy. Moreover, these methods are
not data-efficient since they need lots of samples to fit the
predictor on a complicated model space.

We propose to study NAS from a new perspective, which
is to formulate it as an architecture relation graph ordering
problem. Our key observation is that while ranking all mod-
els can be problematic, it is much easier to make compar-
isons just between two models. Besides, as previous works
[8, 10] illustrated, when challenged with limited available
data, learning pairwise relations can yield a higher classi-
fier performance than many common regression methods.
This is because we can ”augment” the data by constructing
n2 −n pairs of relations when we only have n labeled sam-
ples. This is extremely helpful in settings where obtaining
labels is computationally expensive, such as NAS. This in-
spired us to use a well-trained pairwise relation predictor to
get a ranking of models in a search space. It is thus crucial
to properly define relation in our settings, where the most
relevant concept is partial order.

Definition 1 (partial order) A (strong) partial order on a
set P is a relation ≺ that is both irreflexive, transitive and
anti-symmetric, that is, for ∀a, b, c ∈ P :
1. irreflexive: not a ≺ a.
2. transitive: if a ≺ b and b ≺ c then a ≺ c.
3. anti-symmetric: if a ≺ b then not b ≺ a.

Definition 2 (total order) a total order is a partial order on
a set P so that for ∀a, b ∈ P , either a ≺ b or b ≺ a.

If a well-trained predictor defines a partial order, the prob-
lem of ranking models is then reduced to extending a partial
order (Definition 1) to a total order (Definition 2), which has
been extensively studied in the existing literature. There-

11883

fore, our predictors are trained to define a partial order on
the model space.

Given a source task τs, we first randomly pick m models
from τs and fully evaluate them to get their performance on
the test dataset. In this way, we obtain m2 − m samples
by forming pairwise relations. Details of the pairwise re-
lation predictor is illustrated in Fig. 3. The (archa, archb)
are randomly sampled architectures that are first concate-
nated as the input of a Graph Convolutional Network (GCN)
[14]predictor. The GCN predictor then generates two em-
beddings to represent these two architectures. Next, these
embeddings are concatenated with a task embedding, which
is generated by applying a fully connected layer to the fea-
ture extractor described in Sec. 3.2. Together, they are
fed into a softmax function to construct a simple proba-
bility distribution p = (pa, pb) ∈ R2 with pa > pb in-
dicating archa is better than archb. The produced proba-
bility distribution is then compared with the ground truth
label{[0, 1]T , [1, 0]T }. The objective is to minimize the Bi-
nary Cross Entropy (BCE) Loss. Specifically, we include
both (archa, archb) pairs and (archb, archa) pairs to en-
courage anti-symmetry. If neither a → b nor b → a exists,
we simply mark them as incomparable, which is allowed in
a partial order.

After training the pairwise relation predictor on a source
task, we conduct transfer learning by finetuning the predic-
tor on a set of t target tasks {τ1, τ2, ..., τt} with a small bud-
get of b architectures chosen from each target task. More
specifically, bf architectures for finetuning the predictor and
bv architectures for pairwise relation validation. We pick
the predictor with the highest validation accuracy as the fi-
nal result. Then, the architecture relation graph ordering is
performed on τi on top of the finetuned predictor.

3.2. Task Embedding

When transferring architecture knowledge across tasks,
it is important to inform NAS methods of the target task’s
intrinsic characteristics and adjust the architecture selection
strategy accordingly. We therefore follow [1], which only
generates task embeddings for classification tasks, extend it
to generate embeddings for other tasks.

A task’s nature can be quantified by the neural network’s
weights when trained on this task. When a pre-trained
model is finetuned on a task τi, it is actually adding some
perturbation w′ = w + δw to a network’s weights and
we can measure the average KL divergence between the
original output distribution pw(y|x) and the perturbed one
pw′(y|x). It can be measured by

Ex∼p̂KL(pw′(y|x)||pw(y|x)) = δwFδw (1)

where F is the Fisher Information Matrix (FIM):

F = Ex,y∼p̂(x)pw(y|x)
[
∇w log pw(y|x)∇w log pw(y|x)T

]
(2)

Random sampled
architecture pairs

Concatenation

GCN
encoder

Pre-computed
task embedding

Fully connected layer
Softmax

Figure 3. Detailed structure of our proposed pairwise relation pre-
dictor. The predictor takes an architecture pair (archa, archb) and
a task embedding as input and produce a probability vector pa, pb,
wherepa > pb indicates that archa is better than archb.

Algorithm 1: Calculate the approximation of
MWAS

Input:
A: the adjacency matrix of a (cyclic) graph G;
S: the edge weight matrix;
ϵ: threshold, calculated by ϵ = 1−Acc(τt);
Set s0 = a = 0, r = b = ||A||1, seg = b− a;
while seg > 1 do

AT ← max-MAS(A, r);
if AT doesn’t exist then

Find larger r: r ← r + 1;
Move the left endpoint of the interval to r: a← r;

else
Calculate score: s←

∑
i,j

(AT ⊙ S)ij ;

if R(AT) < ϵ and s > s0 then
Record maximal score: s0 ← s;
Maintain a subgraph with maximal score:
A

(best)
T ← AT ;

end
Halve the length of the interval: seg ← ⌊ seg

2
⌋;

r ← r − seg;
Move the right endpoint of the interval to r: b← r;

end
end
Output: A(best)

T as the approximation of the MWAS

The FIM then indicates the set of feature maps which are
more informative for solving the current task. We use an
ImageNet pre-trained ResNet-50 as the encoder, then train
an encoder-decoder network for each task with a randomly
initialized decoder. In this way, parameters of the ResNet-
50 encoder are adjusted according to each task’s character-
istics. The encoder is essentially a task feature extractor,
and we simply compute an FIM for this feature extractor.
The FIM is then used as the task embedding for each task,
which is a fixed dimensional vector.

3.3. Architecture relation graph ordering

Relation Graph Construction After obtaining the fine-
tuned pairwise relation predictor on the target task τk, we
can construct a directed graph Gτk with an adjacency matrix
Aτk . The presence of a directed edge from node a to node
b in Gτk represents the prediction that architecture archa is

11884

Tasks Cls.O. Cls.S. Auto. Normal Sem. Seg. Room. Jigsaw
Avg. Rank

Metric Acc.↑ Acc.↑ SSIM↑ SSIM↑ mIoU↑ L2 loss↓ Acc.↑

Single NAS

RS [3] 46.85 56.50 70.06 60.70 28.37 59.35 96.78 59.26
REA [26] 47.09 56.57 69.98 60.88 28.87 58.73 96.88 41.03
BONAS [28] 46.85 56.47 74.45 61.62 28.82 59.39 96.76 33.37
weakNAS [35] 47.40 56.88 72.54 62.37 29.18 57.86 96.86 10.49
Arch-Graph-single 47.35 56.77 71.32 62.78 29.09 58.05 96.70 12.68

Transfer NAS

DT 45.48 54.96 59.35 58.60 26.21 62.07 95.37 534.31
CATCH [4] 47.29 56.49 70.36 60.85 28.71 59.37 - 37.72
REA-t [26] 46.98 56.60 73.41 61.02 28.90 58.18 - 28.98
BONAS-t [28] 47.06 56.86 71.41 61.44 28.76 58.35 - 27.87
nsganetv2 [19] 46.86 56.29 73.77 61.41 28.73 59.07 - 34.39
weakNAS-t [35] 47.13 56.83 73.59 61.86 29.07 58.55 - 15.43
Arch-Graph-zero 47.42 56.78 75.51 63.39 29.17 58.15 - 7.83
Arch-Graph 47.44 56.98 75.90 64.35 29.19 57.75 - 5.24

Global Best 47.96 57.48 76.88 64.35 29.66 56.28 97.02 1
↑ indicates higher is better, ↓ indicates lower is better, bold indicates the best result.

Table 1. Performance comparisons between different NAS methods on our Arch-Graph on Macro level search space. Jigsaw results are
omitted for TransferNAS methods because it is used as the pretrain task.

change the operation-on-edge setting in TransNAS-Bench-
101 to an operation-on-node setting and encode each archi-
tecture as a graph with a fixed adjacency matrix and node
feature matrix representing different operations.
NAS-Bench-201. NAS-Bench-201 (NB201) [6] is a bench-
mark containing 15,625 architectures. It provides full infor-
mation of these architectures on three classification tasks
including CIFAR-10, CIFAR-100 and ImageNet-16-120.
Note that our Arch-Graph can also be applied to single-task
setting. To further verify the effectiveness of our Arch-
Graph, we conduct experiments of a single-task variant
named Arch-Graph-single by simply pretraining and fine-
tuning the predictor on the same task.
Pairwise Relation Predictor. To match the experiment in
[7], we pretrain the pairwise relation predictor on the least
time-consuming task, jigsaw (details of pretraining on other
tasks can be found in S.M.2), restricting to a fixed budget
of m = 50 models. Then we finetune on each remaining
task for another b = 30 models using bf = 20 for training
and bv = 10 for validation. Consequently, we construct the
Arch-Graph using the predicted directed edges for each task
and use them to get an ordering of architectures.
Architecture Relation Graph Ordering. After we obtain
architecture relation graph on the target tasks, we first use
a naive method to order the architectures on the relation
graph, named Arch-Graph-zero4. We implement the in-
sertion sort algorithm to the model space by using the fine-
tuned pairwise relation predictor as the comparison opera-
tor. Since there are incomparable elements and noisy edges
(cycles) confusing the comparison operator, we simply skip

4More comparisons with comparator-based sorting algorithms can be
seen in Sec. 5 in Supplementary Materials

the comparison until we can find a place to insert the not-
yet-sorted architecture. This gives us a coarse ranking of
the model space.

Because of high complexity of obtaining MWAS, we do
not compute MWAS for the whole Arch-Graph. Instead, we
pick top 500 models given by the coarse prediction of Arch-
Graph-zero and construct the relation graph of 500 nodes
using their predicted edges. Later ordering is conducted on
this graph. After finding the MWAS (Algorithm 1), we eval-
uate the top p = 20 models given by the topological sort of
these nodes. If any model selected for the final evaluation
is already sampled, we simply skip it and evaluate the next
model until we have evaluated p models. Results on macro
level search space and micro level search space can be found
in Tab. 1 and Tab. 2.

4.2. Comparison with state-of-the-art NAS

Single-task NAS. On TB101, we use Random Search (RS)
[3] and Regularized Evolutionary Algorithm (REA) [26] for
50 epochs as baselines. We then conduct experiments using
two state-of-the-art predictor-based NAS methods, BONAS
[28] and weakNAS [35] on each task. The total budget for
each method is set to 50 randomly selected models. The
average model rank is averaged across six target tasks. As
in Tabs. 1 and 2, weakNAS is the best in single-task set-
ting and Arch-Graph-single achieves comparable results to
weakNAS. On NB201, we conduct experiments on CIFAR-
100 (Tab. 3) and set the budgets to 150 models. Better than
REA and RS, Arch-Graph has an average performance of
73.38% that outperforms BONAS. Although slighter lower
than weakNAS, Arch-Graph has a much larger kendall-rank
coefficient (0.67) than weakNAS (0.49), indicating a better

11886

Tasks Cls.O. Cls.S. Auto. Normal Sem. Seg. Room. Jigsaw
Avg. Rank

Metric Acc.↑ Acc.↑ SSIM↑ SSIM↑ mIoU↑ L2 loss↓ Acc.↑

Single NAS

RS [3] 45.16 54.41 55.94 56.85 25.21 61.48 94.47 85.61
REA [26] 45.39 54.62 56.96 57.22 25.52 61.75 94.62 38.50
BONAS [28] 45.50 54.46 56.73 57.46 25.32 61.10 94.81 34.31
weakNAS [35] 45.66 54.72 56.77 57.21 25.90 60.31 94.63 20.03
Arch-Graph-single 45.48 54.70 56.52 57.53 25.71 61.05 94.66 22.15

Transfer NAS

DT 42.03 49.80 51.20 55.03 22.45 66.98 88.95 935.12
CATCH [4] 45.27 54.38 56.13 56.99 25.38 60.70 - 63.49
REA-t [26] 45.51 54.61 56.52 57.20 25.46 61.04 - 40.14
BONAS-t [28] 45.38 54.57 56.18 57.24 25.24 60.93 - 55.30
nsganetv2 [19] 45.61 54.75 56.47 57.24 25.36 61.73 - 34.89
weakNAS-t [35] 45.29 54.78 56.90 57.19 25.41 60.70 - 35.73
Arch-Graph-zero 45.64 54.80 56.61 57.90 25.73 60.21 14.7
Arch-Graph 45.81 54.90 56.58 58.27 25.69 60.08 - 12.2

Global Best 46.32 54.94 57.72 59.62 26.27 59.38 95.37 1
↑ indicates higher is better, ↓ indicates lower is better, bold indicates the best result.

Table 2. Performance comparisons between different NAS methods and our Arch-Graph on Micro level search space. Jigsaw results are
omitted for TransferNAS methods because it is used as the pretrain task.

ordering of the whole model space.
Task-Transferrable NAS. The transferred version of
weakNAS and BONAS are also pretrained on jigsaw with
a budget of 50 models. After initializing the predictors, we
sample another 50 models to finetune the GCN embedding
extractor and Bayesian Sigmoid Regression in BONAS and
sets of the weak predictors in weakNAS on the target task.
In addition to the searched models’ accuracy, we also re-
port the model rank in the search space, averaged across 6
targeted tasks (Tab. 3). Our Arch-Graph shows great supe-
riority over both single task methods and transferable NAS
methods when transferring knowledge from a pre-trained
predictors, surpassing weakNAS [35] by average model
rank 10.19 on macro level search space and 23.53 on mi-
cro level search space. It takes at least 60% extra samples
for other methods to achieve comparable results, in Tab. 3.

To better illustrate the effectiveness of our Arch-Graph,
in Fig. 4, we show the visualization result of the predicted
top 50 models in the macro level search space on two tasks.
More visualizations of search results on other tasks can be
found in S.M.2. We first use t-SNE to project the model into
the 2-dimensional space and colors to indicate model per-
formance. The shallower the color, the stronger the model.
In this projection, top models for each task tend to form
local clusters. WeakNAS and Arch-Graph-zero can both at-
tend to local optima, whereas Arch-Graph’s predictions are
significantly closer to globally optimal architectures.

4.3. Ablation Study

Task embedding. Some works on transferable NAS [34]
also propose to use task embeddings to guide the search
when facing different tasks. However, they use a randomly

Methods τ↑ ρ↑ #budgets↓

TB101

BONAS [28] 0.26 0.38 100+
BONAS-t [28] 0.24 0.34 100+
nasganetv2 [19] 0.19 0.28 100+
weakNAS [35] 0.36 0.51 80
weakNAS-t [35] 0.16 0.24 100
Arch-Graph-zero 0.58 0.76 60
Arch-Graph 0.61 0.79 50

Methods Acc.↑ τ↑ ρ↑

NB201

RS [3] 71.80 - -
REA [26] 72.70 - -
BONAS [28] 72.84 0.43 0.60
weakNAS [35] 73.42 0.49 0.56
Arch-Graph 73.38 0.67 0.79

Table 3. Comparison of different methods on TransNAS-Bench-
101 and NAS-Bench-201 benchmarks. τ, ρ are Kendall rank co-
efficient, Pearson correlation coefficient respectively. #budgets in-
dicates the number of architectures for a method to find top 0.3%
architectures in the macro level search space.

initialized embedding to represent each task and it is learned
jointly with the NAS model’s parameters. We verify the ef-
fectiveness of our task embedding defined in Sec. 3. We
compare our task embedding with randomly initialized vec-
tors for each task’s embedding. We show the averaged
architecture rank over 6 target tasks, with experiments re-
peated over 5 random seeds in Tab. 4. The performance us-
ing randomly initialized task embedding is highly unstable,
resulting in a much larger variance (0.63 vs 692.03) and a
significantly lower average performance (24.13) compared
to Task2Vec (5.24), indicating a randomly initialized task
embedding can’t guarantee a stable knowledge transfer.
MWAS. Obtaining the approximation of the Maximal

11887

Figure 4. Visualization of the network search space on object classification and autoencoding tasks. For each algorithm, we color its
predicted top-50 models and grey out everything else. We use triangles to mark each algorithm’s top-5 prediction, and use stars to label the
search space’s global optima.

Average rank Mean Variance

Ours 5.24 0.63
Random 24.13 692.03

Table 4. Searched network’s rank comparison by two embedding
methods on Arch-Graph (lower is better).

Weighted Acyclic Subgraph Problem is a central compo-
nent of our model to improve graph construction. To show
its advantages over Arch-Graph-zero, we first pick 20 fine-
tuned predictors on each task with the highest validation
accuracy among the bv validation architectures. We then
compare the predicted accuracy between Arch-Graph-zero
and Arch-Graph. Arch-Graph can identify better models
than Arch-Graph-zero, which on average improves the rank
by 3.14 and 5.28 on the macro and micro search space, re-
spectively. More detailed differences of these top models
can be found in Tabs. 1 and 2.
Arch-Graph-single. To verify the effect of knowledge
transfer from source tasks to new target tasks, we compare
the performance of Arch-Graph and Arch-Graph-single and
fix the total budget to 50 models. Compared to transferring
knowledge from a pretrained predictor, Arch-Graph-single
is worse than Arch-Graph as shown in Tabs. 1 and 2. It
shows the effectiveness of knowledge transfer from predic-
tor trained on a previous task.

5. Conclusions and Discussions

In this work, we propose Arch-Graph, a task-transferable
NAS method that formulate NAS as a graph ordering prob-

lem on an architecture relation graph. Directed edges of this
graph are obtained through training a pairwise relation pre-
dictor with knowledge transfer. With extensive experiment,
we demonstrate Arch-Graph’s transferability and sample ef-
ficiency over many other NAS methods.

Potential negative societal impact. We have not identified
any potential negative social impact. All the datasets we use
are public and conform with ethical standards.

Limitation and Future Work. With Arch-Graph-zero, it
is possible to exclude the ground truth global optima before
the MWAS calculation. Future work could explore along
this direction and construct subgraphs more efficiently for
ranking. For example, the pairwise relation predictor train-
ing and the MWAS calculation can be done in an iterative
style, so that we can progressively shrink the search space
and improve the performance.

6. Acknowledgements

This work was supported in part by National key R&D
Program of China under Grant No.2020AAA0109700,
National Natural Science Foundation of China (NSFC)
No.61976233, Guangdong Province Basic and Ap-
plied Basic Research (Regional Joint Fund-Key) Grant
No.2019B1515120039,GuangdongOutstandingYouthFund
(Grant No. 2021B1515020061), Shenzhen Fundamental
Research Program (Project No.RCYX20200714114642083,
No.JCYJ20190807154211365).

11888

References
[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash

Ravichandran, Subhransu Maji, Charless C. Fowlkes, Ste-
fano Soatto, and Pietro Perona. Task2vec: Task embedding
for meta-learning. In 2019 IEEE/CVF International Confer-
ence on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, pages 6429–6438. IEEE,
2019. 2, 4

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using re-
inforcement learning. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. 1

[3] James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. J. Mach. Learn. Res., 13:281–
305, 2012. 6, 7

[4] Xin Chen, Yawen Duan, Zewei Chen, Hang Xu, Zihao Chen,
Xiaodan Liang, Tong Zhang, and Zhenguo Li. CATCH:
context-based meta reinforcement learning for transferrable
architecture search. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, Computer
Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XIX, volume
12364 of Lecture Notes in Computer Science, pages 185–
202. Springer, 2020. 3, 6, 7

[5] Aleksandar Cvetkovic and Vladimir Yu. Protasov. Maximal
acyclic subgraphs and closest stable matrices. SIAM J. Ma-
trix Anal. Appl., 41(3):1167–1182, 2020. 5

[6] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In 8th In-
ternational Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. 6

[7] Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan
Liang, Tong Zhang, and Zhenguo Li. Transnas-bench-101:
Improving transferability and generalizability of cross-task
neural architecture search. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June
19-25, 2021, pages 5251–5260. Computer Vision Founda-
tion / IEEE, 2021. 3, 5, 6

[8] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah,
Royson Lee, Hyeji Kim, and Nicholas Lane. Brp-nas:
Prediction-based nas using gcns. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages
10480–10490. Curran Associates, Inc., 2020. 3, 5

[9] Lukasz Dudziak, Thomas C. P. Chau, Mohamed S. Abdelfat-
tah, Royson Lee, Hyeji Kim, and Nicholas D. Lane. BRP-
NAS: prediction-based NAS using gcns. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. 2

[10] Lei Feng, Senlin Shu, Nan Lu, Bo Han, Miao Xu, Gang Niu,
Bo An, and Masashi Sugiyama. Pointwise binary classifica-

tion with pairwise confidence comparisons. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 3252–3262.
PMLR, 18–24 Jul 2021. 3

[11] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.
On calibration of modern neural networks. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1321–1330.
PMLR, 2017. 5

[12] Heinrich Jiang, Been Kim, Melody Y. Guan, and Maya R.
Gupta. To trust or not to trust A classifier. In Samy Ben-
gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 5546–5557, 2018. 5

[13] Richard M. Karp. Reducibility among combinatorial prob-
lems. In Raymond E. Miller and James W. Thatcher, editors,
Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York,
USA, The IBM Research Symposia Series, pages 85–103.
Plenum Press, New York, 1972. 5

[14] Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net, 2017. 4

[15] Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid
neural architecture search by learning to generate graphs
from datasets. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-
7, 2021. OpenReview.net, 2021. 1, 3

[16] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,
Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-
wisely supervised neural architecture search with knowledge
distillation. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 1986–1995. Computer Vision
Foundation / IEEE, 2020. 2

[17] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,
Bing Wang, Xiaodan Liang, and Xiaojun Chang. Bossnas:
Exploring hybrid cnn-transformers with block-wisely self-
supervised neural architecture search. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021,
Montreal, QC, Canada, October 10-17, 2021, pages 12261–
12271. IEEE, 2021. 2

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. 2

[19] Zhichao Lu, Kalyanmoy Deb, Erik D. Goodman, Wolfgang
Banzhaf, and Vishnu Naresh Boddeti. Nsganetv2: Evolu-
tionary multi-objective surrogate-assisted neural architecture

11889

search. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Computer Vision - ECCV 2020
- 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part I, volume 12346 of Lecture Notes in
Computer Science, pages 35–51. Springer, 2020. 6, 7

[20] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh D. Dhe-
bar, Kalyanmoy Deb, Erik D. Goodman, and Wolfgang
Banzhaf. NSGA-NET: A multi-objective genetic algorithm
for neural architecture search. CoRR, abs/1810.03522, 2018.
2

[21] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen,
and Tie-Yan Liu. Neural architecture search with GBDT.
CoRR, abs/2007.04785, 2020. 2

[22] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-
Yan Liu. Neural architecture optimization. In Samy Ben-
gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 7827–7838, 2018. 2, 3

[23] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and
Huazhong Yang. A generic graph-based neural architec-
ture encoding scheme for predictor-based NAS. In An-
drea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, Computer Vision - ECCV 2020 - 16th Euro-
pean Conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part XIII, volume 12358 of Lecture Notes in Com-
puter Science, pages 189–204. Springer, 2020. 2, 3

[24] Ramakanth Pasunuru and Mohit Bansal. Continual and
multi-task architecture search. In Anna Korhonen, David R.
Traum, and Lluı́s Màrquez, editors, Proceedings of the 57th
Conference of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers, pages 1911–1922. Association for
Computational Linguistics, 2019. 3

[25] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. In Jennifer G. Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 4092–4101. PMLR, 2018. 2

[26] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.
Le. Regularized evolution for image classifier architecture
search. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, Jan-
uary 27 - February 1, 2019, pages 4780–4789. AAAI Press,
2019. 2, 6, 7

[27] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey Ku-
rakin. Large-scale evolution of image classifiers. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70 of

Proceedings of Machine Learning Research, pages 2902–
2911. PMLR, 2017. 2

[28] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T.
Kwok, and Tong Zhang. Bridging the gap between sample-
based and one-shot neural architecture search with BONAS.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. 2,
6, 7

[29] Masanori Suganuma, Mete Ozay, and Takayuki Okatani. Ex-
ploiting the potential of standard convolutional autoencoders
for image restoration by evolutionary search. In Jennifer G.
Dy and Andreas Krause, editors, Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research,
pages 4778–4787. PMLR, 2018. 2

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mobile. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 2820–2828. Computer Vision Foundation / IEEE,
2019. 2

[31] Renbo Tu, Mikhail Khodak, Nicholas Roberts, and Ameet
Talwalkar. Nas-bench-360: Benchmarking diverse tasks for
neural architecture search. CoRR, abs/2110.05668, 2021. 3

[32] Chen Wei, Chuang Niu, Yiping Tang, and Jimin Liang. NPE-
NAS: neural predictor guided evolution for neural architec-
ture search. CoRR, abs/2003.12857, 2020. 2

[33] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Helen Li, Gabriel
Bender, and Pieter-Jan Kindermans. Neural predictor for
neural architecture search. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, Computer
Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XXIX, volume
12374 of Lecture Notes in Computer Science, pages 660–
676. Springer, 2020. 2, 3

[34] Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Ges-
mundo. Transfer learning with neural automl. In Samy Ben-
gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 8366–8375, 2018. 1, 7

[35] Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen,
Mengchen Liu, Ye Yu, Zhangyang Wang, Zicheng Liu, Mei
Chen, and Lu Yuan. Stronger nas with weaker predictors.
arXiv preprint arXiv:2102.10490, 2021. 2, 6, 7

[36] Lingxi Xie and Alan L. Yuille. Genetic CNN. In IEEE
International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pages 1388–1397. IEEE
Computer Society, 2017. 2

[37] Yixing Xu, Yunhe Wang, Kai Han, Yehui Tang, Shangling
Jui, Chunjing Xu, and Chang Xu. Renas: Relativistic eval-

11890

uation of neural architecture search. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2021, vir-
tual, June 19-25, 2021, pages 4411–4420. Computer Vision
Foundation / IEEE, 2021. 2, 3

[38] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-
Lin Liu. Practical block-wise neural network architecture
generation. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pages 2423–2432. Computer Vision
Foundation / IEEE Computer Society, 2018. 2

[39] Barret Zoph and Quoc V. Le. Neural architecture search
with reinforcement learning. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. 2

[40] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,
2018. 1

[41] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.
Le. Learning transferable architectures for scalable image
recognition. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pages 8697–8710. Computer Vision
Foundation / IEEE Computer Society, 2018. 2

11891

