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Figure 1. RICH is a new dataset containing videos of people in natural scenarios and standard clothing together with ground-truth 3D

body pose and shape (a-b). A key novelty of RICH is that it also contains 3D scene scans, which enable dense and accurate labeling of

human-scene contact (c, green). We exploit this to learn a regressor called BSTRO that takes an image and infers human-scene contact.

Abstract

Inferring human-scene contact (HSC) is the first step to-

ward understanding how humans interact with their sur-

roundings. While detecting 2D human-object interaction

(HOI) and reconstructing 3D human pose and shape (HPS)

have enjoyed significant progress, reasoning about 3D

human-scene contact from a single image is still challeng-

ing. Existing HSC detection methods consider only a few

types of predefined contact, often reduce the body and scene

to a small number of primitives, and even overlook image

evidence. To predict human-scene contact from a single

image, we address the limitations above from both data

and algorithmic perspectives. We capture a new dataset

called RICH for “Real scenes, Interaction, Contact and

Humans.” RICH contains multiview outdoor/indoor video

sequences at 4K resolution, ground-truth 3D human bod-

ies captured using markerless motion capture, 3D body

scans, and high resolution 3D scene scans. A key feature

of RICH is that it also contains accurate vertex-level con-

tact labels on the body. Using RICH, we train a network

that predicts dense body-scene contacts from a single RGB

image. Our key insight is that regions in contact are al-

ways occluded so the network needs the ability to explore

the whole image for evidence. We use a transformer to

learn such non-local relationships and propose a new Body-

Scene contact TRansfOrmer (BSTRO). Very few methods

explore 3D contact; those that do focus on the feet only,

detect foot contact as a post-processing step, or infer con-

tact from body pose without looking at the scene. To our

knowledge, BSTRO is the first method to directly estimate

3D body-scene contact from a single image. We demon-

strate that BSTRO significantly outperforms the prior art.

Our code and dataset are available for research purposes

at: https://rich.is.tue.mpg.de

1. Introduction

Understanding human actions and behaviors has long

been studied in computer vision, with applications in

robotics, healthcare, virtual try-on, AR/VR, and beyond.

Remarkable progress has been made in both 2D human pose

detection [7,28,32,42,67,82] and 3D human pose and shape

estimation (HPS) from a single image [5, 36, 39, 40, 44, 56,

81, 95], thanks to realistic datasets annotated with 2D key-

points [1,33,46] and 3D data [30,34,49,66,77]. Despite this

progress, something important is missing. Even the most

basic human activities, such as walking, involve interaction
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with the surrounding environment. Fundamentally, human-

scene interaction (HSI) involves the contact relationships

between a 3D human and a 3D scene, i.e., human-scene

contact (HSC). Existing HPS methods, however, largely ig-

nore the scene and estimate human poses and/or shapes in

isolation, often leading to physically implausible results.

Since reconstructing the full 3D scene from a single im-

age is challenging, recent HPS methods tackle this problem

by making several simplifying assumptions about the scene

and/or body. Many methods consider only the contact be-

tween feet and ground [61,64,83,89,90,93,101], or assume

the ground is a even plane [60], which is often violated,

e.g., walking up stairs. To infer contact, many state-of-the-

art (SOTA) methods use MoCap datasets [48, 50] to train a

contact detector [61, 93, 101]. Others exploit physics simu-

lation [64,89] or physics-inspired objectives [83] but reduce

the body representation to a small set of primitives. Surpris-

ingly, none of these methods use image evidence when pre-

dicting human-scene contact. This is primarily due to the

lack of datasets with images and 3D contact ground truth.

Many methods do estimate human object interaction

(HOI) from images but constrain the reasoning to 2D image

regions [37,58,78,85,100]. That is, they estimate bounding

boxes or heatmaps in the image corresponding to contact

but do not relate these to the 3D body.

In this work, we address this problem with a framework

that estimates 3D contact on the body directly from a single

image. We make two main contributions. First, we create

a new dataset that accurately captures human-scene con-

tact by extending a markerless MoCap method to marker-

less HSC capture. Specifically, we capture multiview video

sequences at 4K resolution in both indoor and outdoor en-

vironments. We also capture the precise 3D geometry of

the scene using a laser scanner. Additionally, we capture

high-resolution 3D scans of all subjects in minimal cloth-

ing and fit the SMPL-X body model [56] to the scans. Our

markerless HSC approach allows us to compute accurate

per-vertex scene contact, as visualized in Fig. 1c.

Compared to the PROX dataset [25], which captures

HSC with monocular RGB-D input, multiview data has two

advantages: (1) it effectively resolves occlusions, leading

to better reconstructed bodies and consequently more accu-

rate scene contact; (2) it works for outdoor environments,

as shown in Fig. 1.

The resulting dataset, called RICH (“Real scenes, In-

teraction, Contact and Humans”), provides: (1) high-

resolution multiview images of single or multiple subjects

interacting with a scanned 3D scene, (2) dense full-body

scene-contact labels, (3) high-quality outdoor/indoor scene

scans, (4) high-quality 3D human shapes and poses, and (5)

dynamic backgrounds and moving cameras.

To estimate vertex-level HSC from a single color image,

we develop BSTRO (Body-Scene contact TRansfOrmer),

and train it with RICH. Our key insight in building BSTRO

is that contact is not directly observable in images due to oc-

clusion; thus, to infer contact, the network architecture must

be able to explore the whole image for evidence. The trans-

former architecture enables BSTRO to learn non-local rela-

tionships and use scene information to “hallucinate” unob-

served contact. We employ a multi-layer transformer [75],

which has been successfully employed for natural-language

processing [11] and HPS estimation with occlusion [44].

In summary, our key contributions are: (1) We present

RICH, a novel dataset that captures people interacting with

complex scenes. It is the first dataset that provides both

scans of outdoor scenes and images for monocular HSC es-

timation, unlike existing methods [24, 25], which lack one

or the other. (2) We propose BSTRO, a monocular HSC

detector. It is body-centric so it does not require 3D scene

reconstructions to infer contact. Unlike POSA [26], which

is also body-centric, BSTRO directly estimates dense scene

contact from the input image without reconstructing bod-

ies. (3) We evaluate recent HSC methods and show that

BSTRO gives SOTA results. (4) Since RICH has pseudo-

ground-truth body fits, we also evaluate SOTA HPS meth-

ods and analyze their performance with respect to scene-

contact, which is not supported by existing HPS datasets

[30, 55, 77]. We confirm that the performance of a SOTA

HPS method [17] degrades in the presence of scene contact.

2. Related Work

We review existing methods that consider contact be-

tween humans and scenes. Since many of them employ

a 3D body reconstruction method as a backbone in the

pipeline, we first briefly discuss recent HPS trends and then

focus on how the prior art incorporates scene contact.

2.1. Human Pose and Shape Estimation (HPS)

Monocular HPS methods reconstruct 3D human bodies

from a single color image. Many methods output the pa-

rameters of statistical 3D body models [2, 35, 47, 56, 86].

SMPLify [5] fits the SMPL model to the output of a 2D

keypoint detector [57] and we build on it here.

In contrast, deep neural networks regress body-model

parameters directly from pixels [10, 16, 17, 23, 36, 38–40,

62, 68, 69]. To deal with the lack of in-the-wild 3D ground

truth, some methods use 2D keypoints [36, 71, 74] or lin-

guistic attributes [9] as weak supervision, while some di-

rectly fine-tune the network w.r.t. an input image at test time

[34]. Kolotouros et al. [40] combine HMR [36] and SM-

PLify [5] in a training loop for better 3D supervision. On

the other hand, non-parametric or model-free approaches

directly estimate 3D vertex locations without body param-

eters [8, 12, 41, 44, 45, 52, 91]. We refer readers to [72, 99]

for a comprehensive review. None of the above methods

estimate HSC.
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Methods
Scene Contact

Body
Contact Cues

Body / Scene Train / Test

Zanfir et al. [90]
foot joints

/ ground

mesh - / dist.

Zou et al. [101]
joint

both 2D vel.

Rempe et al. [61]

vel. & dist.
/ vel. & dist.

PhysCap [64] part

HuMoR [60] 8 joints / ground
mesh

LEMO [93] foot vert. / ground

SimPoE [89] foot parts

/ ground
part

physics

simulationXie et al. [83]

HolisticMesh [80]

dense body mesh

/ scene mesh
mesh

- / dist.

PROX [25] - / dist.

PHOSA [92] - / dist.

Zhang et al. [97] dist. / -

PLACE [94] dist.

POSA [26] dist. / pose

BSTRO (ours) as above mesh dist. / image

Datasets Contact Label Img Scene

MTP [53] self-contact ✓ N/A

GRAB [70] hand-object ✗ N/A

ContactHands [54] hand-X‡ ✓ N/A

Fieraru et al. [18] person-person ✓ N/A

Fieraru et al. [19] self-contact ✓ N/A

PiGraph [63] joint-scene ✓ RGBD scans

i3DB [51] N/A ✓ CAD

GPA [79] N/A ✓ Cubes

Guzov et al. [24] foot-ground ✓¶ laser scans

PROX [25] body-scene ✓ RGBD scans

RICH (ours) body-scene ✓ laser scans

Table 1. Comparison of contact-related methods and datasets.
‡: X can be self, person and object. ¶: egocentric images. Vert.:

vertex; vel.: velocity; dist.: distance.

Markerless MoCap exploits synchronized videos from

multiple calibrated cameras and has a long history with

commercial solutions, but these focus on estimating a 3D

skeleton. To model HSC, we need to extract a full 3D body

shape and, therefore, focus on such methods here. Early

methods, either bottom-up [4,22,65] or top-down [3,20,76],

are fragile, need subject-specific templates and manual in-

put, and do not generalize well to in-the-wild images.

Powered by CNNs, recent methods leverage multiview

consistency to improve keypoint detection [27, 31, 59, 73],

to re-identify subjects across views [14] or across view

and time [13, 96], but they estimate only joints, not body

meshes. Dong et al. [15] reconstruct SMPL bodies for mul-

tiple subjects and Zhang et al. [98] additionally estimate

hands and facial expressions. They demonstrate results for

lab scenarios, while our HSC capture method in Sec. 3.1

works in less constrained outdoor scenes.

All methods above reconstruct human bodies in isola-

tion without taking into account the interaction with scenes.

Consequently, the results often contain physically implau-

sible artifacts such as foot skating and ground penetration.

2.2. Human Scene Interaction (HSI)

2D Human-Object Interaction (HOI) methods localize

2D image regions with HOI and recognize the semantic in-

teractions in them. Most methods represent humans and ob-

jects very roughly as bounding boxes [37, 100]; only a few

use body meshes for humans and spheres for objects [43].

3D Contact. Knowing which part of the body and scene

are in contact provides compact yet rich information that

enables many applications, such as HSI recognition [6] or

placing virtual humans into a scene [26]. The upper part of

Table 1 summarizes how body-scene contact gets incorpo-

rated in methods of different goals and tasks.

Early work uses scene contact as part of the HSI fea-

ture [51,63] but represents a human body roughly as a stick

figure. Recent HPS methods [25, 60, 61, 101] use contact

to improve the estimated body poses. Ideally, when both

the body and scene are “perfectly reconstructed,” applying

a threshold to the 3D Euclidean distances between them is

sufficient to infer accurate contact. Prior work takes this

thresholding approach to annotate contact [24, 25, 53, 70].

At test time, PROX [25] assumes scene scans to be known

a priori; PHOSA [92] estimates 3D objects, 3D people, and

the contacts between them but only for a limited class of

objects. Since reconstructing a 3D scene in high quality

with correct layout and spatial arrangement is still an open

challenge [87], monocular HSC detection methods resort to

other heuristics. The most common one is a zero-velocity

assumption; i.e., surfaces in contact should not slide rel-

ative to each other. This assumption is widely employed

to reduce foot-skating artifacts [60, 61, 64, 101]. Some of

these detect contact with a separate neural network at test

time, taking the 2D/3D joints in a temporal window as in-

put [61, 64, 101], while others integrate it in a body motion

prior [60, 93]. These approaches use MoCap datasets such

as AMASS [48] and Mixamo [50] to build training data,

where contact is automatically labelled via thresholding the

distance to the ground and/or the velocity.

POSA [26] observes that scene contact is correlated with

body poses and introduces a generative model to sample

contact given a posed mesh. Some methods [64, 83, 89]

apply physics to encourage foot-ground contact and ensure

physically plausible motions. However, they have to ap-

proximate the body as a set of boxes, cylinders or spheres.

MOVER [87] uses human scene contact to improve monoc-

ular estimation of 3D scene layout.

All these approaches first reconstruct bodies (2D or 3D),

and then reason about contact, effectively ignoring valuable

image information. To go further, we need a dataset con-

sisting of natural images and 3D body-scene contact labels.

As summarized in the lower part of Table 1, many exist-

ing contact-related datasets consider self contact [19, 53] or

person-person contact [18], but not HSC. The most rele-

vant datasets for HSC are [24] and PROX [25]. The former

provides egocentric images for localization, which are not

suitable for HSC detection from images. PROX [25] can

be used for our task but it consists of only indoor scenes
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and is of lower quality. The ground-truth bodies in PROX

are computed by fitting to RGBD data, which is sensitive

to occlusions. This not only limits the type of HSI in the

dataset (mostly walking, sitting, lying) but also influences

the quality of body fits.

3. Methods: RICH Dataset

Overview and preliminaries. Unlike [61,64,83,88], which

represent a body as a set of coarse geometry primitives, we

follow [25,26] to capture realistic human-scene contact with

a parametric SMPL-X body model [56]. The vertex loca-

tions on a SMPL-X mesh M(θ, β, ψ) ⊂ R
3 are controlled

by parameters for pose θ, shape β, and facial expression ψ.

θ consists of body pose θb and hand pose θh. Hand pose θh
is a function θh(Zh) of a PCA latent vector Zh ∈ R

12.

Given videos captured by C synchronized cameras, we

first identify each subject across views and across time

with [14, 84]. For each identified subject, we reconstruct a

SMPL-X body by a multiview fitting method that is robust

to noisy 2D keypoint detections, and we place it in a pre-

scanned scene to compute body-scene contact (Sec. 3.1).

With this approach, we build a monocular body-scene inter-

action dataset (RICH) comprising 540K images paired with

SMPL-X parameters and scene contact labels (Sec. 5).

3.1. Capturing Dense BodyScene Contact

We first track subjects temporally in each video with

AlphaPose [84], followed by MvPose [14] to match the

tracklets across views. Other methods that build such 4D

associations [13, 96] could also be applied here.

At time t, we now have at most C bounding boxes of

the same person and we aim to reconstruct the body. To

this end, we adapt SMPLify-X [56] to accommodate multi-

view data. SMPLify-X optimizes the pose θ, shape β and

facial expression ψ of SMPL-X to match the observed 2D

keypoints [7] by minimizing the following objective:

E(β, θ, ψ) = EJ + Ereg

Ereg = λθbEθb + λαEα + λβEβ + λEEE + λCEC ,
(1)

where EJ is the data term, and Ereg includes several regu-

larization terms: θb is the pose vector for the body, which

is a function θb(Zb), where Zb ∈ R
32 is a VAE latent rep-

resentation and Eθb is an L2 prior defined on Zb. Eα(θb)
penalizes strong bending of elbows and knees. Eβ(β) is

an L2 prior on the body shape and EC is a term penalizing

mesh-intersections. λ’s denote weights for each respective

term. Interested readers are referred to [56] for details.

Multiview per-person reconstruction. For each person,

we compute 2D keypoints [7] in each camera c. Instead of

fitting them using SMPLify-X in each view, we combine all

2D landmarks in a multiview energy term:
∑

cE
c
J . Unlike

in [56], where one needs to estimate camera translation first,

(a) joint term v.s. bone orientation term

reprojection error

(b) multi-view
consensus

Figure 2. Illustration of bone orientation term and multiview con-

sensus. ρ is a Geman-McClure robust estimator [21]. See text and

Sup. Mat. for more discussion.

the perspective projection here is well defined by the pre-

calibrated intrinsics and extrinsics. To pursue high-quality

fits, body shape β is estimated in advance by registering

a SMPL-X template to minimally-clothed 3D scans follow-

ing [29]. β is hence no longer a free variable in Eq. 1 and we

set λβ = 0. In addition to EJ , which measures joint errors,

we also use EO that measures errors in “bone orientations.”

Figure 2(a) illustrates the intuition behind this term. Since

posing human bodies requires traversing a kinematic chain,

with the joint term EJ , the error of parent joints ǫ1 is ac-

cumulated in the error of child joints ǫ2. When ‖ǫ2‖ gets

too large, the influence is downweighted because our robust

loss treats it as an outlier. Instead, EO factors out the errors

of ancestors and focuses on the error of the joint per se. Our

final objective is Emv(θ, ψ) =
∑

cE
c
J +

∑
cE

c
O + Ereg.

Due to noisy 2D detections, keypoints in each view of-

ten disagree with each other. One may count on the robus-

tifier to identify outliers and reduce their contribution. This

depends, however, on the current estimated body in the op-

timization, so it assumes good initialization. Instead, we

check the multiview consistency of landmarks as illustrated

in Fig. 2(b). For each joint, we take the detections in two

views (blue), triangulate a 3D point and project it to the third

view (green). If the distance between the projected point

(red) and the detection (green) in the third view is large,

that means the three detections do not agree with each other

and at least one of them is wrong. Instead of making hard

decision separating outliers from inliers, we exhaustively

compute all triplets of views, accumulate the reprojection

error and downweight the contribution in
∑

cE
c
J for views

with high errors. We term this multiview consensus, as it

behaves like a soft majority voting mechanism. As long as

there are more correct detections than wrong ones, it can

reduce the influence of noisy landmarks, independent of the

current body estimate.

To further avoid local minima, we apply a state-of-the-art

in-the-wild body regressor (PARE [39]) to initialize θ. We

run PARE on the bounding box from each view, fuse the

results by averaging the poses, and covert the fused body

from SMPL to SMPL-X. The SMPL-X body pose gives the
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initial value of θ for minimizingEmv. We first solveEmv for

each time step t independently and then refine a batch of T

frames jointly with a motion smoothness term Esmooth [93]:

Ebatch(θ1, · · · , θT ) =
∑T

t=1
Et

mv + λsmoothEsmooth.

We place the reconstructed bodies into pre-scanned 3D

scenes to estimate the body-scene contact. The scene mesh

and HDR textures were acquired using an industrial laser

scanner, Leica RTC360. To put the bodies in the scene,

we solve the rigid transformation between camera coordi-

nates and scan coordinates with manually identified cor-

respondences. To annotate human-scene contact automat-

ically, our approach is similar to POSA [26]. Specifically,

for each vertex on the body mesh, we compute the point-to-

surface distance to the scene scan. If the distance is lower

than a threshold and the normal is compatible, we accept

the hypothesis that it is in contact. Considering the thick-

ness of shoe soles, the threshold is 5cm for the vertices at

the bottom of feet and 2.5cm for the rest of body. This is

different from POSA, which uses 5cm for the whole body

to collect training data from PROX [25]. Furthermore, the

pseudo-ground-truth body poses in PROX are obtained by

fitting the SMPL-X template to monocular RGBD data. As

shown in the bottom row of Fig. 5, PROX accuracy suffers

from occlusion, sometimes resulting in severe penetration

with the scene. The errors in body fits are carried over to

the ground-truth HSC data for POSA. In contrast, in RICH,

bodies are recovered from multiview data, which reduces

the issues caused by occlusion and depth ambiguity.

4. Methods: BSTRO

Here we introduce BSTRO for dense HSC estimation

from a single image. This relies on RICH, described in

Sec. 5 in detail. Existing HSC methods usually take a multi-

stage approach. Given an input image, they first reconstruct

the body mesh and use it as a proxy to infer contact. For-

mally, let f denote the function recovering a body mesh M

from the input image I , M = f(I). f can be an energy-

minimization process such as [56] or a neural network as

in [36, 39]. To estimate contact, SOTA methods differ from

each other in two ways: (1) the features extracted from M ,

e.g., Euclidean distance to the 3D scene, velocity and body

poses (cf. Table 1); (2) the prediction functions, e.g., sim-

ple thresholding, neural network, or physics engine. With a

slight abuse of notation, we denote these feature extraction

and contact estimation processes collectively as g, which

takes the body M as input and predicts a contact vector

c = g (M). Each element in c is 1 if the corresponding

part of the body (vertex, joint or body part) is in contact

with the scene, and 0 otherwise. For example, g represents

the decoder of a conditional VAE in POSA [26], taking the

vertex locations of M as input, while in [60, 61, 64], g is a

MLP operating on the motion of M .

With this formulation, the body-scene contact c, whether

H
R

-N
et

Multi-layer Transformer
SMPL template mesh

0

...

1 0 ... 0 010

Binary Cross Entropy loss

per-vertex 
image feature

positional 
encoding

random 
mask-out

...

...

...0: no contact
1: in contact

predicted
scene-contact

ground-truth
scene-contact

Figure 3. BSTRO model architecture. Given an input image,

BSTRO predicts dense per-vertex contact labels by exploiting im-

age information, without reconstructing 3D poses or 3D bodies.

defined on a dense mesh or on a set of sparse joints/parts,

is a composite function of g and f : c = g ◦ f(I), where

g is agnostic to the input image. In contrast, our goal is to

detect dense body-scene contact directly from the input I:

c = g(I). To our knowledge, this was explored only for

self-contact [19] and person-person contact [18] and only at

a coarse region level, not the vertex level.

We use SMPL as the body representation for BSTRO,

hence c ∈ {0, 1}V , where V =6890 is the number of vertices

on a SMPL mesh, as opposed to V =10475 on a SMPL-X

mesh. The reason for this choice is that a SMPL-X mesh

has nearly 50% of the vertices on the head, which rarely

participates in natural body-scene contact, so we would

like to reduce the dimensionality of the output space. See

Sup. Mat. for more discussion of this design choice.

We model g as a neural network and train it end-to-end in

a supervised way with the (I, c) pairs sampled from RICH.

The network architecture is designed based on our key ob-

servation. That is, regions in contact are not directly observ-

able due to occlusion. However, there is rich information in

the image to tell which parts of the body are in contact with

the scene. Estimating HSC from images is therefore inher-

ently a “hallucination” task. Without really “seeing” the

regions in contact, the network needs to explore the image

freely and attend to regions it finds informative.

We use a multi-layer transformer [11] to learn such a

non-local relationship from data and propose the Body-

Scene contact TRansfOrmer (BSTRO). Figure 3 visualizes

the architecture of BSTRO. It takes an image of a person as

input, extracts features X ∈ R
2048 with a CNN backbone,

and appends vertex locations of the SMPL template as posi-

tional encoding. The feature after concatenation is denoted

as q ∈ R
2051. The input query of the transformer is a set

of q: Q = {qv}
V
v=1

. The transformer outputs an array of

logits lv , which, after applying sigmoid functions, result in

elements pv ∈ [0, 1] encoding the probability of vertex v

being in contact. Finally, the dense scene-contact vector c

is obtained by thresholding pv at 0.5. Note that BSTRO is a
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non-parametric method, in spirit similar to [44] that makes

prediction for each vertex directly without passing through

a parametric model.

Training. We apply the binary cross entropy loss between

the ground truth contact and the predicted contact probabil-

ity pv . One can think of this as a multi-label classification

problem, where each category (vertex) has its own proba-

bility of being true (in contact) or not.

To gain robustness to occlusion, we employ Masked Ver-

tex Modeling (MVM) [44]. Specifically, at each iteration,

we randomly mask out some queries in Q and still ask the

transformer to estimate contact for all vertices. In order

to predict the output of a missing query, the model has to

explore other relevant queries. This simulates occlusions

where bodies are only partially visible and also encourages

the network to hallucinate contact.

5. RICH Dataset

We capture 22 subjects performing various human-scene

interactions in 5 static 3D scenes with 6-8 static cameras

and, in some scenes, with an additional (untracked) mov-

ing camera (Fig. 4 rightmost scene). Subjects gave prior

written informed consent for the capture, use, and distribu-

tion of their data for research purposes. The experimen-

tal methodology has been reviewed by the University of

Tübingen Ethics Committee with no objections.

RICH has in total 134 single or multi-person multiview

videos, with a total of 85K posed 3D body meshes, together

with 85K dense full-body contact labels in both SMPL-X

and SMPL mesh topology, and 540K high resolution (4K)

images. Compared to PROX, RICH consists of mostly out-

door environments with areas of roughly 60m2. The images

in RICH are real, not limited to a single subject, have dy-

namic backgrounds and varied viewpoints. All these fea-

tures make it suitable for training and evaluating monocular

HSC methods. Figure 4 shows several examples of RICH.

In addition, since RICH provides SMPL-X fits, i.e.,

pseudo-ground-truth human poses and shapes, it can also

serve as a monocular or multiview HPS benchmark. It con-

tains more subjects than 3DPW [77], more accurate body

shapes than AGORA [55], and real human-scene interac-

tion unlike Human3.6M [30]. In our experiments we ana-

lyze the performance of SOTA HPS methods with respect

to body-scene contact. Such analyses are not feasible with

existing HPS datasets.

6. Experiments

6.1. Dataset Split

We split 134 multiview videos in RICH into 57, 27, 50

for training, validation, and testing purposes, respectively.

The test set consists of several subsets designed for var-

ied evaluation protocols. Each subset is defined by whether

or not each of three attributes has been observed in train-

ing: scene, human-scene interaction, and subject. The most

challenging subset is when they are all unseen in RICH-

train. The split ensures there is one completely withheld

scene and 7 unseen subjects in the test set. See Sup. Mat. for

more breakdowns in terms of 3D bodies and images.

6.2. Evaluation Metrics and Baselines

We apply standard detection metrics (precision, recall,

and F1 score) to evaluate the estimated dense HSC. Since

vertex density varies over the SMPL template, the same

number of false positives, say, on the palm and on the thigh

correspond to different areas on the body surface, but this

is not reflected in the scores above. To better understand

how well an HSC method estimates contact, we additionally

consider a measure that translates the count-based scores to

errors in metric space. Specifically, for each vertex pre-

dicted in contact, we compute its shortest geodesic distance

to a ground-truth vertex in contact. If it is a true posi-

tive, this distance is zero; if not, this distances indicates the

amount of prediction error along the body.

We evaluate three HSC baselines on the RICH-test. Zou

et al. [101] use the velocity of 4 2D keypoints on the feet to

predict contact; HuMoR [60] estimates contact for 8 joints

while reconstructing human motions. These two methods

estimate contact for sparse joints, not dense vertices, so we

mark all vertices that correspond to a joint as contact when

the method predicts the joint is in contact. POSA [26] re-

quires a 3D body mesh in the canonical space as input to

sample dense body contact. We consider two choices of 3D

bodies for POSA: (1) using the results from a SOTA body

regressor PIXIE [17], or (2) using ground-truth bodies to

evaluate the impact of errors in estimated body pose.

6.3. Main Results

The results on RICH-test are reported in Table 2. We

see that HuMoR yields overall lowest detection scores and

highest geodesic errors. This is partially due to the fact that

it only considers contact with an even ground plane, while

RICH-test contains more varied real scene interactions.

POSA, in general, has higher recall compared to other

methods. This, however, comes with a cost of precision,

meaning that there are many false positives. Comparing

rows (c) and (d) we see that recall is significantly better

when using ground-truth bodies. BSTRO yields signifi-

cantly better precision but with lower recall than POSA.

Still, it has the highest F1 score and lowest geodesic er-

ror, which shows that it strikes a good balance between

precision and recall. Figure 6 shows some visual exam-

ples. RICH has accurately fitted SMPL-X bodies and body-

scene contact. Given an input image, BSTRO estimates

scene contact that is closer to the ground truth, whereas

POSAPIXIE yields false positives frequently (red circles) and
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MultIOI_ID03553_ID03452_Calib_0
2_Drill_1, 435 2021-06-15_Multi_IOI_ID_00176_P

honeSitEat, 350

2021-06-15_Multi_IOI_ID_00189_P
lankJack, 430Multi-IOI_ID00227_ID00225_Scene

_ParkingLot_Calibration_03_Camer
aSettings_4_greetingChattingEatin
g_1, 158

Figure 4. RICH dataset. In each scene we capture subjects’ motions with 6-8 static cameras and, for some scenes, with 1 additional

moving camera. Top row: scans of three example outdoor scenes with example 3D body meshes. Bottom row: RGB images from these

scenes. The color border matches the camera icon of the same color.

Guitar, cam0, 158

viewing frame 
s001_frame_00792__00.00.26.373 
of N3Library_03403_02

wipingTable, cam0, 472

(a) foot-ground contact under occlusion (th=5cm)

no foot-ground 
contact

(b) scene-contact of sitting poses (th=2.5cm)

Figure 5. Comparison of HSC annotations in RICH (top) and

POSA [26] (bottom). The noisy body fits in PROX [25] result

in undesirable HSC labels in POSA: (a) no foot-ground contact

under occlusion; (b) severe penetration with chairs.

sometimes misses the contact on the hands. While the train-

ing dataset is limited, BSTRO also works on in-the-wild im-

ages, as shown in the right part of Fig. 6.

6.4. Generalization

To analyze how well BSTRO generalizes, we split

RICH-test into several subsets. Each subset represents

whether BSTRO has observed similar images of the three

attributes: scene, human-scene interaction (HSI), and sub-

ject. This allows us to inspect the importance of each at-

tribute, and to know which aspect future methods should

focus on. Note that this is a unique feature of RICH, as ex-

isting HSC datasets from MoCap [48,50] and HPS datasets

[30, 34, 77] do not support such an analysis.

In Table 3, ✓ means BSTRO has seen similar images of

that attribute during training, while ✗ means it has not. For

example, images in row (a) share the same scenes and sim-

ilar HSI with training data but the subjects are new. Intu-

itively, this is an easy subset and indeed the scores are best

in this scenario. Once HSI is withheld, the performance

drops (row (b)). This drop is more pronounced than the

drop caused by withholding a scene (row (c)). Comparing

each of the rows (b,c,d) to row (e), we observe that see-

ing similar HSI at training helps the most. Seeing the same

scenes or same subjects does not guarantee gains in per-

formance. Finally, row (e) represents the most challenging

subset, where scene, HSI, and subjects are all unseen dur-

ing training. We see that BSTRO still yields results that are

comparable to other subsets. Subset (b) contains many im-

ages with person-person occlusion, e.g., Fig. 6 bottom left,

which partially explains why it is the most challenging.

6.5. HPS Evaluation on RICHtest

Besides evaluating human-scene contact, RICH can also

serve as a benchmark for monocular HPS methods. Unlike

existing HPS benchmarks with real images such as 3DPW

[77] or Human3.6M [30], the real scene contact in RICH

enables a new way of analyzing the performance of an HPS

method. In particular, we use PIXIE [17], a recent monoc-

ular HPS method, to regress SMPL-X bodies from RICH-

test. We compare the estimated SMPL-X bodies with the

pseudo-ground-truth SMPL-X fits from Sec. 3.1, and com-

pare the error when body-scene contact is present or absent.

We consider Mean Per-Joint Position Error (MPJPE) and

Vertex-to-Vertex Error (V2V) to measure the discrepancies

in joints and body meshes respectively. For freely moving

cameras, we apply Procrustes alignment (PA) before calcu-

lating the two errors, hence PA-MPJPE and PA-V2V. Pro-

crustes alignment factors out differences in rotation, scale

and translation, focusing on measuring the difference in

“pure body poses.” PA hides many sources of errors so we

use it only when ground-truth camera extrinsic parameters

are not available. For calibrated cameras, on the other hand,

we factor out only translation by aligning the estimated and
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000_00497, 1

MultIOI_ID03553_Calib_02_Dips_1, 00445_00.bmp, 000_00238, 4
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 input SMPL-X fits GT HSC BSTRO POSAPIXIE

2021-07-08_Multi-IOI_03436_0359
4_LectureHall_YogaScene_Repari
ngProjector_1, 2068
000_00896, 4

 input SMPL-X fits GT HSC BSTRO POSAPIXIE BSTRO results on in-the-wild images

Figure 6. Left: qualitative results on RICH-test. GT HSC stands for ground-truth human-scene contact computed from the SMPL-X fits

and scene scans. BSTRO estimates more accurate scene contact than POSAPIXIE. Right: qualitative results on in-the-wild images.

Methods precision ↑ recall ↑ F1 ↑ geo. error ↓

a. Zou et al. [101] 0.277 0.609 0.359 17.48cm

b. HuMoR [60] 0.248 0.527 0.314 25.35cm

c. POSA [26]GT 0.311 0.809 0.418 23.68cm

d. POSA [26]PIXIE 0.312 0.699 0.399 21.16cm

e. BSTRO 0.640 0.552 0.559 9.94cm

Table 2. Evaluation on RICH-test. POSAGT means taking

ground-truth bodies as input, while POSAPIXIE takes the estimated

bodies from PIXIE [17].

ground-truth bodies to their pelvis locations, denoted with a

prefix “TR.” We ignore foot-ground contact, which is ubiq-

uitous, and compare the results when there is meaningful

scene contact vs. no scene contact.

On average, images containing meaningful scene contact

yield 214.0mm/172.81mm TR-MPJPE/TR-V2V, higher

than 161.81mm/121.71mm for images with no contact other

than foot-ground contact. This is partially due to the fact

that scene contact usually comes with scene occlusion, and

this shows a direction where monocular HPS methods can

improve. The corresponding errors in moving cameras are

84.15mm/83.16mm PA-MPJPE/PA-V2V for images with

meaningful contact and 63.67mm/64.37mm for those with-

out. We again observe that the presence of scene contact

makes HPS more challenging, yielding higher errors. This

shows that scene contact impacts all aspects of the problem:

from pure body poses to global orientation and translation.

7. Conclusion

While there is rapid progress on estimating 3D human

pose and shape from images, much of this work ignores the

scene and the interaction of the body with that scene. Cap-

ture and analysis of body-scene contact, however, is critical

to understanding human action in detail. To address this,

and to help the research community study this problem,

scene HSI subject p. ↑ r. ↑ F1 ↑ geo. err. ↓

a. ✓ ✓ ✗ 0.835 0.623 0.685 3.69cm

b. ✓ ✗ ✗ 0.537 0.304 0.358 10.02cm

c. ✗ ✓ ✗ 0.709 0.686 0.677 3.61cm

d. ✗ ✗ ✓ 0.631 0.604 0.588 13.94cm

e. ✗ ✗ ✗ 0.601 0.678 0.610 14.39cm

f. full test set 0.640 0.552 0.559 9.94cm

Table 3. The performance of BSTRO on each subset of RICH-test.

p.: precision; r.: recall. ✓/✗: observed attribute at training.

we created RICH, a new dataset with challenging natural

video sequences, high-resolution 3D scene scans, ground-

truth body shapes, high-quality reference poses, and de-

tailed 3D contact labels. We use the contact information

to train a new method (BSTRO) that takes a single image of

a person interacting with a scene and infers the 3D contacts

on their body. We also use the dataset to evaluate human

pose estimation and find that scenes with significant contact

cause problems for the state of the art. The dataset and code

are available for research purposes.

Limitations and future work. RICH considers only con-

tact with static scenes so does not account for the body con-

tact with dynamic scenes, e.g., with hand-held objects, or

human-human interaction. One extension would estimate

the rigid-body pose of an object given its 3D model and si-

multaneously reconstruct the hand/body that interacts with

it. Another interesting direction would jointly estimate the

body pose, shape, and scene contact in one single network.
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