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Abstract

Knowledge distillation (KD) is a widely-used technique
that utilizes large networks to improve the performance of
compact models. Previous KD approaches usually aim to
guide the student to mimic the teacher’s behavior com-
pletely in the representation space. However, such one-to-
one corresponding constraints may lead to inflexible knowl-
edge transfer from the teacher to the student, especially
those with low model capacities. Inspired by the ulti-
mate goal of KD methods, we propose a novel Evaluation-
oriented KD method (EKD) for deep face recognition to di-
rectly reduce the performance gap between the teacher and
student models during training. Specifically, we adopt the
commonly used evaluation metrics in face recognition, i.e.,
False Positive Rate (FPR) and True Positive Rate (TPR)
as the performance indicator. According to the evalua-
tion protocol, the critical pair relations that cause the TPR
and FPR difference between the teacher and student models
are selected. Then, the critical relations in the student are
constrained to approximate the corresponding ones in the
teacher by a novel rank-based loss function, giving more
flexibility to the student with low capacity. Extensive ex-
perimental results on popular benchmarks demonstrate the
superiority of our EKD over state-of-the-art competitors.

1. Introduction

With a large number of recognition systems deployed on
mobile and edge devices, compact yet discriminative mod-
els are in increasingly high demand. Although some opti-
mized neural network architectures for mobile devices [4,
25] are proposed in the recent years, there still exists an
enormous performance gap between these compact net-
works and the resource-intensive networks which have mil-
lions of parameters. In order to narrow the gap, Knowledge
Distillation (KD), which is a widely-used technique that uti-
lizes the knowledge of a large network to improve the per-
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Figure 1. Illustration of critical relations of samples. Different
colors indicate different models (Teacher T in blue and Student
S in green). Different shapes indicate samples of different sub-
jects. The numbers denote the cosine similarities of samples. The
relation of the 1st and the 3rd samples is the only one whose sim-
ilarities fall on the different side of the threshold in teacher and
student models (i.e., 0.6 > 0.55 in teacher while 0.5 < 0.55 in
student), and thus leads to the TPR difference. Therefore, in order
to pursue the same TPR of the teacher, the student which has lim-
ited model capability should pay more attention on the relation (in
red) of the 1st and the 3rd samples which is the critical relation.
Similarly, for the negative pairs, the relation of 1st and 5th samples
leads to the FPR difference and should be paid more attention.

formance of the compact models, is proposed.
The seminal works [2,10] introduced the original idea of

KD, which targets on reducing the Kullback–Leibler (KL)
divergence between each instance’s probabilities at the out-
put layers of the teacher and the student networks. In the
past decade, work [13, 24, 33] has continued optimizing
KD methods by extending such instance-wise constraints to
the activation of the hidden layers. For example, attention
transfer [33] aims to elicit similar response patterns in fea-
ture maps. FitNets [24] directly constrains intermediate rep-
resentations by using regressions. However, such instance-
based methods essentially require the teacher and student
to share the same representation space, which is unrealistic
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for student networks with low model capacities. As a result,
these instance-wised methods bring limited improvement
on the performance of student models. Recently, relation-
based KD methods [20,23,31] are proposed. Different from
the traditional instance-based methods, relation-based ones
utilize the correlations between instances as knowledge.
The students in these methods are not required to mimic the
teacher’s representation space, but rather to preserve the re-
lations of samples in their own representation space. Thus,
they can achieve relatively better performance comparing
to the instance-based methods. However, the model perfor-
mance trained with these methods are still far from perfect
as they still have too strict constraint on knowledge transfer.
In particular, they require the student to mimic all relations
between samples in a mini-batch, which seriously limits the
flexibility and efficiency of the knowledge transfer from the
teacher to the student.

Unlike all the KD methods mentioned earlier, we pro-
pose a novel Evaluation-oriented Knowledge Distillation
(EKD) method for deep face recognition, which draws in-
spiration from the ultimate goal of KD, that is, to reduce the
performance gap between the teacher and student models.
Specifically, we adopt the commonly used evaluation met-
rics in face recognition, i.e., False Positive Rate (FPR), and
True Positive Rate (TPR) as the performance indicator of a
face recognition model. By performing these two evalua-
tion metrics during the student model training, we can di-
rectly obtain the critical pair relations which cause the TPR
and FPR difference between the teacher and student mod-
els. Naturally, these critical pairs should be mainly focused
on during knowledge transfer. Thus, we adopt a novel rank-
based loss function to constrain the critical relations in the
student to approximate the teacher’s corresponding ones.
Fig. 1 gives a motivational example and illustrates how crit-
ical relations cause the difference of TPR and FPR between
the teacher and student models. Generally, the thresholds
of a face recognition model are determined by target FPRs
from the similarities of whole negative pairs and are usu-
ally different for different models, even if corresponding to
the same FPR. For clarity, we directly give 0.55 and 0.42,
which roughly correspond to FPR=1e-5 and FPR=1e-4, as
the thresholds of the student and teacher model.

Although both the proposed EKD and the relation-based
KD methods optimize the relations between samples, they
differ in two aspects. First, the previous relation-based KD
methods require the student to mimic all the relations of
the teacher to indirectly reduce the performance gap be-
tween the teacher and student models, while our EKD in-
troduces the commonly used evaluation protocol, i.e., TPR
and FPR, into the training process and optimizes the criti-
cal relations that cause the TPR and FPR difference in the
student model to reduce these two metrics gap. Second,
the previous relation-based KD methods usually constrain

the absolute similarity of the corresponding pair between
the teacher and student models, while our EKD relaxes the
constraint by a novel rank-based loss function, which only
requires the similarities of the corresponding pairs on the
same side of the thresholds in the teacher and student mod-
els.

The contributions of this paper are summarized as fol-
lows:

• We propose a novel Evaluation-oriented KD method
for deep face recognition. To our best knowledge,
EKD is the first KD method to directly reduce the eval-
uation metric difference between the teacher and stu-
dent model during training.

• We propose a novel rank-based loss function to opti-
mize the student model’s critical relations that cause
the TPR and FPR difference between the teacher and
student models. By only constraining the similarities
of the corresponding pairs are on the same side of the
thresholds in the teacher and student models, it gives
more flexibility to the student, thereby alleviating the
student’s low capacity problem.

• We conduct extensive experiments on popular facial
benchmarks, which demonstrate the superiority of the
proposed EKD over the SOTA competitors.

2. Related Work

Loss Function on Face Recognition. Designing a suit-
able loss function plays a vital role in deep face recog-
nition. The commonly used loss function can be cat-
egorized into two types: metric loss and classification
loss. Metric losses such as the contrastive [28] and the
triplet [21,26] loss are designed to increase the margin in the
Euclidean distance space. Current SOTA deep face recog-
nition methods mostly adopt softmax-based classification
loss [6,12,16,30]. Though such margin-based loss functions
equipped with large neural networks are verified to obtain
satisfactory performance [6], they do not always perform
well with a mobile neural network [7]. The performance
gap between the large and compact model motivates us to
explore the knowledge distillation method.

Knowledge Distillation. Knowledge distillation has been
actively investigated and widely used in many computer vi-
sion tasks. The basic idea proposed by Hinton et al. [10]
minimizes the KL divergence of soften class probabilities
between the teacher and student. Later, several variants of
distillation strategies are proposed to make better use of the
teacher network’s information. They mainly fall into two
categories, i.e., instance-based methods, and relation-based
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Figure 2. Illustration of EKD. T and S denote the teacher and student network, p1 and p2 denote the two positive pair relations, respectively.
The critical pair-wise relations that cause the TPR and FPR difference between the teacher and student model are selected and constrained
by the loss function.

methods. Instance-based methods transfer individual out-
puts from a teacher model to a student model point-wise.
For example, FitNets [24] use the intermediate representa-
tions of a teacher network to guide the feature activation
of a student network. KD methods especially proposed for
face recognition are also mainly in this category. Shrink-
TeaNet [8] minimizes the angle of each face sample be-
tween teacher and student embedding vectors. TripletDis-
tillation [9] improves the triplet loss with dynamic margins
by utilizing the similarity structures among different iden-
tities in the teacher network. MarginDistillation [29] uses
class centers from the teacher network for the student net-
work. Unlike the instance-based methods, relation-based
methods [5, 20, 23, 31] transfer relations of the samples in
a batch. RKD [20] utilizes two concrete relations, i.e.,
pairwise and ternary relations of examples. SP [31] and
CCKD [20] adopt the pairwise similarities of the outputs.
Darkrank [5] transfers similarity ranks between data exam-
ples. Although the model performance trained with the two
types of KD methods is better than direct training, it is still
far from perfect as these methods have too strict constraints
on knowledge transfer. In particular, instance-based meth-
ods require the teacher and student to share the same rep-
resentation space, while relation-based methods require the
student to mimic all relations between samples in a mini-
batch.

Our method is related to relation-based methods, but
there are several key differences. Compared with RKD [20]
and SP [31], our method improves in two aspects: 1) EKD
focuses on the critical relations that cause the TPR and FPR
difference between the teacher and student models, while
RKD and SP treat all the possible relations equally. 2)
EKD constrains the critical relations by a novel rank-based
loss function to give more flexibility to the student with

low capacity, while RKD and SP directly constrain the cor-
responding similarities by L2 loss. Our EKD and Dark-
Rank [5] differ in two aspects: 1) EKD adopts the rank
between a certain similarity and the thresholds estimated
from the total negative pairs in a mini-batch, while Dark-
Rank uses the rank based on the similarity score between
the candidate samples and a query sample. 2) EKD calcu-
lates the rank with an indicator function, which can be sim-
ply approximated by a sigmoid function, while DarkRank
uses the way introduced by classical list-wise learning to
rank methods [3]. Thus, our method is far simpler to imple-
ment. Besides, the critical relation selection of our method
is different from the common hard sample mining strate-
gies in previous methods [9, 17]. As illustrated in Fig. 2,
the positive pair p1 is more likely to be mined in previous
hard sample mining methods. On the contrary, the positive
pair p2 is mined in our approach since it leads to the TPR
difference between the teacher and student models.

3. The Proposed Method

Fig. 2 illustrates the framework of the proposed EKD.
Given a teacher model T and a student model S, we let
fT and fS be functions of the teacher and the student, re-
spectively. We follow batch construction from RKD [20]
and sample q positive images per category in a mini-batch.
Thus, the features extracted by T and S can be used to con-
struct the positive and negative pairs, respectively. Then,
according to the commonly used evaluation protocol TPR
and FPR in face recognition, the critical pair-wise relations
that cause the two metrics difference between the teacher
and student models are chosen (see Sec. 3.1). Finally, we
constrain the critical relations by a novel rank-based loss
function (see Sec. 3.2), giving more flexibility to the stu-
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dent and alleviating the student’s low capacity problem.

3.1. Critical Relation Selection

Positive Pairs and Negative Pairs. First, we introduce
the details of constructing the positive and negative pairs
in one mini-batch during training. A balanced mini-batch
consists of p classes, each class with q images. Therefore,
there are B = p∗q samples in each mini-batch. The number
of total pairs are B ∗ (B− 1)/2, where p ∗ q ∗ (q− 1)/2 are
number of positive pairs and p∗q∗(p−1)∗q/2 are negative
pairs. Following prior art [6, 12] in face recognition, we
adopt the cosine similarity to denote the pair-wise relation:

si,j = ⟨f(xi), f(xj)⟩ , i ̸= j (1)

where f(xi) denotes the representation of a sample.

FPR and TPR Calculation. Our method’s motivation is
directly taking reducing the performance gap between the
teacher and the student model as the training constraint.
Thus, the critical problem is to select a suitable evaluation
metric as the performance indicator of the model. In face
recognition, TPR and FPR are the most commonly used
evaluation metrics. Thus, we adopt these two evaluation
metrics as the model’s performance indicator in this work.
We first briefly describe the evaluation protocol of the two
metrics. Given a vector of M similarities v from all the neg-
ative pairs, the FPR is computed as the proportion above t.

FPR(t) =
1

M

M∑
i=1

1(vi > t) (2)

where t is a chosen threshold, 1(x) is the discrete Indicator
function and vi denotes the similarity of i relation. Sim-
ilarly, given a vector of N genuine scores u from all the
positive pairs, the TPR is computed as the proportion above
a threshold t as follows.

TPR(t) =
1

N

N∑
i=1

1(ui > t) (3)

In practice, the typical way to assess two face recognition
models is to fix their FPRs and compare their TPRs. Specif-
ically, the thresholds corresponding to each FPR are deter-
mined by the quantiles of all the negative pair similarities,
and the TPRs can be calculated from the positive pair sim-
ilarities based on the obtained thresholds. The higher the
TPRs, the better the model. The concerned FPR range de-
pends on the deployment scenario of the face recognition
system. For example, the FPR is usually set to be 1e-5 or
1e-6 in a face access control system to balance security and
user experience. In the popular public face benchmarks, the
FPR often ranges from 1e-1 to 1e-6 [14, 18, 32]. Thus, we
choose [1e-1, 1e-6] as the target FPR range. Correspond-
ingly, a vector of 6 thresholds corresponding to the FPR

range evenly spaced on a logarithmic scale can be obtained.
Since the number of negative pairs from one training mini-
batch is not large enough, the threshold corresponding to a
small FPR value, e.g., 1e-6 may has a large variance. We
follow [15] to utilize Exponential Moving Average (EMA)
to address this issue. Let enk be the estimated k-th thresh-
old of the n-th batch for the specific FPR and therefore we
have:

tk = αtk + (1− α)enk , (4)

where tk is the k-th threshold and initialized with 0; α is the
momentum parameter and set to 0.99.

Critical Relation Selection. According to the above eval-
uation process, once the thresholds are chosen according to
the target FPR ranges, the positive pair relations that cause
the TPR difference between the teacher and student model
can be obtained. Though the FPR has been fixed when es-
timating the corresponding threshold, the difference of the
negative pairs in teacher and student models that cause the
false positive cases is also instructive during the knowledge
transfer. Thus, the critical relations that cause the difference
between the teacher and student models can be defined as
follows:

1(si,j(T ) > tk(T )) ̸= 1(si,j(S) > tk(S)) (5)

where si,j(T ) and si,j(S) denote the similarities between
the i and j samples, and tk(T ) and tk(S) are k-th thresholds
in the teacher and student models, respectively. The relation
between the i and j samples can be positive and negative
pairs.

3.2. Evaluation-oriented Knowledge Distillation

Let si,j(T ) and si,j(S) denote the similarities between
the i and j samples in the teacher and student, respectively.
For brevity, the i and j indexes are omitted. To constrain
the critical relations in the student to approximate the corre-
sponding ones in the teacher model, a common loss can be
defined as:

Lk = ∥s(T )− tk(T )− (s(S)− tk(S))∥ (6)

where tk(T ) and tk(S) are the k-th thresholds of the teacher
and student model, respectively. Assuming there are K
thresholds and N critical relations, the loss function can be
formulated as follows:

Lhard =
1

N

N∑
n=1

K∑
k=1

∥sn(T )− tk(T )− (sn(S)− tk(S))∥ (7)

This formula can be considered as a general loss form used
in previous methods like RKD [20] and SP [31]. If the
thresholds of the teacher and student are set to be equal,
the loss can be simplified as the common L2 loss.

L =
1

N

N∑
n=1

∥sn(T )− sn(S)∥ (8)
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Algorithm 1: Evaluation-oriented KD
Input: The balanced input mini-batch X , the pre-trained

teacher network T , the student network with
random initialized parameters S, the FPR range
[FPRL, FPRU ], the number of thresholds k,
learning rate λ.

teacher thresholds
t(T ) = [t1(T ), t2(T ), · · · , tk(T )]← [0, 0, · · · , 0];

student thresholds
t(S) = [t1(S), t2(S), · · · , tk(S)]← [0, 0, · · · , 0];

iteration number i← 0;
while not converged do

Obtain the features by T and S;
Construct all the possible positive and negative pairs

by Eq. 1;
Sort the negative pair similarities and obtain the

thresholds corresponding to predefined FPR range in
the current mini-batch;

Update thresholds t(T ) and t(S) by Eq. 4;
Compute our EKD loss L by Eq. 11 for positive and

negative pairs, respectively;
Compute the total loss by Eq. 12;
Compute the gradients of S;
Update the parameters S;
i← i+ 1;

end
Output: S

However, the formulation of Eq. 7 may still be inflexi-
ble due to the absolute distance constraint of each critical
relation between the teacher and student models. Given a
positive or negative similarity and a chosen threshold, the
comparative relations influence the TPR or FPR rather than
the absolute distance. That is, if a relation meets the condi-
tion that 1(s(T ) − tk(T )) = 1(s(S) − tk(S)), it will not
cause the metric difference between the teacher and student
models. Thus, we can directly adopt this condition to op-
timize the student model. Since the Indicator function is a
step function whose value is 0 or 1 and the thresholds are
monotonic, the loss can be formulated as follows.

L =
1

N

N∑
n=1

∥∥∥∥∥(
K∑

k=1

1(sn(T )− tk(T ))−
K∑

k=1

1(sn(S)− tk(S)))

∥∥∥∥∥
(9)

The above formulation can be considered as a constraint
for the rank between a certain similarity and the thresholds.
However, the Indicator function cannot be optimized with
gradient-based methods. Inspired by [1], a sigmoid function
G(·; τ) is used to approximate the Indicator function:

G(xnk, τ) =
1

1 + e
−xnk

τ

(10)

where τ refers to the temperature adjusting the sharpness,
and xnk = sn − tk refers to the distance between the n-th

(a) (b) (c)

Figure 3. (Top) The Indicator function and sigmoid functions with
different temperature τ as different approximations. (Bottom) The
corresponding derivatives of each function. (a) Indicator function
(b) sigmoid function with τ = 0.01 (c) sigmoid function with
τ = 0.1.

similarity and the k-th threshold. Substituting G(·; τ) into
Eq. 9, the loss can be approximated as:

Lekd =
1

N

N∑
n=1

∥∥∥∥∥(
K∑

k=1

G(xnk(T ), τ)−
K∑

k=1

G(xnk(S), τ))

∥∥∥∥∥
(11)

where xnk(T ) = sn(T ) − tk(T ) and xnk(S) = sn(S) −
t(S). In addition, as described in Sec. 3.1, since the num-
ber of negative pairs is much larger than the one of pos-
itive pairs, we handle the two relations separately and re-
duce the number of negative pairs via hard negative min-
ing. In summary, the entire formulation of our EKD is:
LEKD = λ1Lpos+λ2Lneg , where λ1 and λ2 are the weight
parameters. Furthermore, to maintain the class discrim-
inability, we incorporate the loss function of Arcface [6],
and thus the final loss becomes:

L(Θ) = LEKD + LArcface, (12)

where Θ denotes the parameter set. The entire training pro-
cess is summarized in Algorithm 1.

Indicator Function Approximation. The derivative of
the Indicator function is defined as Dirac delta function
δ(x), which is either flat everywhere, with zero gradient, or
discontinuous, and hence cannot be optimized with gradient
based method [1]. The derivative of the sigmoid function
G(x, τ) is as follows:

∂G(x, τ)
∂x

=
G(x, τ)(1− G(x, τ))

τ
(13)

As shown in Fig. 3, the temperature governs the approxima-
tion tightness and the operating region to provide gradients.
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4. Experiments
4.1. Datasets

Training Set. We employ refined MS1MV2 [6] as our
training data for fair comparisons with other methods.
MS1MV2 contains about 5.8M images of 85K individuals.

Test Set. We extensively test our method on several pop-
ular face benchmarks, including LFW [11], CFP-FP [27],
CPLFW [36], AgeDB [19], CALFW [35], IJB-B [32], IJB-
C [18], and MegaFace [14]. LFW is the most commonly
used face verification test dataset, which contains 13233
web-collected images from 5749 different identities. The
other four datasets are standard benchmarks with two vari-
ations, i.e., CFP and CPLFW on pose, and AgeDB and
CALFW on age. MegaFace aims at evaluating the face
recognition performance at the million scales of distrac-
tors. The gallery set of MegaFace includes 1M images of
690K subjects, and the probe set includes 100K photos of
530 unique subjects from FaceScrub. The IJB-B and IJB-C
are two challenging public template-based benchmarks for
face recognition. The IJB-B dataset contains 1, 845 sub-
jects with 21.8K still images and 55K frames from 7, 011
videos. The IJB-C dataset is a further extension of IJB-B,
which contains about 3, 500 identities with a total of 31, 334
images and 117, 542 unconstrained video frames.

4.2. Experimental Settings

Data Processing. We follow [6] to crop the 112 × 112
faces with five landmarks detected by MTCNN [34]. The
RGB images are first normalized by subtracting 127.5 and
divided by 128, then feeding into the embedding network.

Teacher. We use Resnet50 as the teacher model, which
is trained by ArcFace [6]. For all the experiments in this
paper, the teacher model is pre-trained and frozen.

Student. To show our method’s generality, we use two
neural network structures, e.g., MobileFaceNet [4] and
Resnet18 [6] as the student models, respectively.

Training. We conducted all the experiments on 16
NVIDIA Tesla V100 GPU with Pytorch [22] framework.
All student models are trained from scratch using the SGD
algorithm for 28 epochs. The learning rate starts at 0.1 and
is divided by 10 at the 10, 18, 24 epochs. The momentum
is 0.9, and the weight decay is 5e − 4. The weights λ1 and
λ2 are set to 0.02 and 0.01, respectively. For ArcFace, we
follow the common setting as [6] to set scale s = 64 and
margin m = 0.5. The batch size for ArcFace is set to be
512. The balanced batch size is also set to be 512, and 4
images are randomly sampled per category. To increase the
number of negative pairs, we merge the two inputs when
constructing the negative pairs. All the training images are
horizontally flipped with a probability of 0.5 as the only
data augmentation strategy.

Testing. We follow the evaluation protocol [11] to report
the performance on LFW, CFP-FP, CPLFW, AgeDB and
CALFW. On Megaface, both face identification and veri-
fication performance are reported. On IJB-B and IJB-C, we
follow the 1:1 verification protocol in ArcFace [6] and take
the average of the image features as the corresponding tem-
plate representation without bells and whistles.

4.3. Ablation Study

Effects of Student Network Structure. We investigate
the generalization capability of our method for different stu-
dent network structures. Tab. 1 (Student Structure) shows
the results of two structures, i.e., IR18 and MobileFaceNet.
Though the performance improvement on the two network
structures is different, our method generally performs better
than directly training the student network from scratch. Our
method can bring more improvement for a student with a
lower capacity (MobileFaceNet).

Effects of the Temperature τ . As described in Sec. 3.2,
the temperature τ governs the smoothing of the sigmoid
function used to approximate the Indicator function. Tab. 1
(Temperature τ ) shows that a value of 0.01 achieves the best
performance, which shares similar conclusion with [1]. As
shown in Fig. 3, the value 0.01 gives a better approxima-
tion to the Indicator function than 0.1 and corresponds to
a small operating region to provide gradients. Though the
value of 0.001 gives a tighter approximation, it cannot pro-
vide enough large regions with the gradients.

Effects of Hard Negative Mining. As describe in
Sec. 3.2, we adopt the hard negative mining strategy to re-
duce the number of negative pair similarities. Firstly, to
investigate the influence of the negative pair numbers, we
train models with the corresponding strategy (1000, 2000,
5000 negative pairs with the largest similarity are selected).
The number of positive pairs in a mini-batch is about 800.
Thus we try these values to keep the number of positive
pairs and negative pairs comparable. The comparative re-
sults are reported in Tab. 1 (Hard negative mining). We have
two observations: 1) all the strategies perform better than
directly training the student (the row of MobileFaceNet),
demonstrating our method’s effectiveness. 2) The perfor-
mance of 1000 and 2000 is similar, and 5000 is inferior to
the other two. The reason may be that with the number of
negative pairs increasing, the positive pairs’ relative weight
decreases. We choose 2000 as the default value since it
achieves the best average performance. Second, we also
investigate the effect of the hard negative mining strategy
by replacing it with random negative selection. Compar-
ing the results between ”Random negative selection” and
”Hard negative mining” in Tab. 1, our hard negative mining
versions generally perform better than the random selection
versions.
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Table 1. Extensive ablation studies on MS1Mv2. We report the results of five small test datasets and a large scale test dataset (IJB-
C). The default student network is MobileFaceNet. N denotes the number of selected negative pairs. K denotes the threshold number.
TPR@FPR=1e-4 and TPR@FPR=1e-5 on IJB-C are reported.

Ablation Type Methods (%) LFW CFP-FP CPLFW AgeDB CALFW IJB-C IJB-C
ResNet50 (Teacher) 99.80 97.63 92.50 97.92 96.05 95.16 92.66

Student Structure

MobileFaceNet 99.52 91.66 87.93 95.82 95.12 89.13 81.65
MobileFaceNet + Ours 99.60 94.33 89.35 96.48 95.37 90.48 84.00

IR18 99.67 94.60 89.97 97.33 95.70 91.96 86.01
IR18 + Ours 99.68 95.31 90.82 97.48 95.85 92.74 88.84

Temperature τ
τ = 0.1 99.62 93.33 88.55 96.20 95.20 89.51 82.04
τ = 0.01 99.60 94.33 89.35 96.48 95.37 90.48 84.00
τ = 0.001 99.65 93.29 89.07 96.17 95.28 88.63 79.07

Hard negative mining
N = 1000 99.57 93.66 89.28 95.94 95.33 90.29 84.56
N = 2000 99.60 94.33 89.35 96.48 95.37 90.48 84.00
N = 5000 99.58 93.74 88.93 96.35 95.30 89.85 82.93

Random negative selection
N = 1000 99.53 94.04 89.00 96.36 95.10 89.71 83.09
N = 2000 99.55 94.19 89.00 96.27 95.33 89.41 82.35
N = 5000 99.53 94.17 89.38 96.15 95.51 89.73 83.02

Threshold Number
K = 3 99.53 93.57 88.93 96.05 95.47 89.71 83.22
K = 6 99.60 94.33 89.35 96.48 95.37 90.48 84.00

Loss function
Eq. 7 99.53 91.99 88.23 96.17 94.88 89.35 81.68
Eq. 11 99.60 94.33 89.35 96.48 95.37 90.48 84.00

Figure 4. Ratio change between the number of critical relations
and total relations during training in baseline and ours.

Effects of Thresholds Number. Given a concerned FPR
range [FPRL, FPRU ], the number of thresholds depends
on how the FPR is spaced. In general, a vector of thresholds
corresponding to FPR evenly spaced on a logarithmic scale
is chosen. For an FPR range [1e-1, 1e-6], the typical num-
ber of thresholds is 6. Here, we compare two values, i.e.,
3, 6. The 3 thresholds are set to be as 1e-1, 1e-3, and 1e-6,
respectively. As shown in Tab. 1, the results of 6 thresholds
are better than 3, since more thresholds can more finely de-
scribe the relations between similarities.

Effects of Loss Function. To investigate the effect of
our relaxed loss function, we train models with Eq. 7 and
Eq. 11, respectively. Comparing the results in Tab. 1 (Loss
Function), the model trained with Eq. 11 outperforms the
version with Eq. 7, which demonstrates that giving more
flexibility to the student is beneficial.

Ratio between the Number of Critical Relations and To-
tal Relations. Fig. 4 shows the ratios between the number
of critical relations and total relations, which are calculated

during training in the baseline and our method, respectively.
Since the student network is trained from scratch, the ratios
at the very early training steps fluctuate wildly, and thus we
remove the beginning training steps to make the figure clear.
The number of critical relations trained by our method is
smaller than the baseline, demonstrating that our approach
does reduce the performance gap between the teacher and
student models during training.

4.4. Comparisons with SOTA Methods

We compare with a wide variety of SOTA KD meth-
ods, including the methods proposed for other tasks ( Fit-
Net [24], KD [10], DarkRank [5], SP [31], CCKD [20]
and RKD [20]) and specifically designed methods for face
recognition (ShrinkTeaNet [8], Triplet Distillation [9] and
MarginDistillation [29]). Since the former six methods do
not conduct complete experiments on face recognition, we
re-implement them following their original papers. We cite
the results of the latter three methods from [29].

Results on LFW, CFP-FP, CPLFW, AgeDB and
CALFW. Tab. 2 shows the results compare with the
SOTA competitors on five common small benchmarks.
From the Tab. 2, most of the knowledge distillation meth-
ods are better than directly training the student network
from scratch (i.e., MobileFaceNet), but the performance im-
provement is limited. Among all the competitors, relation-
based methods seem to show better performance than the
instance-based methods, while are inferior to MarginDistil-
lation. Although we cannot beat the competitors on each
test set, we achieve the best average performance on theses
test sets.
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Table 2. Verification comparison with SOTA methods on LFW,
two pose benchmarks: CFP-FP and CPLFW, and two age bench-
marks: AgeDB and CALFW.

Methods (%) LFW CFP-FP CPLFW AgeDB CALFW
ResNet50 99.80 97.63 92.50 97.92 96.05
MobileFaceNet 99.52 91.66 87.93 95.82 95.12

FitNet (arxiv’14) 99.47 91.30 88.30 96.18 95.12
KD (NIPSW’14) 99.50 91.71 87.85 95.93 95.03
DarkRank (AAAI’18) 99.55 91.84 87.77 95.60 95.07
SP (ICCV’ 19) 99.53 92.33 88.45 96.17 95.07
CCKD (ICCV’ 19) 99.47 91.90 88.48 95.83 95.22
RKD (CVPR’19) 99.58 92.13 87.97 96.18 95.25

ShrinkTeaNet (arxiv’19) 99.47 91.97 88.52 96.00 94.98
TripletDistillation (ICIP’20) 99.55 93.14 88.03 95.53 94.97
MarginDistillation (arxiv’20) 99.61 92.01 88.03 96.55 95.13

EKD (Ours) 99.60 94.33 89.35 96.48 95.37

Table 3. 1:1 verification performance (TPR) on the IJB-B and IJB-
C datasets.

Methods (%)
IJB-C (FPR) IJB-B (FPR)

1e−4 1e−5 1e−4 1e−5
ResNet50 95.16 92.66 93.45 88.65
MobileFaceNet 89.13 81.65 87.07 74.63

FitNet (arxiv’14) 87.76 73.71 86.35 70.19
KD (NIPSW’14) 88.37 80.39 86.08 74.30
DarkRank (AAAI’18) 89.28 81.62 86.76 73.75
SP (ICCV’ 19) 88.43 78.13 86.34 72.85
CCKD (ICCV’ 19) 87.99 78.75 85.63 72.38
RKD (CVPR’19) 89.65 83.21 87.27 75.17

ShrinkTeaNet (arxiv’19) 87.80 79.78 85.31 75.23
TripletDistillation (ICIP’20) 84.57 76.65 81.88 70.51
MarginDistillation (arxiv’20) 85.71 75.00 82.97 66.25

EKD (Ours) 90.48 84.00 88.35 76.60

（a）ROC for IJB-B （b）ROC for IJB-C

Figure 5. ROC curves of 1:1 verification protocol on the IJB-B
and IJB-C dataset.

Results on IJB-B and IJB-C. In Tab. 3, we compare
the 1:1 verification TPR@FPR=1e-4 and TPR@FPR=1e-
5 with the previous SOTA methods on the IJB-B and IJB-C
datasets. Surprisingly, unlike the small test dataset results,
most of the knowledge distillation methods bring a little
performance improvement or even worse than the baseline
on these two large scale test datasets. Though RKD shows
better generalization ability than others, our method again
achieves the best performance. Fig. 5 shows the full ROC
curves of our method and other SOTA competitors, and it is
clear that our method performs best.
Results on MegaFace. Finally, we evaluate the perfor-
mance on the MegaFace Challenge. We also report the re-

Table 4. Verification comparison with SOTA methods on
MegaFace Challenge 1 using FaceScrub as the probe set. “Id”
refers to the rank-1 face identification accuracy with 1M distrac-
tors, and “Ver” refers to the face verification TPR at 1e-6 FPR.
The column “R” refers to data refinement on both probe set and
1M distractors.

Methods (%) Id (R) Ver (R) Id Ver
ResNet50 98.14 98.34 80.62 96.83
MobileFaceNet 90.91 92.71 75.52 90.80

FitNet (arxiv’14) 91.16 92.34 75.88 90.64
KD (NIPSW’14) 90.40 92.00 75.81 90.07
DarkRank (AAAI’18) 90.76 92.41 75.80 90.66
SP (ICCV’ 19) 91.25 92.41 75.37 90.62
CCKD (ICCV’ 19) 91.17 92.76 75.73 90.63
RKD (CVPR’19) 91.44 92.92 75.73 91.21

ShrinkTeaNet (arxiv’19) 90.73 92.32 75.55 90.56
Triplet Distillation (ICIP’20) 86.52 88.75 71.93 91.35
MarginDistillation (arxiv’20) 91.70 92.96 76.34 91.31

EKD (Ours) 91.02 93.08 75.54 91.42

Table 5. Training time for each batch under the same experiment
setting.

Methods Baseline RKD Ours
Time (s) 0.068 0.147 0.129

sults following the ArcFace testing protocol, which refines
both the probe set and the gallery set. As shown in Tab. 4,
most of the competitors achieve better performance than
baseline, and our method achieves the best verification per-
formance, surpassing all the other strong competitors. Our
method performs slightly inferior to the others on the rank-1
metric. The reason may be that our method adopts the TPR
and FPR as the performance indicator during training and
overlooks the top1 performance.

Time Complexity. As shown in Tab. 5, though our
method brings some burden on training complexity com-
pared with directly training the small network without the
teacher, our method has lower complexity compared with
RKD, which is also a relation-based KD method.

5. Conclusions
In this paper, we propose a novel evaluation-oriented KD

method for deep face recognition. Different from previous
KD methods requiring the student to mimic the teacher’s
behavior completely in the representation space, our EKD
optimizes the student to directly reduce the performance
gap between the teacher and student models during train-
ing. The most commonly used evaluation metrics in face
recognition, i.e., False Positive Rate (FPR), and True Posi-
tive Rate (TPR), are adopted as the performance indicator.
Extensive experiments on popular face recognition bench-
marks have demonstrated our method’s effectiveness and
generalization capability. In subsequent work, we can try
to improve the TOP1 performance of our method with more
suitable performance evaluation metrics.
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