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Abstract

Images captured with improper exposures usually bring

unsatisfactory visual effects. Previous works mainly focus

on either underexposure or overexposure correction, result-

ing in poor generalization to various exposures. An alterna-

tive solution is to mix the multiple exposure data for train-

ing a single network. However, the procedures of correcting

underexposure and overexposure to normal exposures are

much different from each other, leading to large discrep-

ancies for the network in correcting multiple-exposures,

thus resulting in poor performance. The key point to ad-

dress this issue lies in bridging different exposure repre-

sentations. To achieve this goal, we design a multiple ex-

posure correction framework based on an Exposure Nor-

malization and Compensation (ENC) module. Specifically,

the ENC module consists of an exposure normalization part

for mapping different exposure features to the exposure-

invariant feature space, and a compensation part for in-

tegrating the initial features unprocessed by the exposure

normalization part to ensure the completeness of informa-

tion. Besides, to further alleviate the imbalanced perfor-

mance caused by variations in the optimization process, we

introduce a parameter regularization fine-tuning strategy to

improve the performance of the worst-performed exposure

without degrading other exposures. Our model empowered

by ENC outperforms the existing methods by more than 2dB

and is robust to multiple image enhancement tasks, demon-

strating its effectiveness and generalization capability for

real-world applications. Code: https://github.com/KevinJ-

Huang/ExposureNorm-Compensation.

1. Introduction

In recent years, camera devices are used to capture pho-

tographs of a wide range of scenes at any time. As dif-

ferent scenes present various exposure conditions, images

captured with underexposures or overexposures often suffer

from unsatisfactory visual effects. For this reason, several

*Equal contribution.
†Corresponding author.

exposure correction methods have been proposed, includ-

ing model-driven-based [4, 9, 11, 21, 38] and deep learning-

based approaches [10, 33, 34, 36, 41]. However, most of

them focus on either underexposure or overexposed scenes,

causing poor generalization to other exposures. This makes

them incapable of being deployed in practical applications.

A naive way to solve this problem is to train specific

networks corresponding to each exposure condition, lead-

ing to a significant increase in training time and parameter

space. Alternatively, the network can be trained with a mix-

ture of data from various exposure conditions to improve its

capability of multiple-exposure correction. However, due

to the variations of representations between underexposure

and overexposure, the procedures of correcting them to nor-

mal exposures differ greatly from each other, as shown in

Fig. 1. This introduces discrepancies for the network in cor-

recting lightness and color across multiple-exposures, thus

making it difficult to train a single network and resulting in

poor performance. Besides, the variations in optimization

processes also make the network incline to overlook disad-

vantaged data of the mixed datasets [35] and bring about

imbalanced performance across exposures.

In this paper, we propose a framework for improving the

multiple-exposure correction performances. The key point

lies in narrowing the gap of different exposure representa-

tions. To this end, we design an Exposure Normalization

and Compensation (ENC) module, as shown in Fig. 3. It

consists of an exposure normalization part and a compen-

sation part. Specifically, the exposure normalization part

maps different exposure features to the exposure-invariant

feature space. It is implemented by the Instance Normaliza-

tion to coarsely align different exposure features, followed

by a normalization distilling loss on the normalized features

to further reduce the exposure effect. However, normaliza-

tion will inevitably induce the loss of the image discrimina-

tive features [17, 27] for image reconstruction. Therefore,

the compensation part is introduced for integrating the fea-

tures unprocessed by the exposure normalization part in the

spatial and channel dimension, which ensures the complete-

ness information. Besides, to further enhance the correction

effect of the worst-performed exposure caused by imbal-
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(a) Underexposure correction (b) Overexposure correction

Figure 1. The static illustration of underexposure and overexpo-

sure correction curves on samples from SICE dataset, which are

significantly different from each other.

anced performance, an intuitive way for fine-tuning this ex-

posure will result in performance degradation for other ex-

posures. Here, we fix the parameter of the ENC to keep its

normalization ability to all the exposures, and fine-tune the

other parts using a parameter regularization strategy. This

strategy reduces the update rate of parameters that are im-

portant for other exposures, leading to a network with bal-

anced improvement for all the exposures.

Moreover, our proposed ENC can be extended to tackle

other image degradations, such as image quality degrada-

tion captured by different mobile phones, demonstrating the

generalization capability of our method.

The main contributions of this work are summarized as:

• We propose a framework for multiple exposure correc-

tion by narrowing the gap of different exposure repre-

sentations. Particularly, we develop an Exposure Nor-

malization and Compensation (ENC) module, which is

simple yet effective and can be used as a plug-and-play

module for existing exposure correction architectures.

• Inside ENC, we design an exposure normalization

part for mapping different exposure features to the

exposure-invariant feature space, and a compensation

part for integrating the features unprocessed by nor-

malization to ensure the completeness of information.

• Aiming to improve the worst-performed exposure dur-

ing training, we employ a parameter regularization

strategy for fine-tuning it on the network except for the

ENC module, resulting in a balanced improvement.

• We validate the effectiveness of our framework on sev-

eral datasets. Furthermore, we extend it to various

image-enhancement tasks and achieve remarkable per-

formances, which demonstrate its generalization supe-

riority for potential usage in real applications.

2. Related Work

Various approaches have been developed for exposure

correction. Some traditional ones propose to employ the

histogram-based technique to enhance contrast and light-

ness [1, 30, 31, 38], while another line of works is based on

the Retinex theory [19], which improve the lightness of im-

ages through enhancing the illumination components and
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Figure 2. The overview of our proposed framework. During train-

ing, the network is trained for correcting multiple-exposures to

normal exposures. During fine-tuning, we fine-tune the worst-

performed exposure at training phase by parameter regularization.

suppressing noises by the regularization of the reflectance

components [4, 11, 21, 29, 39].

Recently, with the emergence of deep learning schemes,

exposure correction task has benefited from the deep learn-

ing models [7, 13, 22, 26, 37]. Based on the Retinex the-

ory, RetinexNet [34] proposes to restore the illumination

in a data-driven form and KIND [41] further introduces

a sub-network for recovering the reflectance component.

As another form of component decomposition, Ren et

al. [28] uses two distinct streams to learn global content

and salient structures simultaneously, and DRBN [36] de-

composes the features into different band representations

for band recursive learning. In addition, self-supervised

methods [10, 20, 40] were proposed for the adaptive illu-

mination adjustment. However, most of these methods fo-

cus on either underexposure or overexposure correction,

limiting their applications for various exposure conditions.

Although MSEC [2] corrects varieties of exposures in a

coarse-to-fine manner, it fails to achieve consistent correc-

tion across exposures, thus generating results with lightness

shifts. Compared with these methods, our algorithm aims to

narrow the gap of different exposure features for effectively

improving the training performance.

3. Method

3.1. Motivation and Overview

Images captured under different scenes often suffer from

underexposure or overexposure problems. For multiple-

exposure correction, we aim at designing a unified frame-

work training on the mixed multiple-exposure datasets for

correcting various exposures to normal ones.

As shown in Fig. 1, since underexposure and overex-

posure obviously present different exposure representations
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Figure 3. The illustration of our proposed ENC module in DRBN [36] network, consisting of an exposure normalization part and a

compensation part. The exposure normalization part maps different exposure features F to an exposure-invariant feature F̂n, while the

compensation part compensates for the information lost caused by normalization, which integrates the features that unprocessed by the

exposure normalization F̂ in the spatial and channel dimensions. The normalization distilling loss Lnd and the exposure distilling loss Led

are further introduced for reducing the effect of the exposure on features.

such as lightness, the procedures of correcting underexpo-

sure and overexposure differ significantly. Therefore, there

exist large discrepancies for a network to correct lightness

and color across multiple-exposures, which introduces dif-

ficulty in the training process and results in poor perfor-

mance, bringing color and lightness distortion problems.

Furthermore, training on mixed datasets may cause varia-

tions in the optimization processes, leading to the network

incline to overlook the disadvantaged data in the mixed

datasets [35]. Therefore, the network has poorer perfor-

mance in some exposures than other exposures, thus result-

ing in imbalanced performance across exposures.

To address the above issues, we design a framework (see

Fig. 2) consisting of training and fine-tuning phases. Dur-

ing the training, the network is trained on mixed data of

various exposures with its conventional loss. Specifically,

to solve the poor performance problem, we propose an ENC

module to narrow the gap of multiple exposure representa-

tions, leading to consistent lightness and color correction

across exposures. The ENC module can be used as a plug-

and-play module for existing exposure correction networks.

Taking the DRBN [36] network as an example (see Fig. 3),

ENC can be added after each block of DRBN. To further

alleviate the imbalanced performance, we name the expo-

sure that performs poorer than other exposures as the worst-

performed exposure, and fine-tune it with a parameter regu-

larization strategy for improving its correction performance,

while keeping the performance of other exposures.

3.2. Exposure Normalization and Compensation

As shown in Fig. 3, we implement our ENC module with

two parts: the exposure normalization part that is designed

for mapping various exposure features to exposure invariant

feature space, and the compensation part which is proposed

to integrate the features unprocessed by normalization for

compensating the removed image discriminative informa-

tion caused by normalization.

Exposure Normalization Part. In the exposure nor-

malization part, we first employ Instance Normalization to

coarsely align features. Assuming the input features as F ,

we perform Instance Normalization by:

Fn = IN(F ) = γ
F − µ(F )

σ(F )
+ β, (1)

where µ(·) and σ(·) denote the mean and standard devi-

ation computed across spatial dimensions for each chan-

nel and each sample, γ and β are parameters learned from

data. With Instance Normalization equipped in the feature

space, it can normalize feature statistics for style normal-

ization [14]. Since each exposure can be viewed as a kind

of style, different exposures are aligned with Instance Nor-

malization that reduces their representation discrepancies.

Following that, we introduce a normalization distilling

loss to further reduce the exposure’s effect on the normal-

ized features. Particularly, followed by a convolution layer,

we implement this loss between the normalized features of

different exposures (F̂n) and those of the normal exposures

(F̂norm
n ), which is defined as:

Lnd = ||F̂n − F̂norm
n ||1, (2)

where ||.||1 represents the L1 distance between two terms.

It efficiently forces the normalized features of different ex-

posures to be similar to those of the normal exposures, thus

reducing their discrepancy.

Fig. 4 presents the feature visualization of different com-

ponents in our ENC, where the underexposure and overex-

posure features processed by the Instance Normalization are

more similar, and Lnd further reduces their discrepancy.

Compensation Part. Normalization inevitably removes

discriminative information [17, 27], thus resulting in inade-

quate information for image reconstruction. To tackle this
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(a) Underexposure Image (b) ENC’s input of (a) (c) ENC’s Fn of (a) (d) ENC’s F̂n of (a) (e) ENC’s output of (a) (f) Errors of ENC’s input

(g) Overexposure Image (h) ENC’s input of (g) (i) ENC’s Fn of (g) (j) ENC’s F̂n of (g) (k) ENC’s output of (g) (l) Errors of ENC’s output

Figure 4. Feature visualization of different components in ENC on samples from SICE dataset. As can be seen, the ENC’s input features F

from underexposure and overexposure differ greatly shown in (b) and (h). As shown in (c) and (i) as well as (d) and (j), after being processed

by the exposure normalization part, input features are mapped to the exposure invariant space and their discrepancies are progressively

reduced. With ENC, the gap of representations between underexposure and overexposure is obviously narrowed as illustrated in (e) and

(k) as well as (f) and (l).

shortcoming, as shown in Fig. 3, we propose a compensa-

tion part for integrating the initial features unprocessed by

the exposure normalization part to ensure the completeness

information [23]. Specifically, we implement the compen-

sation part in both spatial and channel dimensions, which

can comprehensively obtain correlations between the initial

and normalized features. These correlations reflect their in-

formation relationships, thus helping guide the integration

of the lost information from the initial features.

In the spatial dimension, the normalized features F̂n and

the initial features unprocessed by normalization F̂ are in-

tegrated with the attention maps A and An. Here, A and An

represent the correlations between features F̂ and F̂n, and

A is derived by the spatial attention as:

A = sigmoid(W0 ∗ [F̂ , F̂n]), (3)

where W0 is the kernels’ weight matrix, ∗ stands for the

convolution operation, and [·] means the concatenate oper-

ation. Similarly, An is generated as well. The spatially-

interacted features F ′ and F ′

n can be obtained by:

F ′ = F̂n ·A+ F,

F ′

n = F̂ ·An + Fn,
(4)

where · denotes the element-wise multiplication.

Then, we further integrate the two features in the chan-

nel dimension. Specifically, we re-weight the concatenated

features of F ′ and F ′

n by applying the attention weight Af

to adaptively integrate them, and the Af is derived by the

SE-like [12] channel attention. In particular, Af is obtained

by a pooling layer and two FC layers parameterized by W1

and W2, which can be denoted as:

Af = sigmoid(W2 · relu(W1 ∗ pool([F ′, F ′

n]))). (5)

Notably, we implement the pooling operation in Eq. 5

with global contrast average pooling for capturing global

Overexposure of ENC's Input

Underexposure of ENC's Input

Overexposure of ENC's Output

Underexposure of ENC's Output

t-SNE

Overexposure of 

ENC's Input

Underexposure of

ENC's Input
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ENC's Output

Underexposure of
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Figure 5. t-SNE [32] visualization of the features in ENC. As can

be seen, after being processed by ENC, the underexposure and

overexposure representations tend to be intersected together.

and local information [15], which is propitious for image

processing. This operation is defined as:

Fo =
1

HW

∑

(x,y)ϵFi

F
x,y
i +

√

√

√

√

1

HW

∑

(x,y)ϵFi

(Fx,y
i −

1

HW

∑

(x,y)ϵFi

F
x,y
i )2,

(6)

where Fi and Fo represent the input and output features of

the global pooling operation, x and y are the position coor-

dinates, H and W denote the spatial size. Finally, the output

features of ENC (denoted as Ff ) are derived by weighting

the concatenated features [F ′, F ′

n] with Af , which can be

denoted by:

Ff = Af · [F ′, F ′

n]. (7)

To further maintain the exposure invariant property of

the integrated features Ff , we need to reduce the exposure

effect introduced from the ENC’s input features F on Ff .

Therefore, we apply the exposure distilling loss between Ff

and the integrated normal exposure features Fnorm
f as:

Led = ||Ff − Fnorm
f ||1. (8)
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Figure 6. The schematics of the parameter regularization strategy.

At the bottom, the parameters that are more important to various

exposures are less updated; while at the top, the parameters that

are less important to various exposures but more important to the

worst-performed exposure are more updated.

After being processed by ENC, the gap between under-

exposure and overexposure representations is narrowed. As

shown in the last column of Fig. 4, the errors between un-

derexposure and overexposure features are smaller after be-

ing processed by ENC. Fig. 5 further presents the statistical

visualization in the feature space, demonstrating the effec-

tiveness of our method for bridging their representations.

Plugging into exposure correction networks. As a

plug-and-play module, the proposed ENC module can be

incorporated into most existing exposure correction net-

works. Two representative baseline networks, SID [6] and

DRBN [36], are chosen as the backbones. For SID, it is a

U-Net-based architecture with an encoder and decoder. We

replace its first layer with the ENC module and denote it

as SID-ENC, providing the features with bridged represen-

tations for the subsequent processing. As for DRBN, it is

a framework consisting of multiple U-shape-based blocks.

As shown in Fig. 3, the ENC module can also be set as the

first layer of DRBN in its first block (DRBN-ENC) or in

all the four blocks (DRBN-ENC-4), both resulting in better

performance on exposure correction.

3.3. Fine­tuning with Parameter Regularization

To further improve the worst-performed exposure that

has poorer performance than other exposures in the training

phase, an intuitive way is to fine-tune it. However, this may

lead to performance degradation of other exposures. In-

spired by the EWC method of continuous learning [18], we

employ a parameter regularization strategy with a first- and

second-order parameter importance modification scheme.

Specifically, since ENC is important for all the exposures

and helps narrow the gap of their representations, we fix

its parameters and update the other parameters according to

the parameter importance. In doing so, we can improve the

results of the worst-performed exposure while retaining the

performance of the other exposures.

As shown in Fig. 6, we present the schematics of the

parameter regularization strategy. In particular, we first cal-

culate the parameter importance of the network obtained

from the multiple-exposure training phase, then fix the pa-

rameters of ENC, and update the other parameters based on

the parameter importance. Specially, by denoting the train-

ing on various exposures as task 0 and fine-tuning on the

worst-performed exposure as task 1, the parameter impor-

tance weight Ωθk is computed by accumulating the gradi-

ents over various exposure data points:

Ωθk
= f(x; θ1k)− f(x; θ0k), (9)

where f(.) represents the mapping function of our net-

work, θk denotes any parameter of the network, and θ1k =
θ0k + δθk, δ denotes the parameter change magnitude, and x

indicates the input various exposure data. In particular, the

above equation can be written as:

Ωθk
= ∇θk

L |δθk|+
1

2
· ∇2

θk
L |δθk|

2 +O(|δθk|
3), (10)

where L is the conventional loss of baseline method. Here,

we adopt the first two terms for approximation *.

To improve the worst-performed exposure while main-

taining the performance of other exposures, we add a reg-

ularization term based on the baseline’s conventional loss

to keep the knowledge of training on all the exposures. In

summary, the total loss L′ for fine-tuning is formulated as:

L′ = L+ λ

m
∑

k=1

Ωθk

= L+ λ

m
∑

k=1

[

∇θk
L |δθk|+

1

2
· ∇2

θk
L |δθk|

2

]

.

(11)

In this way, the parameters of the network that are impor-

tant to other exposures are less updated, thus maintaining

their performance.

4. Experiments

4.1. Settings

Datasets. The experiments are evaluated on two datasets

of multiple-exposures, including the multiple-exposures

(ME) dataset collected by MSEC [2] and the SICE dataset

[5]. The ME dataset contains exposure images of five levels.

To demonstrate the effectiveness of our method, we con-

duct experiments on two settings for the ME dataset. Fol-

lowing [3], the retouched version of the middle exposure

subset is selected as the ground truth in the standard ME

dataset [2], which includes 17,675 training sample pairs,

750 validation sample pairs, and 5,905 testing sample pairs.

Furthermore, we also conduct experiments on revised ME-

v2 dataset, which selects the middle exposure subset in ME

dataset as the ground truth and preserves the other exposure

subsets as the multiple exposure input. Note that ME-v2

*The details of the derivation process can be found in the supplemen-

tary material.
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ME ME-v2

#ParamMethod Under Over Average Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CLAHE [30] 16.77 0.6211 14.45 0.5842 15.38 0.5990 19.06 0.8558 15.76 0.7643 17.41 0.8100 -

RetinexNet [8] 12.13 0.6209 10.47 0.5953 11.14 0.6048 14.03 0.7354 16.32 0.7781 15.18 0.7568 1.70M

Zero-DCE [10] 14.55 0.5887 10.40 0.5142 12.06 0.5441 15.95 0.7912 9.89 0.6837 12.92 0.7374 0.33M

MSEC [2] 20.52 0.8129 19.79 0.8156 20.08 0.8145 24.48 0.9055 24.30 0.9153 24.29 0.9104 7.04M

DRBN [36] 19.74 0.8290 19.37 0.8321 19.52 0.8309 24.10 0.9156 23.15 0.9055 23.63 0.9105 0.53M

DRBN-L 19.84 0.8319 19.50 0.8355 19.64 0.8340 24.35 0.9168 23.34 0.9083 23.84 0.9126 0.67M

I-DRBN (Ours) 22.05 0.8476 22.17 0.8542 22.12 0.8516 25.32 0.9100 26.73 0.9337 26.02 0.9218 0.54M

I-DRBN-4 (Ours) 22.72 0.8544 22.11 0.8521 22.35 0.8530 27.29 0.9264 26.75 0.9275 27.02 0.9270 0.58M

SID [6] 19.37 0.8103 18.83 0.8055 19.04 0.8074 24.04 0.9072 21.1 0.8669 22.57 0.8871 7.40M

SID-L 19.32 0.8099 18.95 0.8073 19.10 0.8083 23.07 0.8966 22.25 0.8773 22.66 0.8870 11.56M

I-SID (Ours) 22.59 0.8423 22.36 0.8519 22.45 0.8481 26.09 0.9133 26.62 0.9166 26.35 0.9149 7.45M

Table 1. Quantitative results of different methods on ME and ME-v2 Datasets in terms of PSNR and SSIM.

Method Under Over Average

CLAHE [30] 12.69/0.5037 10.21/0.4847 11.45/0.4942

RetinexNet 12.94/0.5171 12.87/0.5252 12.90/0.5212

Zero-DCE [10] 16.92/0.6330 7.11/0.4292 12.02/0.5311

MSEC [2] 19.62/0.6512 17.59/0.6560 18.58/0.6536

DRBN [36] 17.96/0.6767 17.33/0.6828 17.65/0.6798

DRBN-L 18.04/0.6746 17.61/0.6923 17.83/0.6835

I-DRBN (Ours) 20.47/0.7050 19.22/0.7222 19.85/0.7136

I-DRBN-4 (Ours) 21.77/0.7052 19.57/0.7267 20.67/0.7160

SID [6] 19.51/0.6635 16.79/0.6444 18.15/0.6540

SID-L 19.43/0.6644 17.00/0.6495 18.22/0.6570

I-SID(Ours) 21.30/0.6645 19.63/0.6941 20.47/0.6793

Table 2. Quantitative results of various methods on SICE dataset

in terms of PSNR and SSIM.

dataset includes 14,144 pairs for training, 600 pairs for val-

idation, and 4,724 pairs for testing. For the SICE dataset,

we adopt the middle exposure subset as the ground truth,

while the second and last second exposure subsets are set

as the underexposed and overexposed images, respectively.

The number of the training, validation, and testing pairs in

the SICE dataset is individually set to 1,000, 24, and 60.

Comparison of Methods. For performance comparison,

we compare our method with MSEC and the baseline net-

works. Besides, CLAHE [30], RetinexNet [8], and Zero-

DCE [10] are chosen for comparison. More comparative

results with other methods are provided in the supplemen-

tary material. Due to the introducing of more parameters in

ENC, we expand our baseline networks by increasing the

number of channels for a fair comparison, which are de-

noted as DRBN-L and SID-L. Additionally, the SID-ENC,

DRBN-ENC, and DRBN-ENC-4 models mentioned in Sec.

3.2 with our fine-tuning strategy are separately denoted as

I-SID (Improved-SID), I-DRBN (Improved-DRBN), and I-

DRBN-4 (Improved-DRBN-4).

Implementation Details. We conduct all our experi-

ments on an NVIDIA 2080Ti GPU, which are based on the

released code of the baseline networks with the same train-

ing settings. Specifically, our SID is trained with the batch

size of 1 and patch size of 384×384, while DRBN is trained

(a) Input (b) SID (c) I-SID (d) GT

(e) Input (f) DRBN (g) I-DRBN-4 (h) GT

Figure 7. Visualization results on SICE dataset of (top) overexpo-

sure correction and (bottom) underexposure correction.

with the batch size of 4 and patch size of 256×256. During

training, we optimize the networks by the Adam optimizer

with a learning rate of 1×10−4 for 80 epochs. During fine-

tuning, we set the λ in Eq. 11 to 0.7, and the network is

trained for 40 epochs with a learning rate of 4 × 10−5. All

the methods are evaluated in terms of PSNR and SSIM.

4.2. Quantitative Evaluation

The evaluation results on the ME and ME-v2 datasets are

reported in Table 1. To simplify, we average the results of

the first two levels’ exposures and the rest levels’ exposures

as the underexposure and overexposure results, respectively.

As can be seen, the MSEC method performs better than our

baseline networks with the well-designed networks, and the

introduced channels in SID-L and DRBN-L cannot improve

the performance significantly. With the assistance of our

method, the I-SID and I-DRBN networks both achieve bet-

ter performance and obtain superior results than the MSEC

method. As the model size only increases by 3%, I-SID and

I-DRBN-4 remarkably improve the PSNR, which proves

the effectiveness of our ENC module.

To further demonstrate the capability of our model, we

also perform experiments on the SICE dataset. As shown

in Table 2, with the introducing of our method, the PSNR

and SSIM of SID and DRBN are improved greatly on both

underexposure and overexposure subsets, which outperform

other methods by a large margin.

6048



(a) Input (b) MSEC (c) DRBN (d) SID (e) I-DRBN-4(Ours) (f) GT

(g) Input (h) MSEC (i) DRBN (j) SID (k) I-SID(Ours) (l) GT

Figure 8. Visualization results on ME dataset of (top) underexposure correction and (bottom) overexposure correction. As can be seen, for

both the underexposed and overexposed images, there exist color and lightness shift problems in DRBN and MSEC, while SID tends to

generate artifacts. On the contrary, our method can simultaneously achieve color and lightness recovery while preserving the structures.

(a) With Led (b) Without Led

Figure 9. The visualization of the ENC’s output errors between

underexposure and overexposure. With the employing of exposure

distilling loss, the errors are further reduced.

(a) ME Dataset (b) ME-v2 Dataset

Figure 10. Ablation study for the number of ENC modules based

on the DRBN network. The increasing number of ENC modules

leads to a better performance.

Method Under Over Average

DRBN-ENC 21.89/0.7071 19.09/0.7229 20.49/0.7150

DRBN-ENC-4-SEQ 7.92/0.1346 19.96/0.7315 13.94/0.4331

I-DRBN-4 (Ours) 21.77/0.7052 19.57/0.7267 20.67/0.7160

SID-ENC 21.36/0.6652 19.38/0.6843 20.37/0.6748

SID-ENC-SEQ 7.93/0.1199 19.95/0.7137 13.94/0.4168

I-SID (Ours) 21.30/0.6645 19.63/0.6941 20.47/0.6793

Table 3. Ablation study for parameter regularization on SICE

dataset, the overexposure subset is set as the worst-performed sub-

set due to its lower performance.

4.3. Qualitative Evaluation

Fig. 8 exhibits some visualization results on the ME

dataset. It can be seen that our method achieves better color

and lightness recovery effects. We further present visual

comparisons on the SICE dataset in Fig. 7. With the em-

ploying of our method, the artifacts can be reduced remark-

ably. More visualization results are provided in the supple-

mentary material.

4.4. Ablation Studies

We perform ablation studies to prove the effectiveness

of the proposed ENC module and parameter regularization

strategy. More results of ablation studies are provided in the

supplementary material.

ENC Module. Based on the SID network, we con-

duct experiments on the ME and SICE datasets to investi-

gate the effectiveness of different components in ENC mod-

ule. As shown in Table 6, the network performance drops

significantly without Instance Normalization, demonstrat-

ing the effectiveness of mapping different exposures to the

exposure-invariant space, and the introducing of normaliza-

tion distilling loss further strengths this effect. The com-

pensation part can also improve the performance since it

integrates the initial features for ensuring the completeness

of information. Specifically, both of the integration pro-

cesses in the spatial and channel dimensions obtain im-

provements. Additionally, the introducing of exposure dis-

tilling loss helps to reduce the exposure effect on the inte-

grated features (see Fig. 9), thus leading to enhancement.

Note that only the employment of exposure loss can also

contribute to the improvement due to the introducing of fea-

ture constraints. We further investigate the influence of the

number of ENC modules for the DRBN baseline network.

As shown in Fig. 10, it validates the effectiveness of our

ENC module for improving exposure correction. Addition-

ally, we provide results of comparing our ENC module with

other plug-and-play modules in the supplementary material.

Parameter regularization strategy. To further demon-

strate the effectiveness of our parameter regularization strat-

egy, we carry out ablation studies on the SICE dataset. As

depicted in Table 3, the simply fine-tuned DRBN and SID

on the worst-performed overexposure dataset are denoted as

DRBN-ENC-4-SEQ and SID-ENC-4-SEQ, which lead to

the notable performance drop on the underexposure dataset.

With the employing of parameter regularization, the over-

exposure performance can be enhanced with little perfor-

mance drop on other-level exposures.
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Method LOL SICE OVER FIVE5K Average SICE UNDER BRIGHTEN

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DRBN 19.39 0.8165 19.46 0.7286 21.77 0.8585 20.21 0.8012 9.27 0.2644 15.19 0.6235

DRBN-L 18.97 0.8147 19.04 0.7272 21.93 0.8600 19.98 0.8006 9.62 0.3197 15.97 0.6328

I-DRBN-4 (Ours) 22.31 0.8366 20.83 0.7385 23.71 0.8703 22.28 0.8151 13.19 0.4005 19.80 0.6969

SID 19.78 0.7617 18.91 0.6885 21.39 0.8390 20.03 0.7631 11.13 0.4300 15.58 0.5949

SID-L 20.21 0.7696 19.57 0.7042 21.40 0.8442 20.39 0.7727 9.90 0.3477 16.28 0.6154

I-SID (Ours) 21.27 0.7823 20.54 0.7107 23.48 0.8624 21.76 0.7851 12.00 0.3681 17.13 0.6646

Table 4. Quantitative results of various methods for multiple enhancement tasks and generalizability evaluation.

Method iPhone Sony Blackberry Average

DRBN 22.84/0.824 25.15/0.879 24.14/0.850 24.04/0.852

DRBN-L 22.84/0.823 26.10/0.883 24.53/0.853 24.49/0.850

I-DRBN-4 23.54/0.825 26.04/0.882 24.67/0.851 24.75/0.852

Table 5. Quantitative results of different DRBN methods for vari-

ous kinds of phone image enhancement on the DPED dataset.

IS IC IN Lnd Led SICE ME

18.15/0.6540 19.04/0.8074

✓ 19.81/0.6666 21.36/0.8373

✓ ✓ 20.01/0.6678 21.78/0.8392

✓ ✓ 19.98/0.6721 21.53/0.8369

✓ ✓ 18.82/0.6654 21.27/0.8378

✓ ✓ ✓ 20.07/0.6726 22.10/0.8452

✓ 19.45/0.6671 20.67/0.8391

✓ ✓ ✓ ✓ 20.16/0.6734 22.21/0.8458

✓ ✓ ✓ ✓ 20.24/0.6742 22.29/0.8467

✓ ✓ ✓ ✓ ✓ 20.37/0.6748 22.37/0.8472

Table 6. Ablation study for investigating the components of ENC

module. IS and IC denote integration in the spatial and channel,

respectively. IN represents Instance Normalization. Lnd is nor-

malization distilling loss, and Led is the exposure distilling loss.

(a) Input (b) DRBN (c) I-DRBN-4 (d) GT

(e) Input (f) SID (g) I-SID (h) GT

Figure 11. Visualization results on the Brighten dataset.

4.5. Extension and Discussion

To demonstrate the potentials of our method for real-

world applications, we extend it to different kinds of en-

hancement tasks. First, we blend several datasets and simul-

taneously address three image enhancement tasks, includ-

ing image retouching, low-light enhancement, and overex-

posure correction. Second, to prove the generalizability of

our method, we evaluate the trained model on unknown en-

hancement datasets without fine-tuning. Third, we conduct

enhancement for image quality degradation caused by dif-

ferent phone capturing, which is a real-world problem.

Multiple enhancement tasks. We blend the LOL

dataset [8] designed for low-light enhancement, MIT-FiveK

dataset [3] collected for image retouching, and the overex-

posure subset from the SICE dataset to build a Task-mix

dataset. The results are shown in Table 4. With the intro-

ducing of our method, the performance of each task on the

multi-task dataset can be improved significantly.

Generalizability evaluation. To evaluate the generaliz-

ability of the proposed framework [24, 25], we evaluate the

trained model on Brighten dataset [8] and the underexpo-

sure subset from the SICE dataset. As shown in Table 4 and

Fig. 11, the introducing of instance normalization improves

the robustness of our module. The generalization results of

our method can also be improved, which demonstrate the

potential usage of our work for real-world applications.

Various kinds of phone image enhancement. We adopt

the DPED dataset [16] for experiments of various kinds of

phone image enhancement, which contains images captured

by three types of phones. We select 2,048 images and 380

images from each phone type as the training and testing sets.

As described in Table 5, with the introducing of our method,

the performance of DRBN can be improved, displaying the

effectiveness of our algorithm for more applications.

5. Conclusion and Limitation

In this paper, we develop a framework for multiple expo-

sure correction. An Exposure Normalization and Compen-

sation (ENC) module is proposed to narrow the gap of mul-

tiple exposure representations, leading to consistency cor-

rection across exposures. Then, we employ the parameter

regularization fine-tuning strategy to obtain a network with

a balanced improvement for all the exposures. The experi-

mental results show that our method achieves superior per-

formance for multiple-exposure corrections. However, our

method fails to incorporate a specific design for handling

severe noise corruption that often appears in extremely dark

conditions, which can be investigated in the future.
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