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Abstract

We propose HandLer, a novel convolutional architec-
ture that can jointly detect and track hands online in un-
constrained videos. HandLer is based on Cascade-RCNN
with additional three novel stages. The first stage is For-
ward Propagation, where the features from frame t-1 are
propagated to frame t based on previously detected hands
and their estimated motion. The second stage is the Detec-
tion and Backward Regression, which uses outputs from the
forward propagation to detect hands for frame t and their
relative offset in frame t-1. The third stage uses an off-
the-shelf human pose method to link any fragmented hand
tracklets. We train the forward propagation and backward
regression and detection stages end-to-end together with the
other Cascade-RCNN components.

To train and evaluate HandLer, we also contribute
YouTube-Hand, the first challenging large-scale dataset of
unconstrained videos annotated with hand locations and
their trajectories. Experiments on this dataset and other
benchmarks show that HandLer outperforms the exist-
ing state-of-the-art tracking algorithms by a large margin.
Code and data are available at https://vision.cs.
stonybrook.edu/˜mingzhen/handler/.

1. Introduction
Hand tracking is an important problem in various ap-

plication scenarios, from gesture and activity recognition
to contact tracing and skill evaluation. One approach for
tracking hands is to consider them as parts of a human body
and then perform hand tracking based on the tracked human
pose. But pose detection and tracking can be unreliable by
itself, especially for people that are partially occluded or
outside the field of view of the camera. Another approach
for hand tracking is to use off-the-shelf tracking methods.
Unfortunately, single-object trackers are not appropriate
for tracking multiple hands, while existing multiple-object
trackers do not work well for hands even though they have
shown impressive performance for tracking pedestrians and
vehicles [2, 5, 19, 47, 49, 50, 62]. Hand tracking is difficult
because hands are not ordinary objects, given the extreme
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Figure 1. We develop an advanced detection and association algo-
rithm for tracking multiple hands. Different with previous meth-
ods that estimate probability of a detected hand on the objectness
scores at current frame only, we estimate the probability based
on both the objectness scores at frames t and t-1, and associate
hands across frame via both pose and tracking offsets.

articulation of hands and the frequent interaction of hands
with other objects. In a short period of a few frames, the
size, shape, location, and visibility of a hand can change
dramatically and frequently. Many existing multiple-object
trackers use the detection and assoication paradigm. How-
ever, hand detection would fail in the presence of motion
blur and occlusion, while hand linking across time is dif-
ficult as the size, location, pose, and appearance of a hand
can change drastically. Simultaneously, two different hand
instances might look alike, so distinguishing them would
be difficult even for a sophisticated re-identification module
that has been trained specifically for hands.

In this work, we develop a novel convolutional architec-
ture that can detect and track hands in unconstrained videos.
We name the proposed architecture HandLer, which stands
for Hand Linker. HandLer takes as input two consecutive
video frames at times t-1 and t, and output the detected
hands in frame t as well as their corresponding locations
in frame t-1. The processing pipeline consists of three
stages. The first stage is the Forward Propagation, which
propagates features from frame t-1 to frame t based on
the locations of previously detected hands and their esti-
mated movements. The second stage is the Detection and
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Figure 2. Representative image sequences from our dataset. The
size, shape, location, appearance, and visibility of a hand can
change drastically and frequently.

Backward Regression that uses outputs from the Forward
Propagation to obtain the hand locations for frame t as well
as their counterparts in frame t-1, and estimate their con-
fidence conditioned on both the objectness scores at frames
t and t-1 as shown in Fig. 1. This allows us to link hand
detections between two frames. Third, we establish cor-
respondence between hand tracklets via pose association.
This is to leverage the fact that hands are undetachable parts
of a human body, so we can use pose to recover prematurely
terminated hand tracklets.

Each stage of the proposed processing pipeline has its
benefits. The propagation step and conditional confidence
estimation step are useful for detecting blurry and occluded
hands. The detection step is necessary to account for new
hands in a video and avoid the potential drifting problem
common in methods solely based on propagation. The re-
gression step brings detections at two different times into a
common reference frame for a more reliable linking. The
high-level pose association step avoids frequent ID switch
due to motion blur and occlusion.

We also introduce a new dataset called YouTube-Hand
for developing and evaluating hand tracking algorithms.
YouTube-Hand contains 240 video sequences from diverse
scene categories, including kitchens, mechanical work-
shops, and gyms. This dataset has 19,728 annotated frames
with 864 unique hand instances. To the best of our knowl-
edge, this is the first large-scale hand tracking dataset con-
taining videos for unconstrained environments with multi-
ple annotated hand trajectories for each video. Fig. 2 shows
some representative images from our dataset. We will re-
lease this dataset and code for research usage.

2. Related Work
Many prior works only focused on hand detection in

static images [6, 8, 9, 13–15, 22, 26–28, 32, 37, 38, 40, 52,
55], and works on hand tracking were developed for con-
strained settings such as laboratory environments and ego-
centric perspectives. Sridhar et al. [42] proposed a method
to track hands captured using a depth camera. Zhang et al.
[60] proposed a hand tracking solution that predicted a hand
skeleton of a human from a single RGB camera for AR/VR
applications. Wang and Popović [46] used a single cam-
era to track a gloved hand with an imprinted pattern. Sharp
et al. [39] provided a hand tracking and pose estimation sys-
tem based on a single depth camera. Mueller et al. [24] de-
veloped a 3D hand tracking approach for monocular RGB
videos using a kinematic 3D hand model. Sridhar et al. [43]
proposed a method to track hands manipulating objects in
RGB-D videos. However, none of these methods was de-
veloped for videos in the wild; they required special mark-
ers, depth information, ego-centric perspectives, or scenes
with plain background.

Hands are objects, and we can consider Multiple-Object
Tracking (MOT) methods. A popular MOT approach is
tracking-by-detection, where an object detector first local-
izes objects, and then an association method constructs
trajectories. Depending on the association method, we
can categorize MOT methods as offline tracking or on-
line tracking. Given a current frame t, offline meth-
ods [35, 56, 57] can use future frames and pose the associa-
tion as a global optimization method. Meanwhile, most on-
line methods [33, 54, 58, 63] are constrained to use frames
up to frame t only. A typical way to associate detections
over different frames is the Hungarian algorithm [25] with
the affinity costs defined based on the overlaping criterion.
Bewley et al. [4] proposed to predict bounding box move-
ment with Kalman Filter and use Hungarian algorithm for
linking those boxes into tracks. However, this approach
does not work well for unconstrained videos since hands
often move fast, interact, and cross each other. Moreover,
the two-step approach of detecting hands first and then as-
sociating them can lead to suboptimal results since the two
steps are not jointly optimized end-to-end.

There are existing methods to alleviate the disadvantages
of the two-step tracking-by-detection paradigm. Bergmann
et al. [2] developed a framework that uses object locations
in the current frame to directly regress their corresponding
locations in the next frames. However, this method only
uses current frame object locations as region proposals for
the next frame. This method does not work well for tracking
hands since hand locations change drastically over frames.
Zhou et al. [62] proposed a point-based framework for joint
detection and tracking, representing each object by a sin-
gle point and tracking such points. This method outputs
an offset vector from the current object center to its center

6407



in the previous frame for tracking. However, only using a
point representation does not work well for hands, which
are highly deformable.

There are methods that process multiple frames at the
same time. Feichtenhofer et al. [10] introduced correla-
tion features that represented object co-occurrences across
time to generate two-frame tracklets. However, this method
does not work well when an object undergoes heavy oc-
clusions, which is often the case for hands. Peng et al. [30]
extended [10] by adding an appearance-based identity atten-
tion and proposed an online method to link two-frame track-
lets. Wu et al. [51] proposed to generate a re-ID embedding
in each pixel and estimate objects movement offset from
this embedding. This offset can be used to propagating fea-
ture and associating objects. However, those algorithms are
appearance-based that does not work well for hands since
the appearance of a hand can change drastically over time
and different hand instances can have similar appearance.
Instead of using correlation features or appearance-based
approaches, our method directly estimates the relative off-
sets of hands in the previous frame given the hand loca-
tions in the current frame. As shown in our experiments,
this makes our hand tracking system more robust to oc-
clusions or motion blur and reduces identity switches with
other hand instances.

3. Proposed Method
In this section, we describe our novel method for online

tracking of multiple hands. We illustrate the proposed ar-
chitecture in Fig. 3. Our method’s core is a convolutional
network that operates on a pair of two consecutive frames at
a time. At time t, the input to the network is a pair of video
frames at time t-1 and t, and the output of the network
are locations and confidence scores of the detected hands in
frame t as well as their corresponding locations and confi-
dence scores in frame t-1. We use the estimated locations
of hands in time t-1 to establish the association with the
existing hand tracks, assuming that we have tracked hands
in the video until time t-1.

Specifically, given two frames It−1 and It at time t-1
and t, we use a backbone network to obtain their features
Xt−1,Xt ∈ Rh×w×d. Here, h × w denotes the spatial
size and d denotes the number of channels. We also use
an off-the-shelf pose tracker [29] to obtain pose heatmaps
Pt−1,Pt ∈ Rh×w×15 corresponding to 15 human joints.
Let Ht−1 ∈ Rh×w denote heatmap for hands that were de-
tected in frame It−1. We pass features Xt−1 and Xt, pose
heatmaps Pt−1 and Pt, and hand heatmap Ht−1 to the for-
ward propagation stage.

3.1. Forward Propagation

Given features Xt−1 and Xt, pose heatmaps Pt−1 and
Pt, and hand heatmap Ht−1, the forward propagation stage

estimates a flow map Ft ∈ Rh×w×2 and uses this flow map
to obtain temporally aggregated features Zt ∈ Rh×w×d.

Flow Estimation. To estimate the flow map F t, we pro-
pose to use the Flow Estimation Network [12]. The inputs
to this network are multi-scale features Xt−1 and Xt, and
the output is the 2-channeled flow map Ft ∈ Rh×w×2 de-
noting the motion between frames It−1 and It. The two
channels in Ft corresponds to flows in the horizontal and
vertical directions.

We train this Flow Estimation Network end-to-end along
with other components of the network as follows. Given
a pair of hands that have the same ID in frames t-1 and
t, we obtain two binary masks Mt−1,Mt ∈ Rh×w corre-
sponding to two frames. These masks are the ground-truth
binary segmentation maps for the hand in frames t-1 and
t, respectively. We then use a bilinear warping functionW
proposed by [65] to estimate a binary segmentation map for
the hand at time t: M′t = W(Mt−1,Ft). We then define
a loss for hand motion as the MSE loss between estimated
M′t and the groundtruth Mt: Lhmo := MSE(M′t,Mt).

Similarly, we also use the pose heatmap pair (Pt−1, Pt)
to define a loss for pose motion. We first obtain an estimated
pose at time t: P′t = W(Pt−1,Ft). We then define a loss
for poss motion as the MSE loss between estimated P′t and
the groundtruth Pt: Lpmo := MSE(P′t,Pt).

Temporal Feature Aggregation. The output Ft from the
Flow Estimation Network is used to aggregate features from
time t-1 to features from time t. Specifically, we propa-
gate features Xt−1 to features Xt to obtain Zt:

Zt = [1+W(Ht−1,Ft)]�Xt+W(Ht−1�Xt−1,Ft) (1)
In the above equation, � is the Hadamard product, Ft is

the estimated flow map from frame t-1 to frame t, andW
is the bilinear warping function.

3.2. Hand detection and backward regression

The second important component of our architecture is
the hand detection and backward regression module. The
input to this module is the propagated feature map Zt along
with estimated flow map F t. First, a CenterNet [61] will be
used to obtain a dense set of hand proposals at every pixel.
Second, for each proposal we compute: (1) the bounding
box of the hand at frame t, (2) the probability of this bound-
ing box being a hand, (3) the relative offset bounding box
of this hand at frame t-1, and (4) the the confidence of
detected box and offset box belong to same hand identity.

Tracking-based detection. We observe that for some
blurry and occluded hands, our model would yield rela-
tive lower confidence scores even though those hands are
clearly visible in previous frames. Detections with low con-
fidence scores might be dropped, leading to false negatives.
To address this problem, we formulate the detection prob-
ability at frame t to be conditioned on both the objectness
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Figure 3. Processing pipeline of HandLer. Given input video frames at time t-1 and time t, we first extract their DLA features Xt−1

and Xt. We estimate the flow map O from frame t-1 to frame t, and also obtain a heatmap Ht in frame t from CenterNet [61]. Along
with heatmap Ht−1, we aggregate feature as described in Eq. (1) to obtain a feature map Zt. We then extract RoI features from Zt and
detect hands in frame t and also estimate their corresponding offset and probability in the frame t-1 with the backward regression.

scores at frames t and t-1 (shown in Fig. 1). Consider a
proposal Ct

k at time t and position k and its correspond-
ing detection Dk for the anchor box at location k, we use
P (Dk) = P (Dk=hand) to denote the probability that Dk

is a hand, and P (Ct
k) = P (Ct

k = object) to denote the
objectness probability for the proposal Ct

k. The detection
likelihood is formulated as:

P (Dk) = P (Dk|Ct
k)P (C

t
k) (2)

= P (Dk|Ct
k)

N∑
j

P (Ct
k|Ct−1

j )P (Ct−1
j ). (3)

We further assume that P (Ct
k|C

t−1
j ) = 0 if there is no

motion from j to k, and P (Ct
k|C

t−1
j ) = P (Ct

k) otherwise.
Thus the detection likelihood becomes:

P (Dk) = P (Dk|Ct
k)

∑
j∈Ft

k

P (Ct
k)P (C

t−1
j ), (4)

whereF t
k denotes the set of pixel locations that have mo-

tion vectors pointing to k in the optical flow map F t.

3.3. Hand-track continuation and initialization

We now describe how a newly detected hand is linked
with an existing hand track or used to initialize a new hand
track. Consider a particular detected hand D obtained by
running the detection module with the input being the two
frames at t-1 and t. Frame t detection Dt is represented
by a quadruple: Dt = (Bt, pt, B

O
t , p

O
t ), where Bt is the

hand location in frames t, BO
t is its corresponding offset

location in frame t-1, pt is the corresponding detection
confidence and pOt is the confidence of Bt and BO

t belong
to same hand identity. Note that we only keep a detection
where pt is greater than a detection threshold θdet.

We then use the Hungarian algorithm [25] to match a
detection Di

t and also other detections with the set of ex-
isting hand tracks. This is a joint optimization process,
where the best set of one-to-one correspondences is deter-
mined. If Di

t is matched with an existing hand track, we

will use it to continue the track. Otherwise, we will either
initialize a new hand track for Bi

t if the detection score p is
higher than a threshold θnew, or discard this detection. Note
that θnew should be higher than θdet to avoid propagating
false positives. In our experiments, we set θdet = 0.6, and
θnew = 0.9.

The Hungarian matching process is done as follows. The
inputs to this process are: (1) a set of detected hands, repre-
sented by the set of bounding boxes {Dt} in frame t, and
(2) a set of active hand tracks, represented by a set of last
bounding boxes of the tracks {Tt−1}. Note that the last
bounding box of Tt−1 might not be at frame t−1. Following
previous MOT methods, we only remove a hand track from
the set of active hand tracks if this hand track is not matched
to any new detection for more than σ frames. Given the
two set of bounding boxes {BO} and {Tt−1}, we obtain
an affinity matrixM asMij = (α+ pOt )IoU(BOi

t , T j
t−1),

and use the Hungarian algorithm to find the best set of one-
to-one correspondences to maximize the total sum of the
affinity. In our experiments, we set α = 0.1 and σ = 50.

3.4. Pose association

Since hands are undetachable body parts of a human,
we propose to use tracking result to guide our model for
hand motion estimation and tracking. Specifically, we con-
sider the state-of-the-art open source pose tracking algo-
rithm LightTrack [29] and observe that it has a lower recall
than our hand tracker, but most detected poses are generally
accurate. We therefore propose to use LightTrack [29] to
help estimate motion flows (described in Sec. 3.1) and link
a newly detected hand to an existing hand track.

Also, recall that a newly detected hand is represented by
a quadruple D = (B, p,BO, pO). In most cases, this de-
tection will be used to continue a hand track as described in
Sec. 3.3. In some cases, we will discard D if p is low, and
we will create a new track if either pO is low or there is no
matching hand track for BO. But these actions can lead to
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a false negative or a false identity switch, so we propose to
address these problems with pose tracking as follows. First,
given a set of detected hands and a set of wrist locations
of detected poses, we run the Hungarian algorithm to find
the optimal matching, where the matching cost for a hand
and a wrist is based on their distance. Second, we discard
detections that have low p values and no matching wrists.
Third, we use the procedure described in Sec. 3.3 to link
some detected hands with existing hand tracks. For a de-
tected hand D that has not been linked to any hand track,
we will link it with a hand track T if: (1) D is linked with
the right/left wrist of a pose Pt in frame t; (2) T is linked
with the right/left wrist of a pose Pt−1 in frame t-1; and
either (3a) Pt and Pt−1 are linked via pose tracking, or (3b)
the left/right wrist of Pt is linked with another hand D′ that
is linked with the hand track T ′, which in turn is linked with
the left/right wrist of Pt−1.

3.5. Loss function

To train this hand detection and regression module, we
optimize the combined loss function: L = Lhmo +Lpmo +
LRPN + Lclass + Lreg + LO

class + LO
reg . Here, LRPN is

the loss for the region proposal network, Lhmo and Lpmo

are flow map loss, and the other terms are for classification
of bounding box or offset regression.

4. YouTube-Hand Dataset
We aim to develop a tracker that can track hands in un-

constrained scenes, which may contain many people inter-
acting with each other and the other surrounding objects.
For training and evaluation, we needed a dataset of diverse
conditions, but such a dataset did not exist. We therefore
compiled a new dataset containing unconstrained videos
and annotated them with hand locations and trajectories.

Dataset source. We name our dataset YouTube-Hand be-
cause the majority of the videos (200 out of 240) were col-
lected from YouTube. Specifically, we scraped 200 videos
from 10 scenarios, namely, casinos, concerts, cooking,
dancing, driving, gyms, kids playing, mechanical work-
shops, sanitizing, and sports. To have a diverse dataset,
we collected different videos from different YouTube up-
loaders. We manually verified the collected videos to en-
sure that they were unconstrained and diverse in terms of
lighting conditions, camera perspectives, skin tones, and
ages. We did not collect videos that have copyright marks.
Altogether, we downloaded 200 videos from YouTube,
with 20 videos for each scenario. Additionally, we se-
lected 40 videos from the PoseTracks dataset and annotated
them. The videos have spatial resolutions from 640×480 to
1920×1080 and frame rate from 24 to 30 fps.

Annotation. For each collected video, we extracted frames
using the original frame rate of the video and annotated ev-

Data source split Train/test split
Total YouTube PoseTrack Train Test

#Videos 240 200 40 150 90
#Frames 232K 227K 5K 166K 65K
#Anno. hands 60K 41K 19K 30K 30K
#Trajectories 864 666 198 519 345

Table 1. Statistics of the proposed YouTube-Hand dataset.
Scene/camera Has #Hand Maximum

Dataset Constraints Video Trajs. #trajs/video

EgoHands [1] Google glasses 0 n/a
Handseg [20] Color gloves 0 n/a
NYUHands [45] Hands keypoints 0 n/a
ColorHandPose [64] 3D hands keypoints 0 n/a
HandNet [48] Fingertips 0 n/a
GANeratedHands [24] Synthetic 0 n/a
Oxford-Hand [22] Unconstrained 0 n/a
TV-Hand [26] Unconstrained 0 n/a
COCO-Hand [26] Unconstrained 0 n/a
Contact-Hand [27] Unconstrained 0 n/a
100DOH [38] Unconstrained X 0 n/a
GTEA [16] Ego-centric X 0 n/a
WorkingHands [40] Down-facing cam. X 0 n/a
BSL [31] TV show, segmentation X 2 2
SynthHands [23] Ego-centric X 1 1
ICP-PSO [34] Hand keypoints X 6 1
EpicKitchen [7] Ego-centric, auto-label X 1400 2
VIVA [36] Vehicle-mounted X 45 4
YouTube-Hand Unconstrained X 864 15

Table 2. Comparing YouTube-Hand with other hand datasets.

Figure 4. Existing hand datasets are very different from ours. This
shows some representative images from: VIVA [36] (top left),
EpicKitchen [7] (top right), BSL [31] (bottom left) and Synth-
Hands [23] (bottom right).

ery fifteenth frame. We annotated only those hand instances
whose visible areas’ axis-parallel bounding box had more
than 100 pixels and whose trajectory appear for more than
50 frames. Our dataset was annotated by three annotators
and subsequently verified by two people.

Train/test split. We split our data into disjoint training and
testing sets. The training set contains 150 videos, randomly
selected from the 200 YouTube videos. The remaining 90
videos are used for testing.

Statistics and comparison with other hand datasets. Ta-
ble 1 shows the statistics of our dataset. Table 2 compares
our dataset with other existing hand datasets; most of them
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are for hand detection only, either having no video data or
hand trajectories. Some datasets contain hand trajectories,
but they only have videos for constrained camera settings,
such as ego-centric or in-vehicle mounted cameras. Fig. 4
shows some images from these datasets, which are much
more constrained than our dataset as shown in Fig. 2.

5. Experiments

In this section, we compare our method with various
generic object-tracking methods and hand tracking algo-
rithms. We also perform ablation studies, report qualitative
results, and discuss failure cases.

5.1. Implementation details and evaluation metrics

Architecture Details. We implemented HandLer using De-
tectron2 [53]. Specifically, we built upon a Cascade-RCNN
with a DLA-34 [11] backbone with a Bi-directional Fea-
ture Pyramid Network (Bi-FPN) [44]. The network can be
trained end-to-end and the inference speed is 5Hz.

Training Details. The core of HandLer is a network that
takes as input two frames and outputs the linked detec-
tions across these frames. The input to the network is not
necessarily a pair of consecutive frames at neither train-
ing nor testing time. To handle a wide range of video
frame rates and hand movements, including low frame rate
videos and fast moving hands, we actually sampled train-
ing video frames (t′,t), with varying distance between t
and t′. Specifically for each t, we used t′ = t − 15k, for
1 ≤ k ≤ 5, because the training videos are annotated every
fifteenth frame.

We pre-trained HandLer using static images from the
TV-Hand [26] and COCO-Hand [26] datasets by using the
same static image as both frames t-1 and t. This was to
utilize the larger datasets of annotated hands. Subsequently,
we fine-tuned the network on the proposed YouTube-Hand
dataset. For fine-tuning, we optimized the training loss for
12K iterations using SGD, with an initial learning rate of
0.0005 and a batch size of 48. We reduced the learning rate
by a factor of 10 after 8K iterations.

Evaluation metrics. We used the standard multiple-object-
tracking evaluation metrics [3, 18, 21]: the identification
F1 score (IDF1), the percentage of mostly tracked trajec-
tories (MT), mostly lost trajectories (ML), false positives
(FP), false negatives (FN), identity switches (IDs), multiple
object tracking precision (MOTP), multiple object track-
ing accuracy (MOTA) and higher order tracking accuracy
(HOTA). Among these evaluation metrics, MOTA is con-
sidered the most important metric to quantify the overall
detection and tracking performance. MOTA is defined as:
MOTA := 1 −

∑
t(FNt+FPt+IDst)∑

t GTt
, where FNt, FPt, IDst,

and GTt are the number of false negatives, false positives,

identity switches, and number of true hands, respectively,
for the frame t.

We found that none of the commonly used MOT metrics
measures the recovery ability; they do not quantify how well
a tracker can right the wrong ID switch by reconnecting a
new hand tracklet with a prematurely terminated one. In
particular, while the ID switches (IDs) metric measures the
fragmentation of a ground truth trajectory; it would apply
the same penalty to any identity switch, no matter whether
the tracker switches to a new-and-wrong ID or an old-but-
correct ID. For example, the sequences of trajectory IDs
(a → b → c) and (a → b → a) would have the same per-
formance in current metrics, but the later is more desirable.
Thus, we introduce a new metric called Longest-Tracklet-
Ratio (LTR). For a particular ground truth trajectory that is
matched to multiple predicted tracklets with different IDs,
LTR is defined as the ratio between the length of the longest
predicted tracklet and the length of the entire trajectory. We
will use the average LTR on all trajectories of a test set as
the new performance metric.

5.2. Main Results

Table 3 compares the performance of our hand trackers
with other state-of-the-art MOT tracking methods. TraDes,
CenterTrack and FairMOT were end-to-end trainable
MOT methods, which were trained to detect and track hands
jointly, but they performed relatively poor on hands, per-
haps because they were geared towards less deformable and
articulated classes such as pedestrians and vehicles.

We also implemented several tracking-by-detection
methods, where the detection results were provided by
HandCNN [26], which is the state-of-the-art hand detection
method. LightTrack used pose tracklets to linking hands.
We first used LightTrack to detect and track human body
joints then associated HandCNN detected hand to a person
based on the distances between the predicted wrist keypoint
and the center of the detected hand bounding box. Cen-
terTrack* was a method where the detection component of
CenterTrack was replaced by HandCNN. MPNTrack was
an offline tracking method, in which a Message Passing
Network (MPN) was used for HandCNN detection associ-
ation. For all methods, we first pre-trained using static im-
ages from TV-Hand and COCO-Hand datasets to improve
the hand detection performance and then fine-tuned them
using the training set of YouTube-Hand.

Based on the those metrics, HandLer outperforms the
others by a wide margin. Fig. 5 shows some representative
results and failure cases by HandLer.

5.3. Ablation Studies

We now present our experiments to study the effective-
ness of different components of the proposed architecture.

Effectiveness of HandLer. To study the importance of the
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Methods IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ MOTP↑ MOTA↑ LTR↑ HOTA↑
LightTrack [29] (Pose) 53.4 101 70 6240 12816 1955 74.5 30.8 48.4 48.5
FairMot [59] 41.4 96 57 2065 12753 3448 76.8 39.9 31.3 39.0
MPNTrack [5] (Offline) 49.0 156 66 5918 11263 1039 77.0 40.0 44.3 40.7
CenterTrack[62] 37.2 113 62 2279 12379 3362 76.5 40.7 27.3 39.0
CenterTrack*[62] 57.8 137 43 3208 10317 1647 79.0 50.0 37.5 49.1
SORT [4] 48.3 101 72 2295 12960 1475 76.7 44.9 47.6 46.1
TraDeS [51] 53.6 168 43 3271 9102 1982 76.4 52.7 44.4 46.4
HandLer (proposed) 70.9 218 23 2412 5986 712 79.9 70.0 64.3 59.4

Table 3. Hand tracking performance on the test set of YouTube-Hand. In terms of MOTA, the most indicative MOT metric, HandLer
outperforms other methods by a large margin. In each column, the best result is highlighted in bold, and the second best result is underlined.

(a) Tracking results by HandLer. This visualizes hand tracking results across two
frames. Hands that belong to the same trajectory are visualized with the same color.

(b) Hand detection and backward regression results. The left and right images
correspond to frames t-1 and t, respectively. The detected hand in frame t and its
corresponding location obtained using backward regression in frame t-1 are shown
in magenta color. The detected hands in frame t-1 are visualized in blue and green.

(c) Comparing HandCNN and HandLer. HandCNN fails to detect blurry and
occluded hands. Benefit from our temporal feature aggregation and tracking-based
detection, HandLer can detect those hands.

(d) Failure cases from HandLer. The left image shows a case where a hand is not
detected due to heavy occlusions, and the second images shows a case where other
skin areas are mistaken for hands.

Figure 5. Qualitative results on YouTube-Hand dataset.

proposed forward propagation for hand tracking, we trained
a model where there was no forward propagation. Similarly,
we trained a model where there was no backward regression
to frame t-1. In this case, we linked hand detections using
the the Hungarian algorithm with the hand bounding boxes
in frame t. Finally, we trained and tested the model without
pose. The results are shown in Table 4. We use HandLer to
refer to our full model, and HandLer-NP is HandLer with-

out the pose. As can be seen, all those three components are
important component of HandLer.

FP↓ FN↓ IDs↓ MOTA↑ LTR↑
HandLer 2412 5986 712 70.0 64.3
HandLer w/o forward 3107 6432 761 66.1 62.1
HandLer w/o backward 2838 6195 1488 65.4 58.4
HandLer-NP 2875 6169 1256 66.1 59.0
HandLer-NP w/o forward 3076 6821 1203 63.4 56.4
HandLer-NP w/o backward 2301 6965 1536 64.4 52.2

Table 4. Effectiveness of each components of HandLer.

Robustness to low frame rates. We studied how the
tracking performance changed as the frame rate of a video
dropped. For this purpose, we ran HandLer on every K-
th frame for various values of K. Specifically, we used
K = 1, 3, 5, 15, which corresponded to 30, 10, 6, and 2
frames per seconds (fps). The results are shown in Table 5.
As can be seen, the MOTA of HandLer did not decrease
much when the fps was reduced from 30 to 6. Compared
to SORT [4] (with HandLer detection), another tracking
method described in Sec. 5.2, this level of MOTA reduc-
tion was relatively small. This demonstrates the robustness
of our linking algorithm across different time gaps.

Tracking SORT HandLer

Stride FP↓ FN↓ IDs↓ MOTA↑ FP↓ FN↓ IDs↓ MOTA ↑
K = 1 2446 36297 1902 64.9 2412 5986 712 70.0
K = 3 1177 2977 2903 59.2 1099 3525 1284 65.8
K = 5 915 2297 3301 55.6 906 2861 1468 64.3
K = 15 664 1636 3569 51.2 651 2077 1759 62.7

Table 5. Performance of tracking algorithms as the frame rate
of videos decreases. K is the stride of the tracking algorithm.

5.4. Hand detection

HandLer can also be used for hand detection, as long as
the input is a video. To study the effectiveness HandLer
for detecting hands especially blurry and occluded hands,
we sample a subset of YouTube-Hand that only contains
blurry and occluded hands to test the effectiveness of Han-
dLer for detecting such hands. Here we use the hand key-
points estimation method proposed in [41] to detect hand
keypoints within every ground truth hand box. We claim
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that the hand is blurry or occludes if [41] cannot detect
all hand keypoints. Along with YouTube-Hand and VIVA
dataset, we evaluated the performance of various hand de-
tection methods on those three datasets using the VOC aver-
age precision metric. Since hand keypoints estimation [17?
] cannot detect hand well for in-the-wild videos, we com-
pared with HandCNN [26], the state-of-the-art hand detec-
tion method and summarize the results of these experiments
in Table 6. Moreover, using HandLer as a detector (with-
out linker) would also boost the tracking performance of
other tracking methods, as can be seen in Table 7 for the
YouTube-Hand and VIVA datasets. Note that here we only
report the performances of the methods that support track-
ing with external detections.

Dataset

Method YouTube-Hand Blur&Occ Split VIVA [36]
HandCNN [26] 72.4 62.8(13.1% ↓) 89.2
HandLer 84.1 76.7(8.8% ↓) 95.3

Table 6. Hand detection performance. The colored number is
the percentage of performance dropped on blurry and occluded
hand split comparing on the full set of YouTube-Hand dataset.
Comparing with HandCNN, which runs with around 2fps, our
method achieves both efficiency and effectiveness.

IDF1↑ IDs↓ MOTA↑ LTR↑
SORT[4] 60.6(+12.3) 1902(+427) 64.9(+20.0) 53.6 (+15.1)
MPNTrack[5] 61.1(+12.1) 1288(+249) 65.2(+25.2) 57.3(+13.0)
CenterTrack[62] 61.3(+24.1) 2167(-1195) 62.7(+22.0) 51.1(+23.8)
LightTrack[29] 71.0(+17.6) 1635(-320) 61.7(+30.9) 65.7(+17.3)

Table 7. Using HandLer as a detector with other MOT meth-
ods on YouTube-Hand dataset. The colored number indicts
performance improvement or descent comparing with Table 3.

5.5. Other datasets & tasks

We also evaluate the tracking and detection performance
of HandLer on other datasets: VIVA, BSL. Note that all
methods below use HandLer detection and associating de-
tected hands with their own linker.

The VIVA dataset [36] contains frames sampled from 20
videos captured by ego-centric cameras. It was collected to
develop an algorithm to detect the hands of a driver and a
passenger. We used 11 videos for training and the remaining
9 for evaluation. The results are shown in Table 8.

IDF1↑ FP↓ FN↓ IDs↓ MOTA↑
CenterTrack[62] 45.6 341 1287 79 68.7
SORT[4] 44.1 517 884 93 72.6
MPNTrack[5] 46.2 793 545 46 74.7
HandLer 62.0 272 367 58 87.2

Table 8. Comparing different methods on VIVA dataset

The British Sign Language (BSL) dataset [31] contains

6000 frames from BBC TV shows, 296 of them have been
annotated with hand segmentation. All methods reported
in Table 9 were trained on YouTube-Hand training set and
then tested on BSL dataset.

IDF1↑ FP↓ FN↓ IDs↓ MOTA↑
CenterTrack[62] 22.2 65 128 177 45.9
MPNTrack[5] 11.6 144 76 64 58.8
SORT[4] 13.6 92 82 71 63.2
HandLer 20.5 60 89 39 72.5

Table 9. Tracking performance on the BSL dataset.

Pose tracking. Since hands are attached to the wrists,
one might wonder if we can track the human pose and the
wrists instead. We hypothesize that pose tracking is a dif-
ficult problem by itself, its performance is not better than
hand tracking performance. To validate this hypothesis,
we perform experiment on the PoseTrack Split of Youtube-
Hands. Pose tracking tracks the wrist points, but comparing
point tracking results with bounding box tracking results
is not trivial because MOTA computation are done differ-
ently. For a fair comparison, we consider two transforma-
tion: (1) Box2Point: represent a bounding box by its cen-
ter; (2) Point2Box: match a wrist point to a detected hand
by HandLer as explained in Sec. 5.2. Table 10 compares the
performance of HandLer and LightTrack after making these
transformations.

Box2Point Point2Box
LightTrack [29] 60.7 49.2
HandLer 69.6 61.2

Table 10. Comparing with pose tracking algorithm (Light-
Track) on the PoseTrack split. The evaluation metric is MOTA.
Pose tracking is difficult problem by itself, and it does not perform
as well as HandLer.

6. Conclusion and Potential Negative Impacts
We introduced HandLer, a novel convolutional architec-

ture to detect and track hands in unconstrained videos. We
also collected and annotated a large-scale challenging hand
tracking dataset, called YouTube-Hand. This dataset con-
tains videos of hands in unconstrained environments, and it
can be used to develop and evaluate hand tracking systems.

Hand tracking is important in various application sce-
narios, but there is potential for abuse of the technology to
invade privacy. We will release our implementation for re-
search purposes, but the deployment of this technology need
appropriate controls to limit harmful or malicious uses.
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