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Abstract

Unsupervised domain adaptive person re-identification
(ReID) has been extensively investigated to mitigate the ad-
verse effects of domain gaps. Those works assume the tar-
get domain data can be accessible all at once. However, for
the real-world streaming data, this hinders the timely adap-
tation to changing data statistics and sufficient exploita-
tion of increasing samples. In this paper, to address more
practical scenarios, we propose a new task, Lifelong Un-
supervised Domain Adaptive (LUDA) person ReID. This is
challenging because it requires the model to continuously
adapt to unlabeled data in the target environments while
alleviating catastrophic forgetting for such a fine-grained
person retrieval task. We design an effective scheme for
this task, dubbed CLUDA-ReID, where the anti-forgetting
is harmoniously coordinated with the adaptation. Specif-
ically, a meta-based Coordinated Data Replay strategy is
proposed to replay old data and update the network with
a coordinated optimization direction for both adaptation
and memorization. Moreover, we propose Relational Con-
sistency Learning for old knowledge distillation/inheritance
in line with the objective of retrieval-based tasks. We set up
two evaluation settings to simulate the practical application
scenarios. Extensive experiments demonstrate the effective-
ness of our CLUDA-ReID for both scenarios with stationary
target streams and scenarios with dynamic target streams.

1. Introduction
Person re-identification (ReID) aims to identify the same

person across different locations, time instances and cam-
eras. It is of high value in a wide range of applications [36]

*This work was done when Zhipeng Huang was an intern at MSRA.
†Equal contribution.
‡Corresponding authors.

Figure 1. Illustration of the regular UDA (a), the lifelong UDA in
the stationary target scenario (b) and dynamic target scenario (c).

in diverse environments, such as customer activity analy-
sis, missing children finding. In practice, a trained ReID
model usually suffers from severe performance drops when
deployed in new environments due to the domain gaps be-
tween the training data and the data in new environments.
Unsupervised domain adaptive (UDA) person ReID has
been widely studied to help deployed person ReID models
better adapt to new environments, by transferring learned
knowledge from labeled source domain to unlabeled target
domain [1, 9, 10, 31, 45, 46].

Existing UDA person ReID methods [1, 9, 10, 31, 45, 46]
assume that the data in the target domain can be accessible
all at once, which does not accord well with practical sce-
narios. In deployment environments, new people are often
showing up constantly and the data statistics may vary over
time. This imposes strong demands in developing a practi-
cal person ReID model/system that can support 1) flexible
adaptation to data statistics on the fly so that we can timely
obtain adapted performance without waiting for a long time
to collect massive data and 2) continuous knowledge acqui-
sition from increasing data. Recent works begin to look into
lifelong (supervised) person ReID [27,39]. They greatly ad-
vance practical applications by supporting continuous su-
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pervised domain adaptation, but still leave much explo-
ration room in the following aspects. First, these works
require costly annotations in the target domain. Besides hu-
man labour efforts, data labelling is time consuming, which
is not conductive to quick adaptation and privacy protection.
Second, they all aim to balance anti-forgetting and adapta-
tion, lacking explicit consideration for their coordination.
In fact, anti-forgetting can facilitate flexible/quick adapta-
tion when harnessed in the right manner. In this paper, we
propose and study a more practical task, i.e., Lifelong Un-
supervised Domain Adaptive (LUDA) person ReID, which
does not require annotations in the target domain.

LUDA person ReID enables deployed models to achieve
continuous domain adaptation using unlabeled target
stream. To the best of our knowledge, we are the first to
define this task. Different from conventional life-long learn-
ing [15,20,34], our proposed task is challenging attributable
to two reasons. First, person ReID is a fine-grained retrieval
task. Critical to this task is to capture the inter-instance
relations for accurately ranking instances. Second, in the
context of lifelong learning, person ReID requires higher
generalization ability on unseen identities/categories since
there are constantly new people showing up, beyond the re-
quirements for remembering how to classify seen categories
as in classification tasks. Thus, for LUDA person ReID, we
expect that anti-forgetting can promote adaptation by avoid-
ing over-fitting new data and facilitating learning more gen-
eralizable features so that we can achieve fast adaptation
especially when the target domain changes or reappears.

In this paper, we design an effective scheme for LUDA
person ReID in which anti-forgetting and adaptation are
coordinated, dubbed CLUDA-ReID. In previous studies
[2,5,25,40], anti-forgetting is commonly placed into a joint
learning framework together with the training for adapta-
tion, lacking explicit considerations on their coordination.
We propose Coordinated Data Replay (CDR) to solve this
problem. Particularly, we store old data with a modified
ID-wise reservoir sampling algorithm, and design a meta-
based optimization strategy to align the objective of anti-
forgetting with that of adaptation when replaying stored old
data. Moreover, we maintain a model that is timely updated
and a momentum-updated model that accumulates learned
knowledge over time. We further introduce Relational Con-
sistency Learning (RCL) to promote knowledge distilla-
tion/inheritance from the historical model to the current
model when performing adaptation. Different from other
knowledge distillation strategies [39] in conventional life-
long learning, RCL is carefully designed to match the task
characteristics of person ReID. We introduce two scenarios
with stationary or dynamic target streams as illustrated in
Fig.1, and evaluate our CLUDA-ReID on these settings.
Besides, we build a new dataset named MMP-Retrieval
upon the MMPTRACK dataset for unseen-domain gener-

alization evaluation, released at https://iccv2021-
mmp.github.io/subpage/dataset.html.

Our contributions can be summarized in three aspects:
• We propose a novel yet realistic task, Lifelong Unsuper-

vised Domain Adaptive (LUDA) person re-identification,
to endow person ReID models with automatic adaptation
using continuously collected unlabeled data.

• We design an effective LUDA person ReID scheme, i.e.,
CLUDA-ReID, wherein Coordinated Data Replay (CDR)
and Relational Consistency Learning (RCL) are proposed
to explicitly coordinate anti-forgetting and adaptation.

• We set up two practical evaluation schemes to simulate
real application scenarios. Extensive experiments demon-
strate that our proposed method is effective in achieving
LUDA for scenarios with stationary or dynamic target
streams and enhancing unseen-domain generalization.

2. Related Works
2.1. Domain Adaptive Person Re-identification

Person re-identification (ReID) has been widely inves-
tigated and applied in many real-world scenarios. Unsu-
pervised domain adaptive (UDA) person ReID is of high
practical values in transferring the knowledge from labeled
source domain to unlabeled target domain for improving the
accuracy on the target domain after supervised fine-tuning.
Approaches in this field can be grouped into three main
categories: (1) Style translation based methods [12, 22];
(2) Pseudo labelling based methods [10, 43, 44, 49]; (3)
Domain-invariant feature learning based methods [16, 21,
23]. Albeit their effectiveness, they all assume that the tar-
get domain can be entirely accessible but this may not hold
in practice. In the real-world, target data usually comes in a
stream and its statistics may vary over time.

Recently, a few works [27, 39] study the lifelong (su-
pervised) person ReID problem wherein supervised domain
adaptation is continually performed. In [39], consisten-
cies from different perspectives (i.e., classification, distribu-
tion and representation) are incorporated into a comprehen-
sive training objective for distilling knowledge from the old
model. But it does not explicitly consider the optimization
in line with the objective of learning to rank. Pu et al. [27]
propose an adaptive knowledge accumulation method for
this task. However, both of them consider the supervised
setting and lack explicit consideration on coordinating anti-
forgetting with adaptation, in the sense that enabling anti-
forgetting to enhance adaptation. In this work, we propose
and address a new task, i.e., LUDA person ReID.

2.2. Lifelong Learning

Lifelong learning aims to learn from ever-expanding
data, which is challenging in capturing new knowledge as
well as maintaining old knowledge. Approaches in this field
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can be summarized into three categories. (1) Knowledge
distillation based methods [17, 20, 39] transfer already ac-
quired knowledge from a fixed old model maintained at a
certain moment to the new model currently being trained
via adding consistency regularization between them. Ex-
isting works in this view ignore the design of a consis-
tency regularization in line with the task characteristics of
person ReID, i.e., learning to rank. This problem is ad-
dressed in this paper via our proposed RCL. (2) Sample
storing/generation based methods recall old knowledge on
the stored [26, 29, 34] or synthetic [3, 38] data, interleaved
with the training on new collected data. They aim to strike a
balance between the knowledge learned on old and new data
respectively, lacking explicit consideration on the coordina-
tion between different optimization objectives at the task
level. (3) Dynamic model based methods [4, 30, 42] han-
dle expanding data/knowledge with progressively modified
model architecture. Our framework is based on combining
the first two categories.

3. Proposed Problem: LUDA Person ReID
3.1. Problem Definition

Consider a realistic scenario: a person ReID model or
system is offline trained on labeled source data, then de-
ployed in new environments wherein new data arrives con-
tinuously. Usually, the new data has domain gaps with the
source data and is hard to be annotated in time. Can we uti-
lize such unlabeled new data to perform continual domain
adaptation so that the deployed model can quickly adapt to
new environments? This motivates the problem of LUDA
person ReID.

For LUDA person ReID task, we assume that a labeled
source dataset X s = {(xs

i , y
s
i )|

Ns
i=1} is available at first,

which comprises Ns samples xs
i ∈ X s with corresponding

ID labels ysi ∈Ys. The target stream is divided into T splits

over time, denoted by X t = {xt
i|
Nj

t
i=1}Tj=1. For an interval

of time indexed by j (called “stage” in the following), N j
t

new unlabeled samples xti are collected in this stage and
compose a set X t

j . After each interval/stage, X t
j is used

to automatically update the deployed person ReID model
for continual adaptation, in the sense that we need not wait
to collect the entire target dataset or train the model from
scratch on the combination of newly collected and histori-
cal data many times.

3.2. Learning Setups

In the real world, the statistics of target streams may vary
over time in different degrees, corresponding to different
scenarios as follows: (i) In the stationary target scenario,
such as fixed cameras in retail, supermarket, etc., only iden-
tities increase as new data comes while the domain/style
characteristics maintain a relatively stable state. We can

suppose that there are no distribution shifts between the X t
j

in different stages. (ii) In the dynamic target scenario, such
as cameras mounted in cars, drones, etc., the number of seen
identities keeps increasing and their statistic characteristics
also vary over time, leaving this setup being not only class-
incremental but also domain-incremental.

4. Proposed Solution: A Coordinated Scheme
4.1. Overall Pipeline

In our proposed scheme, we first pre-train the person
ReID model on labeled source data X s = {(xs

i , y
s
i )|

Ns
i=1}.

Then, we deploy the pre-trained model in the target en-
vironment and update the model with target stream data

X t = {xti|
Nj

t
i=1}Tj=1 for achieving lifelong UDA. For each

sample, from X s or X t, we first use a backbone network to
extract its corresponding feature tensor, then adopt a global
spatial GeM pooing [28] on this feature tensor to obtain a
feature vector as its final ID representation. As common
practices in this field [14, 24, 48], we employ a triplet loss
and a cross-entropy based classification loss (each ID is
taken as one category) as person ReID losses on the ex-
tracted feature vector for training. In the j-th stage, to ac-
quire new knowledge for unsupervised domain adaptation,
we train a timely updated model (called “current model” for

brevity) on X t
j = {xti|

Nj
t

i=1} with person ReID losses. Here,
we generate or update the pseudo ID labels for X t

j via a
clustering algorithm every few training epochs.

Meanwhile, we recall old knowledge via data replay and
knowledge distillation for anti-forgetting. To this end, we
set up a memory buffer with a limited size for data replay
and maintain a historical model for knowledge distillation.
Specifically, we sample historical data stored in the memory
to update the current model together with new data in each
iteration, and store new samples into the memory at the end
of each stage. Besides, we perform knowledge distillation
from the maintained historical model to the current model
by adding consistency constraints on their outputs.

4.2. Coordinated Data Replay

Recalling old knowledge (for anti-forgetting) and captur-
ing new knowledge (for adaptation) correspond to two dif-
ferent objectives, thus can be viewed as two “tasks”. How-
ever, as we discussed in our introduction, these two tasks
do not have to conflict with each other. In fact, they can
be coordinated to enhance the model’s generalization ca-
pability for unseen identities and new domains. Thus, we
propose Coordinated Data Replay (CDR) to coordinate the
optimization of anti-forgetting and adaptation.

The trainable network parameters of a LUDA person
ReID model comprise a backbone network θ (such as the
ResNet-50 in Fig.2) for ReID feature extraction, and a clas-
sifier ϕ for adding the classification loss. In the learning

14290



Figure 2. The overall architecture of the proposed scheme CLUDA-ReID for LUDA person ReID. In CLUDA-ReID, we set up a memory
buffer to store samples that have been seen/trained as the old data, and preserve a momentum-updated model as the historical model to
accumulate acquired knowledge over time. We fed both the old data (dashed lines) and new data (solid lines) into the current model and
the historical model for capturing new knowledge for timely adaptation while enhancing the memorization of old knowledge. We achieve
coordinated anti-forgetting and adaptation learning via our proposed Coordinated Data Replay and Relational Consistency Learning.

stage of lifelong unsupervised domain adaptation, the opti-
mization objective of adaptation can be formulated as:

min
θ,ϕ
LAdap(θ, ϕ) = min

θ,ϕ
LTri(θ) + LCls(θ, ϕ), (1)

where LTri(θ) is the triplet loss applied to the extracted
feature vectors of new data, LCls(θ, ϕ) denotes the Cross-
Entropy based classification loss applied to the logits of new
data. Here, the new data refers to the training batch sampled
from X t

j in the j-th stage.
To recall previously learned knowledge, we set up a

limited-size memory buffer for storing data to replay these
samples. This memory is updated at the end of each stage
with a modified reservoir sampling algorithm. The classi-
cal reservoir sampling algorithm [35] is designed to ran-
domly keep N samples in memory from a sequence, with
equal probability for each one. Here, to preserve as diverse
ID information as possible, we modify the reservoir algo-
rithm from an instance-wise one to an ID-wise one. (See
more details in the supplementary.) With both the stored
old data and the new data together, the optimization objec-
tive of anti-forgetting can be formulated as:

min
θ,ϕ
LAntiF (θ, ϕ) = min

θ,ϕ
LKD(θ, ϕ)+LTri(θ)+LCls(θ, ϕ),

(2)
where LKD(θ) represents the knowledge distillation loss
for transferring already acquired knowledge from the main-
tained historical model to the current model, applied to the

inferenced results of both old and new data. We design a
novel knowledge distillation loss in line with person ReID
task and leave its detailed introduction in the subsequent
section. LTri(θ) and LCls(θ, ϕ) denote the triplet loss and
the classification loss respectively, similar to Eq.(1). Note
that they are both applied for replaying the old data stored
in the memory buffer. The general optimization objective
of lifelong learning with the regular data replay is:

min
θ,ϕ
LAdap(θ, ϕ) + LAntiF (θ, ϕ). (3)

In our proposed CDR, we aim to align two different
optimization objectives as described above via a meta-
optimization strategy. We draw inspiration from Model-
Agnostic Meta-learning (MAML) [8] which splits the op-
timization into meta-train and meta-test processes and then
involves a meta-update with a gradient-through-gradient
mechanism such that the model is updated along an aligned
direction between the meta-train and the meta-test. To coor-
dinate adaptation and anti-forgetting, we propose to treat
these two tasks as meta-train and meta-test in each itera-
tion of parameter updating rather than splitting samples into
meta-train and meta-test as in [19, 29]. With the task of
adaptation as meta-train while the task of anti-forgetting as
meta-test, the overall meta-optimization objective is:

min
θ,ϕ
LAdap(θ, ϕ) + LAntiF (θ −∆θ, ϕ−∆ϕ),

∆θ = α∇θLAdap(θ, ϕ), ∆ϕ = α∇ϕLAdap(θ, ϕ),
(4)

14291



where α denotes the meta-learning rate. With the meta-
optimization objective, the optimization of anti-forgetting
is considered through the gradient calculated upon the pre-
updated parameters after the meta-train process via one gra-
dient descent step: θ′ ← θ − α∇θLAdap(θ, ϕ) and ϕ′ ←
ϕ−α∇ϕLAdap(θ, ϕ). As common practices in [7,8] for the
efficient implementation of meta-learning, we omit higher-
order items during performing gradient back-propagation.

One natural question may raise: Why can the meta-
optimization objective presented in Eq.(4) coordinate anti-
forgetting and adaptation for lifelong learning? Inspired
by the analysis in [19], we recall the first-order Taylor ex-
pansion for a general function f(x, y) of two variables at
x = x0, y = y0 as:

f(x, y)=f(x0, y0)+f
′
x(x0, y0)(x−x0)+f

′
y(x0, y0)(y−y0),

(5)
where x0 is any point close to x. We instantiate the function
f as LAntiF , and set x and y to be θ−α∇θLAdap(θ, ϕ) and
ϕ − α∇ϕLAdap(θ, ϕ), respectively. Further, we choose x0

and y0 to be θ and ϕ, respectively. Thus, we can replace
the second term LAntiF (θ−∆θ, ϕ−∆ϕ) in Eq.(4) with its
corresponding first-order Taylor expansion, and reformulate
the overall meta-optimization objective of Eq.(4), as:

min
θ,ϕ
LAdap(θ, ϕ) + LAntiF (θ, ϕ)

− α∇θLAdap(θ, ϕ)∇θLAntiF (θ, ϕ)

− α∇ϕLAdap(θ, ϕ)∇ϕLAntiF (θ, ϕ).

(6)

Compared to the general optimization objective in
Eq.(3), the above meta-optimization objective, i.e., Eq.(6),
additionally maximizes the dot product of gradients of
LAdap(θ, ϕ) and LAntiF (θ, ϕ) with respect to θ and ϕ.
Therefore it encourages both the feature extractor and the
classifier to be optimized along a consistent/aligned direc-
tion between anti-forgetting and adaptation so that these two
tasks are coordinated for more effective life-long learning.

4.3. Relational Consistency Learning

As aforementioned, a classical method to alleviate the
catastrophic forgetting problem is to transfer the knowledge
from a model preserved at a certain historical time instance
to the current model via knowledge distillation [17, 20, 39].
These methods are indeed effective but leave two problems
for LUDA person ReID: 1) The task characteristics and ob-
jectives of person ReID, i.e., learning to rank, have not been
sufficiently considered in designing the loss functions for
knowledge distillation; 2) The old model preserved at a cer-
tain historical moment lacks sufficient robustness for the
potential training perturbation over time. We propose Re-
lational Consistency Learning (RCL) to address these prob-
lem towards more effective knowledge distillation in line
with the task characteristics of LUDA person ReID.

We first introduce the idea of temporal ensembling from
semi-supervised learning [33] into LUDA person ReID to
build the historical model. Specifically, we initialize the his-
torical model with the weights of source pre-trained model,
then update it via a weighted summation where a momen-
tum scalar β is applied to historical model while 1 − β is
applied to the current model.

The goal of person ReID is learning to rank. In line with
this goal, we design a regular term to encourage the histor-
ical model and the current model to output consistent rank-
ing results for input samples. In each meta-optimization
step, one batch of historically stored samples (abbreviated
as “old batch”, denoted by Bo) is sampled from the mem-
ory while another batch of newly collected samples (abbre-
viated as “new batch”, denoted by Bn) is sampled from the
current stream. Both Bo and Bn are fed into the historical
model and the current model to get their corresponding ID
feature vectors inferred by these two models.

We denote the feature vectors of the i-th and the j-th
samples inferred by the current model as f ci and f cj , re-
spectively. Likewise, fhi and fhj represent their correspond-
ing feature vectors extracted by the historical model. The
relation/affinity between the i-th and the j-th samples in-
ferred by the current model can be calculated by rci,j =

f c⊤i f cj /(∥f ci ∥2
∥∥f cj ∥∥2). The relation/affinity inferred by the

historical model rhi,j is computed in the same way. As the
core of our RCL, the regular term on inter-instance relations
can be formulated as:

LRel. =
∑

i,j∈Bn

(rci,j − rhi,j)
2+

∑
i′,j′∈Bo

(rci′,j′ − rhi′,j′)
2. (7)

We empirically find that merging the old batch Bo and the
new batch Bn into one to calculate such regular term de-
livers very close performance to the version in Eq.(7). To
be computation-efficient, we propose to calculate the affin-
ity matrix for Bn and Bo individually. This regular term
plays the regularization role in transferring the knowledge
from the historical model to the current model on learning
relative relations, which is required by ranking. Comple-
mentary to this, we additionally add another regular term
to transfer the knowledge on learning absolute ID-related
features, which is formulated as:

LKL =
∑

i∈Bn∩Bo

KL(gci∥ghi ), (8)

where KL(·∥·) denotes the Kullback Leibler (KL) diver-
gence distance between two distributions. gci = σ(ϕc(f

c
i ))

and gh
i = σ(ϕh(f

h
i )) denotes the classification logits in-

ferred by the current model and the historical model, respec-
tively. Here, ϕc(·) and ϕh(·) are the corresponding clas-
sifiers while σ(·) is the Softmax function. As a result, in
our proposed RCL, we implement the knowledge distilla-
tion loss LKD(θ, ϕ) in Eq.(2) as: LKD = LRel. + LKL.
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Figure 3. Effectiveness analysis of CLUDA-ReID on the source domain (PersonX) and on the target domain (Market1501) in the stationary
target scenario. In “Stage-wise UDA (Base.)”, we fine-tune the pre-trained model using the data collected in the current stage sequentially,
without explicit considerations on anti-forgetting. In “Base.+Data Replay”, the data is stored into a memory buffer for replaying, wherein
LTri and LCls are applied to both old data and new data for joint training, without LKD used. “Base.+CDR” denotes the model using
our proposed CDR as in Eq.(4) (wherein LKD is not adopted). In “Base.+CDR+KL Reg.”, we apply LKL to both old and new data
to implement LAntiF in Eq.(4). In “Base.+CDR+RCL”, we further apply the proposed LRel. to both old and new data to achieve our
proposed RCL. “All-in-one UDA” refers to the model combining all available target domain data for regular UDA training.

5. Experiments
5.1. Datasets and Evaluation Metrics

We employ a synthetic dataset PersonX (PX) [32]
for source pre-training and three public real-world image
datasets Market1501 (MA) [51], CUHK-SYSU (SY) [41],
MSMT17 (MS) [37] for unsupervised fine-tuning. This
shows a privacy-friendly practice since no ID annotations
of real persons are required. Besides, for unseen-domain
generalization evaluation, we build a new dataset called
MMP-Retrieval upon the training and validation splits of
MMPTRACK dataset released in ICCV 2021 multi-camera
multiple people tracking workshop. MMP-Retrieval com-
prises 21 people in 5 simulated environments. We have re-
leased it as aforementioned. More details of the used public
datasets can be found in the supplementary. We use the cu-
mulative matching characteristics (CMC) at Rank-1 (R-1)
and mean average precision (mAP) for evaluation.

5.2. Implementation Details

Following common practices [14,24,47] in person ReID,
we adopt ResNet50 [13] pretrained on Imagenet [6] as our
backbone. Similar to [24], the last spatial down-sampling
in the “conv5 x” block is removed. We resize images to
256 × 128, and set the batch size of both Bo and Bn to 64,
including 16 identities and 4 images per identity for each
batch. We adopt the commonly used data augmentation
strategies of horizontal flipping, random cropping. Follow-
ing [11, 50], we use the clustering algorithm of DBSCAN
to generate pseudo labels. Unless otherwise specified, we
train the model on the source domain for 60 epochs, and
train the model on the stationary/dynamic target streams for
40/60 epochs per stage respectively. We adopt Adam [18]
optimizer with its learning rate initialized as 3.5×10−4. The

size of memory buffer is set to 512. We provide the ablation
study for the memory buffer size and more implementation
details in the supplementary.

5.3. Evaluation in the Stationary Target Scenario

Experiment configuration. We evaluate our proposed
CLUDA-ReID in the first scenario introduced in Sec.3.2.
We employ the PersonX [32] as the source for supervised
pre-training while employing the Market1501 [51] for per-
forming LUDA. We sample 750 identities of the training
data of Market1501, and uniformly split them into 5 sub-
sets for a 5-stage LUDA training. At the end of each stage,
we compute the R-1 and mAP accuracy on the entire test set
of the source data and the target data to respectively assess
the model capacities on anti-forgetting and adaptation.
Effectiveness of CLUDA-ReID. We start with a basic
model “Stage-wise UDA” without anti-forgetting as the base
model, then incrementally add different components upon it
to assess their effectiveness. As shown in Fig.3, the perfor-
mances on the source domain (PersonX) and the target do-
main (Market1501) reflect the anti-forgetting ability and the
timely adaptation ability of models, respectively. Except
for All-in-one UDA, all other models are trained stage by
stage as new data arrives over time. Stage-wise UDA does
not explicitly consider the optimization for anti-forgetting.
It suffers from a dramatic performance drop on the source
domain data and is inferior to adapting to the target do-
main. As the results of Base.+Data Replay show, data re-
playing boosts the performance on both source and target
data by revisiting old data. Relative to Stage-wise UDA, the
model Base.+CDR achieves significant improvements. This
demonstrates our proposed CDR effectively promotes both
the old knowledge memorization and the new knowledge
capturing through their coordination. Upon our proposed
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Figure 4. The ablation study on the meta-optimization strategies.
LKD denotes the loss function for knowledge distillation. Bo and
Bn denotes the batches of old data and new data, respectively. “M-
tarin” is short for meta-train, “M-test” is short for meta-test. In all
shown models, the person ReID losses (LTri and LCls) applied
on the new data are adopted for the meta-train while the person
ReID losses applied to the old data are adopted for the meta-test.

coordinated optimization scheme, we further enhance the
anti-forgetting ability by adding KL consistency regulariza-
tion LKL (KL Reg.) and relational consistency regulariza-
tion LRel.. The comparison of the model Base.+CDR+RCL
to the model Base.+CDR shows striking improvements of
our proposed RCL, thanks to the loss function designs on
old knowledge distillation/inheritance in line with the task
objective of person ReID.
Ablation study for meta-optimization strategies. In this
part, we empirically study the practices of using different
data Bo and Bn forLKD in meta-optimization. As shown in
Fig.4, by comparing our proposed scheme (LKD onBo∪Bn
for meta-test) to the one applying LKD to Bo for meta-test
and the one applying LKD to Bn for meta-test, we find
that both Bo and Bn can contribute to the knowledge dis-
tillation for anti-forgetting. Besides, we further compare
our proposed task-oriented meta-train/meta-test splitting in
CDR with the data-based meta-train/meta-test splitting (i.e.,
LKD on Bn for meta-train while LKD on Bo for meta-test)
as in [19, 29]. We find our task-oriented splitting of meta-
train and meta-test is more effective in coordinating the op-
timization objectives of anti-forgetting and adaptation.
Ablation study for different design choices. We conduct
an ablation study on different design choices in CLUDA-
ReID by replacing the components in the Full Model of
CLUDA-ReID (the same as Base.+CDR+RCL in Fig.3)
with other design choices. The results are shown in Fig.5.
Compared to the First-In-First-Out (FIFO) rule and the reg-
ular (instance-wise) reservoir sampling algorithm, our mod-
ified ID-wise reservoir sampling adopted in Full Model is
superior since it enables stored samples to be diverse and
ID-balanced. Compared to the historical model preserved
at a certain historical moment, our design in Full Model
is more effective thanks to the temporal averaging via the
momentum updating strategy. In terms of the loss function

Figure 5. The ablation study on different design choices for data
replay, historical model updating and consistency regularization
designs. This is conducted in the stationary target scenario. “Data
Replay (FIFO)” denotes the scheme storing seen samples into the
memory buffer with the rule of First-In-First-Out. “Instance-wise
RS” refers to the regular version of Reservoir Sampling as intro-
duced in [35]. “Old Model (wo. momentum)” denotes we preserve
a model at a certain old moment as the historical model. “only
KL” and “only Rel.” means using LKL and using LRel. as the
knowledge distillation loss LKD , respectively.

design for consistency learning, we find LKL and LRel. are
complementary for the old knowledge distillation from the
historical model to the current model, since LKL aims to
learn absolute ID-related features while LRel. captures the
relative information about inter-instance relations.

5.4. Evaluation in the Dynamic Target Scenario

Experiment configuration. We evaluate CLUDA-ReID in
the scenario with dynamic target stream introduced in
Sec.3.2. This scenario is not only ID-incremental but also
domain-incremental. One synthesis dataset PersonX (PX)
is employed to simulate the source domain while three real-
world datasets Market1501 (MA), CUHK-SYSU (SY), and
MSMT17 (MS) are employed to simulate the dynamic tar-
get domain. We perform LUDA training on MA, SY, and
MS domains in order, and repeat this process again to sim-
ulate the domain recurring cases in the real-world dynamic
scenario. There are 6 stages in all for LUDA training in our
experiment. Each stage includes a sub-set of 350 identities
selected from the corresponding dataset via a random sam-
pling without replacement. Furthermore, we also evaluate
the model at the end of the final stage on MMP-Retrieval to
assess its generalization ability on unseen domains.
Adaptation performance. We evaluate the models at the
end of each stage. As shown in Tab.1, compared to the
scheme Stage-wise UDA (Base.), the scheme Base.+CDR
achieves 0.89%/1.79%, 4.64%/3.78%, 3.76%/2.09% im-
provements in R-1/mAP on MA, SY and MS respec-
tively when these domains first appear, and achieves
4.01%/3.00%, 9.53%/9.00%, 5.67%/3.25% improvements
in R-1/mAP on MA, SY and MS respectively when these
domains show up for the second time. The scheme
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Methods MA (t=1) SY (t=2) MS (t=3) MA (t=4) SY (t=5) MS (t=6)
R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP

Stage-wise UDA (Base.) 72.23 49.32 64.59 60.76 19.80 7.24 72.92 50.46 63.93 60.29 20.23 7.18
Base. + Data Replay 72.51 50.82 66.22 61.75 20.98 7.86 74.12 51.03 69.43 64.44 21.73 8.48
Base. + CDR 73.12 51.11 69.23 64.54 23.56 9.33 76.93 53.46 73.46 69.29 25.90 10.43
Base. + CDR + KL Reg. 74.24 51.76 71.55 67.88 26.16 9.94 79.26 59.48 76.76 74.45 29.79 12.44
Base. + CDR + RCL 75.21 52.96 75.38 71.35 28.67 11.04 82.79 64.87 81.86 78.39 33.91 14.64
All-in-one UDA 85.12 68.59 86.76 84.70 36.37 17.84 85.12 68.59 86.76 84.70 36.37 17.84

Table 1. Adaptation performance (%) evaluation in the dynamic target scenario. We test the model instantly at the end of each stage, on its
corresponding test set. The training order is PX→MA→SY→MS→MA→SY→MS. Our CLUDA-ReID is marked in gray shading.

Methods
t=3 t=6

PX MA SY PX MA SY
R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP

Stage-wise UDA (Base.) 52.71 30.76 49.76 24.59 52.97 55.99 46.92 24.59 50.63 19.64 51.17 51.65
Base. + Data Replay 56.33 38.21 57.46 31.73 54.46 56.33 48.78 27.33 60.34 32.37 58.93 57.11
Base. + CDR 63.93 44.43 61.43 33.46 60.52 60.43 58.46 39.64 65.34 39.46 65.33 62.77
Base. + CDR + KL Reg. 73.75 54.33 65.83 40.30 68.55 62.11 65.45 47.43 71.43 44.10 72.33 69.48
Base. + CDR + RCL 80.66 69.48 69.97 45.60 73.24 69.44 76.47 58.23 76.25 49.12 78.28 75.43
Pre-trained Model (t=0) 94.86 86.34 54.04 27.67 46.52 48.62 94.86 86.34 54.04 27.67 46.52 48.62
All-in-one UDA 40.43 16.44 85.12 68.59 86.76 84.70 40.43 16.44 85.12 68.59 86.76 84.70

Table 2. Anti-forgetting performance (%) evaluation in the dynamic target scenario. We test the model on the test-sets of all domains at the
end of the 3rd stage (t=3) and the 6th stage (t=6). The training order is PX→MA→SY→MS→MA→SY→MS. Note that we omit the MS
dataset for brevity because it appears in the final, whose results can not reflect the anti-forgetting ability. CLUDA-ReID is marked in gray.

Base.+CDR+RCL is superior to Stage-wise UDA by
2.98%/3.64%, 10.79%/10.59%, 8.87%/3.80% respectively
in R-1/mAP on MA, SY and MS when these domains first
appear, by 9.87%/14.41%, 17.93%/18.10%, 13.68%/7.46%
respectively in R-1/mAP on MA, SY and MS when they
appear for the second time. These demonstrate the effec-
tiveness of our proposed CDR and RCL in timely adapting
to new environments. The improvements are especially sig-
nificant when the similar or same domain re-appears thanks
to the coordinated old knowledge memorization.

Anti-forgetting performance. We measure the perfor-
mance at the end of the 3rd stage ( i.e., t=3, all domains
are traversed once) and at the end of the 6th stage (i.e.,
t=6, all domains are seen for the second time), for evalu-
ating the anti-forgetting ability of our proposed method. As
shown in Tab.2, relative to the model pre-trained on PX,
the scheme Base.+CDR+RCL ranks the first with the low-
est performance degradation on PX at the end of the 3rd
and the 6th stages. Besides, comparing the results in Tab.2
to the timely measured results in Tab.1, we find the scheme
Base.+CDR+RCL is of the lowest performance degradation
over all domains. It demonstrates the effectiveness of our
CLUDA-ReID in alleviating catastrophic forgetting.

Generalization performance on unseen domains. We
evaluate the trained model directly on MMP-Retrieval. As
shown in Fig.6, the Rank-1 and mAP of Base.+CDR and
Base.+CDR+RCL on MMP-Retrieval increases constantly
as the LUDA training goes on. This demonstrates the ef-
fectiveness of our proposed CDR and RCL of CLUDA-
ReID in improving the generalization ability for unseen do-
mains through coordinated anti-forgetting and adaptation.

Figure 6. Performance (%) of unseen-domain generalization eval-
uation on our built MMP-Retrieval dataset.

6. Conclusion
In this paper, we propose a new and practical task, LUDA

person ReID, which aims to enable person ReID models
to achieve continuous domain adaptation using unlabeled
streaming data. This facilitates exploiting increased sam-
ples and achieves timely adaptation for real-world stream-
ing data. Besides, it helps privacy protection of customer
data as the practices in our experiments. For this task, we
design an effective scheme CLUDA-ReID in which the Co-
ordinated Data Replay (CDR) and Relational Consistency
Learning (RCL) are proposed to explicitly coordinate anti-
forgetting and adaptation. We set up two practical evalu-
ation schemes to simulate the real applications for method
evaluation. Extensive experiment results demonstrate the
effectiveness of CLUDA-ReID in achieving LUDA for sce-
narios with stationary or dynamic target streams and en-
hancing the generalization capacity on unseen domains.

14295



References
[1] Zechen Bai, Zhigang Wang, Jian Wang, Di Hu, and Errui

Ding. Unsupervised multi-source domain adaptation for per-
son re-identification. In CVPR, 2021. 1

[2] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-
than, and Philip HS Torr. Riemannian walk for incremen-
tal learning: Understanding forgetting and intransigence. In
ECCV, pages 532–547, 2018. 2

[3] Ali Cheraghian, Shafin Rahman, Sameera Ramasinghe,
Pengfei Fang, Christian Simon, Lars Petersson, and
Mehrtash Harandi. Synthesized feature based few-shot class-
incremental learning on a mixture of subspaces. In ICCV,
pages 8661–8670, 2021. 3

[4] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov,
Mehryar Mohri, and Scott Yang. Adanet: Adaptive struc-
tural learning of artificial neural networks. In ICML, pages
874–883. PMLR, 2017. 3

[5] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne
Tuytelaars. A continual learning survey: Defying forgetting
in classification tasks. TPAMI, 2021. 2

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. IEEE, 2009. 6

[7] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas,
and Ben Glocker. Domain generalization via model-agnostic
learning of semantic features. In NeurIPS, volume 32, pages
6450–6461, 2019. 5

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, pages 1126–1135. PMLR, 2017. 4, 5

[9] Yang Fu, Yunchao Wei, Guanshuo Wang, Yuqian Zhou,
Honghui Shi, and Thomas S Huang. Self-similarity group-
ing: A simple unsupervised cross domain adaptation ap-
proach for person re-identification. In ICCV, pages 6112–
6121, 2019. 1

[10] Yixiao Ge, Dapeng Chen, and Hongsheng Li. Mutual mean-
teaching: Pseudo label refinery for unsupervised domain
adaptation on person re-identification. In ICLR, 2020. 1,
2

[11] Yixiao Ge, Feng Zhu, Dapeng Chen, Rui Zhao, and Hong-
sheng Li. Self-paced contrastive learning with hybrid mem-
ory for domain adaptive object re-id. In NeurIPS, 2020. 6

[12] Yixiao Ge, Feng Zhu, Rui Zhao, and Hongsheng Li.
Structured domain adaptation for unsupervised person re-
identification. arXiv preprint arXiv:2003.06650, 2020. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 6

[14] Lingxiao He, Xingyu Liao, Wu Liu, Xinchen Liu, Peng
Cheng, and Tao Mei. Fastreid: A pytorch toolbox for general
instance re-identification. arXiv preprint arXiv:2006.02631,
2020. 3, 6

[15] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua,
and Hanwang Zhang. Distilling causal effect of data in class-
incremental learning. In CVPR, pages 3957–3966, 2021. 2

[16] Yangru Huang, Peixi Peng, Yi Jin, Junliang Xing, Congyan
Lang, and Songhe Feng. Domain adaptive attention model
for unsupervised cross-domain person re-identification. In
AAAI, 2020. 2

[17] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and
Cordelia Schmid. Memory-efficient incremental learning
through feature adaptation. In ECCV, pages 699–715.
Springer, 2020. 3, 5

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[19] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Learning to generalize: Meta-learning for do-
main generalization. In AAAI, 2018. 4, 5, 7

[20] Zhizhong Li and Derek Hoiem. Learning without forgetting.
TPAMI, 40(12):2935–2947, 2017. 2, 3, 5

[21] Shan Lin, Haoliang Li, Chang-Tsun Li, and Alex Chichung
Kot. Multi-task mid-level feature alignment network for un-
supervised cross-dataset person re-identification. In BMVC,
2018. 2

[22] Jiawei Liu, Zheng-Jun Zha, Di Chen, Richang Hong, and
Meng Wang. Adaptive transfer network for cross-domain
person re-identification. In CVPR, pages 7202–7211, 2019.
2

[23] Xiaobin Liu and Shiliang Zhang. Domain adaptive person re-
identification via coupling optimization. In ACMMM, pages
547–555, 2020. 2

[24] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei
Jiang. Bag of tricks and a strong baseline for deep person
re-identification. In CVPR Workshops, pages 0–0, 2019. 3, 6

[25] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyun-
woo Kim, and Scott Sanner. Online continual learning in
image classification: An empirical survey. Neurocomputing,
2021. 2

[26] Andrea Maracani, Umberto Michieli, Marco Toldo, and
Pietro Zanuttigh. Recall: Replay-based continual learning in
semantic segmentation. In ICCV, pages 7026–7035, 2021. 3

[27] Nan Pu, Wei Chen, Yu Liu, Erwin M Bakker, and Michael S
Lew. Lifelong person re-identification via adaptive knowl-
edge accumulation. In CVPR, pages 7901–7910, 2021. 1,
2
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