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Figure 1. Current state-of-the-art RefSR methods suffer from (a) reference-underuse issue and (b) reference-misuse issue due to

the improper coupled framework. Specifically, for the reference-underuse issue, RefSR methods transfer the detail textures from reference

insufficiently, even when the reference has highly similar content to input. As for the reference-misuse issue, current methods introduce blur

and artifacts, which is even worse than SISR methods, when the reference has no relevant content. Our novel task decoupled framework

for RefSR mitigates these issues.

Abstract
Reference-based super-resolution(RefSR) has achieved

impressive progress on the recovery of high-frequency de-
tails thanks to an additional reference high-resolution(HR)
image input. Although the superiority compared with
Single-Image Super-Resolution(SISR), existing RefSR meth-
ods easily result in the reference-underuse issue and the
reference-misuse as shown in Fig.1. In this work, we deeply
investigate the cause of the two issues and further propose
a novel framework to mitigate them. Our studies find that
the issues are mostly due to the improper coupled frame-
work design of current methods. Those methods conduct the
super-resolution task of the input low-resolution(LR) im-
age and the texture transfer task from the reference image
together in one module, easily introducing the interference
between LR and reference features. Inspired by this finding,
we propose a novel framework, which decouples the two
tasks of RefSR, eliminating the interference between the LR
image and the reference image. The super-resolution task
upsamples the LR image leveraging only the LR image itself.
The texture transfer task extracts and transfers abundant
textures from the reference image to the coarsely upsam-
pled result of the super-resolution task. Extensive experi-
ments demonstrate clear improvements in both quantitative
and qualitative evaluations over state-of-the-art methods.

*Equal contribution(co-first authors).
†Corresponding author.

1. Introduction

The goal of Single Image Super-Resolution(SISR) [10,

16, 26, 38] is to recover the high-resolution(HR) details of

the image from its low-resolution(LR) counterpart. It has

been widely used in image enhancement, video surveillance

and remote sensing imaging. The ill-pose essence of SISR

makes it easily resulting in visual artifacts as the scale fac-

tor is large(×4). To tackle the problem, Reference-based

Super-Resolution(RefSR) has attracted much attention re-

cently. Compared with SISR that only uses one single LR

input, RefSR [13, 22, 27, 36, 40, 41] super-resolves the LR

image with an additional HR reference image, which can

provide abundant real textures for the super-resolved im-

age. RefSR can be applied to plenty of scenarios, such as

dual-cameras [31] and video streaming [25].

Current RefSR methods mostly transfer the textures

based on the alignment between reference and LR im-

ages, such as spatial alignment [27, 41] and patch match-

ing [13, 22, 36, 40]. After alignment, RefSR methods con-

catenate the LR and aligned reference features as the in-

put and transfer the detailed textures to the output through

some well-designed architectures, such as attention mecha-

nism [36] and spatial adaptation module [22].

Although superior of the performance compared with

SISR, current methods are easily plagued by the reference-

underuse issue(i.e., reference textures are transferred insuf-
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Figure 2. Framework Comparison. (a) After the alignment between LR and reference, previous coupled framework uses a single network

to process the super-resolution of LR input and texture transfer at the same time, which easily introduces interference between LR and

reference images, resulting in reference-underuse issue and reference-misuse issue as shown in Fig.1. (b) Our framework decouples the

RefSR process into super-resolution of LR image and texture transfer. In the super-resolution, we super-solve the LR input independently

of the reference. In the texture transfer, we extract the texture information from reference, then transfer the detailed textures to the coarsely

upsampled result.

ficiently) and the reference-misuse issue(i.e., irrelevant ref-

erence content deteriorates the results) as shown in Fig.1.

The two issues are mainly due to the inadequate framework

design of current RefSR methods, which couple the super-

resolution task of the LR image and the texture transfer task

from the reference image in one single module. As shown

in Fig.2(a), most RefSR methods design a single module

to execute the super-resolution task and the texture trans-

fer task, using the concatenation of LR features and aligned

reference features as the input. Processing the LR and ref-

erence images simultaneously with convolution operation

will introduce disturbance to each other. Specifically, on the

one hand, if the reference is highly similar to the input LR

image, the model should concentrate more on transferring

the aligned reference features to the output. However, the

texture transfer process can be interfered by the input LR

image and result in the reference-underuse issue, in which

the model outputs the average of the aligned reference im-

age and the LR image, as shown in Fig.1(a). On the other

hand, as the reference content is irrelevant to the LR in-

put image, the incongruous reference will disturb the super-

resolution task of the LR image, when processing the LR

and reference images at the same time, which results in the

reference-misuse issue as shown in Fig.1(b).

To handle the two issues, as shown in Fig.2 (b), we pro-

pose a novel framework for RefSR based on decoupling the

super-resolution task and the texture transfer task of RefSR.

The decoupled task of the super-resolution aims to super-

resolve the LR image coarsely without the disturbance of

the reference image. The texture transfer task is to extract

the textures from the reference image and further transfer

the detailed textures to the result of the super-resolution

task. In addition, in order to extract and transfer abundant

textures stably from the reference, we propose the texture

extraction module and the adaptive texture transfer module.

On five benchmark datasets, CUFED5, Sun80, Urban100,

Manga109 and WR-SR, the experiment shows that the per-

formance of our method exceeds state-of-the-art methods

both quantitatively and qualitatively.

To summarize, our contributions include:

• We deeply investigate the cause of the reference-

underuse issue and the reference-misuse issue for RefSR.

The two issues are mainly due to the improper coupled

framework of current RefSR methods.

• To tackle the two issues, we propose a novel framework

for RefSR based on decoupling the super-resolution task

and the texture transfer task. The super-resolution task up-

samples the LR image independently, and the texture trans-

fer task extracts and transfers textures from the reference

image.

• Experimental results demonstrate that our proposed

method significantly outperforms the existing RefSR meth-

ods both quantitatively and qualitatively.

2. Related Work
Single Image Super-Resolution. Single Image Super-

Resolution(SISR) aims to recover the HR image with just

a single LR image as input. In recent years, deep learn-

ing based methods [9, 10, 15–17, 20, 21, 26, 29, 38, 39] have

achieved excellent performance on the SISR task. How-

ever, most of them obtain over-smooth images because of

the mean square(MSE) loss. To improve the visual qual-

ity, perceptual loss [14] and adversarial loss [18, 33, 37] are

proposed. Although perceptual loss and adversarial loss im-

prove the visual quality, the methods can easily result in

hallucinations and artifacts.

Reference-based Image Super-Resolution. The goal

of Reference-based Image Super-Resolution(RefSR) [22,
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(a) Mitigating reference-underuse issue (b) Mitigating reference-misuse issue
Figure 3. Removal of the interference between the LR image and the reference image mitigates the reference-underuse and
reference-misuse issues. (a) When we remove the LR image input, the Model-Ref transfers more textures from the relevant high quality

reference. (b) When we remove the irrelevant reference, the Model-LR overcomes the blur and artifacts caused by reference interference.

27, 34–36, 40, 41] is to super-solve the LR image with an

additional reference HR image, while single image super-

resolution only uses the LR image. We can obtain the refer-

ence through image retrieval methods [6]. The RefSR meth-

ods transfer the textures from the reference image through

the alignment between the LR and reference images. Cross-

Net [41] aligned the reference and LR images by the flow

estimation between two images. SSEN [27] further used

deformable convolution to extract the reference features

instead. However, the fatal limitation of the above spa-

tial alignment methods is that they all lack the ability to

build the long-distance correlation of two different images.

Therefore, patch matching based methods [13, 22, 36, 40]

are proposed. SRNTT [40] operated the patch matching on

multi-scale features and then transferred the texture infor-

mation into LR images. Transformer architecture has been

introduced into RefSR in TTSR [36], and the hard atten-

tion and soft attention can extract reference features more

properly. MASA [22] proposed a spatial adaptation mod-

ule to solve the potential large disparity in distributions be-

tween LR and reference images. To match the images ex-

plicitly, C2-Matching [13] introduced contrastive learning

and knowledge distillation into patch matching steps, over-

coming the transformation gap between LR and Ref images.

However, most current RefSR methods are designed

to upsample the LR image and transfer textures from the

reference image through a single module simultaneously,

which easily results in the reference-underuse issue and the

reference-misuse issue as shown in Fig.1. In contrast, our

framework decouples the super-resolution task and the tex-

ture transfer task of RefSR, excluding the interference be-

tween the LR image and the reference image, thus solving

the two issues to a large extent.

3. Analysis of the RefSR framework
3.1. Coupled framework for RefSR

Given a LR image ILR as the input, Reference-

based Super-Resolution(RefSR) aims to produce the high-

resolution image IRefSR with the guidance of an additional

HR reference image IRef . As shown in Fig.2(a), the frame-

work of most existing methods [13, 22, 36, 40] can be sum-

marized as the coupled framework. The coupled frame-

work firstly makes the alignment between ILR and IRef ,

obtaining the LR features FLR and aligned reference fea-

tures Falign
Ref , and then reconstruct the HR image:

IRefSR = G([FLR,Falign
Ref ]), (1)

where G denotes the RefSR network, and [, ] denotes the

concatenation operation.

3.2. Analysis of the reference-underuse issue and
the reference-misuse issue

The coupled framework easily results in the reference-

underuse issue and the reference-misuse issue, due to the

interference between the LR image and the reference image.

Therefore, we’re curious about whether the two issues can

be tackled by separating the process of the LR and reference

images. To further investigate the two issues, we retrain

the C2-Matching [13] model, which is the state-of-the-art

method recently, for the following settings:

• Model-Ref : Only the aligned reference image is input

to reconstruct the final HR image without the LR im-

age. So the model only processes the texture transfer

task from the reference image.

• Model-LR: Only the LR image is input to reconstruct

the SR image without reference image. So the model

turns into a SISR model with single image input.

• Model-Both: Both the LR image and aligned refer-

ence image are input to reconstruct the final HR image.

Reference-underuse issue. As shown in Fig.3(a), when

similar reference images are given, the results of Model-

Ref , which only use the reference image, have more simi-

lar detailed textures to the ground-truth images than Model-

Both, which input both the LR image and reference im-

age. The experiments demonstrate that the model can trans-

fer the textures more sufficiently from the reference image
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Figure 4. Task decoupled framework overview. For the Super-Resolution task, the single image super-resolution network upsamples

the input image ILR to the high-resolution image ISISR and obtains its feature FSISR, while ensuring the structure and content information.

For the Texture Transfer task, we first calculate the spatial correlation matrix M between ISISR and the reference image IRef . Based

on the spatial correlation matrix M, we use the texture extraction module to extract texture feature FTex from IRef through two different

methods of alignment, flow-based alignment and deformable alignment. Finally, the adaptive texture transfer module transfers the detailed

textures FTex to FSISR, and gets the final output image IRefSR.

when removing the interference of the input LR image. To

a large extent, the removal of the LR image mitigates the

reference-underuse issue.

Reference-misuse issue. As shown in Fig.3(b), when ir-

relevant reference images are given, Model-LR eliminates

the blur and artifacts of the Model-Both results. There-

fore, by removing the influence of the incongruous refer-

ence content, the RefSR model can upsample the LR image

better. The removal of the irrelevant reference mitigates the

reference-misuse issue.

In conclusion, as we separate the super-resolution and

the texture transfer process of RefSR, the reference-

underuse issue and the reference-misuse issue are both mit-

igated by a large margin. Therefore, inspired by this find-

ing, we design a novel framework based on decoupling

the super-resolution task and the texture transfer task for

RefSR.

4. Our Approach
4.1. Overview

In this work, to tackle the reference-underuse issue and

the reference-misuse issue, we propose a novel framework

based on decoupling the super-resolution task and texture

transfer task of RefSR. We set two different missions for

the input and reference images. Specifically, The input LR

image is expected to provide the structure and content infor-

mation for the final output, while the reference HR image

should supply additional detailed textures. Consequently,

we utilize the input LR image ILR and the reference im-

age IRef separately and integrate them subsequently. The

overview of our proposed framework is shown in Fig.4,

which consists of two major parts:

For the Super-Resolution task, we upsample the input

LR image by itself without any interference from the ref-

erence image, obtaining an initial high-resolution image

ISISR and its features FSISR:

FSISR = FSR(ILR), (2)

where FSR denotes the SISR model, in which we use

RRDB [33] as the basic block.

As for Texture Transfer task, we extract and transfer the

fine texture feature from the reference image to the SISR

feature FSISR. We first extract the reference texture feature

FTex through the texture extraction module:

FTex = FTE(IRef , ISISR), (3)

where FTE denotes the texture extraction module. It’s

worth noting that ISISR is only used for calculating the

spatial correlation between the reference image and the in-

put LR image. Then the textures FTex are transferred to

FSISR by the adaptive texture transfer module according to

the similarity between the reference image and the LR input
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image, obtaining the final RefSR output IRefSR:

IRefSR = FATT (FTex,FSISR), (4)

where FATT denotes the adaptive texture transfer module.

4.2. Texture Extraction with Alignment

The key task of texture extraction is how to process

the spatial alignment of the reference image IRef ∈
R

H
′×W

′×3 with the SISR image ISISR ∈ R
H×W×3. In

the alignment module, we use two feature extractors to map

ISISR and IRef into the same feature space. The architec-

ture of the two feature extractors are shared. After that, we

use the operation of patch matching [40] in the feature space

to calculate the spatial correlation map M ∈ R
HW×H

′
W

′

between ISISR and IRef . Then We calculate the index map

P and confidence map C from the correlation matrix M:

Pi = argmax
j

Mi,j , Ci = max
j

Mi,j . (5)

The index map P can be regarded as flow information

between ISISR and IRef . Inspired by the video super-

resolution task [3, 5, 30, 32] and the video frame interpo-

lation task [1, 2, 7, 19], we use two different methods for

alignment. The first method is flow-based warping. Re-

garded P as the flow map, we process the backwarp oper-

ation on the FRef to get the aligned features. The second

method is deformable [8] alignment. Previous studies [4]

have shown that deformable alignment has significant im-

provements over flow-based alignment because of the off-

set diversity. However, the training of deformable align-

ment is unstable, which can cause offset overflow [4] thus

limiting the performance. To overcome the instability of

deformable alignment, we combine deformable alignment

and flow-based alignment. The combination of two meth-

ods utilizes the offset diversity in deformable alignment and

the stability of flow-based alignment.

Flow-based Alignment. Given the flow information P ,

we directly warp the feature maps FRef to get the FFtex

following [22, 36, 40]:

FFtex = W(FRef , P ), (6)

Where W denotes the operation of spatial warping.

Deformable Alignment. For the difficulty to train the

deformable convolution(DCN), illuminated by the usage of

deformable convolution [5,32] in the video super-resolution

task, we employ optical flow to guide deformable alignment

like [5]. The result of spatial warping FFtex is utilized to

estimate the offsets o and modulation masks m for DCN:

o = P + Eo(FFtex,FSISR), (7)

m = σ(Em(FFtex,FSISR)), (8)

where Eo and Em denote the stacks of convolution layers,

and σ denotes the sigmoid function. Then we employ DCN

on FRef to get the aligned feature FDtex:

FDtex = D(FRef , o,m), (9)

where D denotes the deformable convolution. We fuse the

FFtex and FDtex through a convolution layer, obtaining the

texture features FTex. Through a decoder, we obtain the

texture image ITex. To extract the high-frequency detailed

textures, the ITex is supervised by the residual of the HR

image IHR and the SISR image ISISR.

4.3. Adaptive Texture Transfer

To accurately combine the content of the SISR feature

FSISR and the textures of the reference feature FTex, we

design the adaptive texture transfer module to blend FTex

and FSISR according to the similarity between the two im-

ages.

To adaptively select the texture from FTex, preventing

the misaligned texture from deteriorating the output, we use

the confidence map C calculated in Eq. (5) to suppress the

weight of the misaligned texture region:

FRefSR = Conv(FTex) · C + FSISR, (10)

where Conv denotes a convolution layer. And then after

eight residual blocks for restoration, we get the final output

IRefSR. More details of confidence map C are discussed in

the supplementary material.

4.4. Implementation Details

The overview network of the proposed framework is

trained by two steps: 1) training of the singe image super-

resolution network. 2) training of the texture extraction and

transfer network.

Training of SISR Network. To ensure the content in-

formation of SISR results, we only use reconstruction loss,

which is calculated by L1 loss, to train the SISR network.

After training, we fix the SISR network.

Training of Texture Transfer Network. The super-

resolution image ISISR obtained from the SISR network

is used for the feature alignment step. The texture trans-

fer network has two outputs for supervision, the result of

texture extraction ITex and the final result IRefSR. To let

the network extract the high-frequency detailed texture in-

formation, we adopt the residual of the ground-truth image

IHR and ISISR as supervision (More discussions of LTex
rec

are in the the supplementary material.):

LTex
rec = ||IHR − (ISISR + ITex)||1, (11)

As for the final output, we adopt reconstruction loss Lrec,

perceptual loss Lper [14] and adversarial loss Ladv [11].

The weight for Lrec, Lper and Ladv are 1, 10−2 and 10−4,

respectively. The initial training rate is set as 10−4.
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Table 1. Quantitative Comparisons with the state-of-the-art methods. We use PSNR/SSIM metrics for evaluation. The best and

second-best performances are marked by red and blue colors, respectively. The RefSR models with ’-rec’ suffix are trained only by the

reconstruction loss. Our proposed method outperforms significantly against current SISR and RefSR state-of-the-art methods.

Method
CUFED5 Sun80 Urban100 Manga109 WR-SR

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SISR

SRCNN [10] 25.33/0.745 28.26/0.781 24.41/0.738 27.12/0.850 27.27/0.767

EDSR [21] 25.93/0.777 28.52/0.792 25.51/0.783 28.93/0.891 28.07/0.793

RRDB [33] 26.41/0.783 29.99/0.814 25.98/0.788 29.87/0.907 27.96/0.793

RCAN [38] 26.33/0.781 29.97/0.814 25.99/0.787 30.11/0.908 27.91/0.793

SRGAN [18] 24.40/0.702 26.76/0.725 24.07/0.729 25.12/0.802 26.21/0.728

ENet [24] 24.24/0.695 26.24/0.702 23.63/0.711 25.25/0.802 25.47/0.699

ESRGAN [33] 21.90/0.633 24.18/0.651 20.91/0.620 23.53/0.797 26.07/0.726

RankSRGAN [37] 22.31/0.635 25.60/0.667 21.47/0.624 25.04/0.803 26.15/0.719

RefSR

CrossNet [41] 25.48/0.764 28.52/0.793 25.11/0.764 23.36/0.741 -

SRNTT [40] 25.61/0.764 27.59/0.756 25.09/0.774 27.54/0.862 26.53/0.745

SRNTT-rec [40] 26.24/0.784 28.54/0.793 25.50/0.783 28.95/0.885 27.59/0.780

TTSR [36] 25.53/0.765 28.59/0.774 24.62/0.747 28.70/0.886 26.83/0.762

TTSR-rec [36] 27.09/0.804 30.02/0.814 25.87/0.784 30.09/0.907 27.97/0.792

MASA [22] 24.92/0.729 27.12/0.708 23.78/0.712 27.34/0.848 -

MASA-rec [22] 27.54/0.814 30.15/0.815 26.09/0.786 30.28/0.909 -

C2-Matching [13] 27.16/0.805 29.75/0.799 25.52/0.764 29.73/0.893 27.80/0.780

C2-Matching-rec [13] 28.24/0.841 30.18/0.817 26.03/0.785 30.47/0.911 28.32/0.801

Ours 27.37/0.816 28.85/0.768 25.80/0.776 30.12/0.889 27.40/0.769

Ours-rec 28.64/0.850 30.31/0.820 26.71/0.807 31.23/0.917 28.52/0.807

Table 2. Quantitative comparison at different levels on the CUFED5 testing set. ’L1’ is the most relevant reference and ’L4’ is the least.

’LR’ means directly using the LR image itself as the reference. For different reference levels, our method all obtains the best performance.

Method
L1 L2 L3 L4 LR

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CrossNet [41] 25.48/0.764 25.48/0.764 25.47/0.763 25.46/0.763 25.46/0.763

SRNTT-rec [40] 26.15/0.781 26.04/0.776 25.98/0.775 25.95/0.774 25.91/0.776

SSEN-rec [27] 26.78/0.791 26.52/0.783 26.48/0.782 26.42/0.781 -

CIMR-rec [35] 27.32/0.805 27.05/0.799 26.92/0.796 26.86/0.794 -

TTSR-rec [36] 26.99/0.800 26.74/0.791 26.64/0.788 26.58/0.787 26.43/0.782

MASA-rec [22] 27.35/0.814 26.92/0.796 26.82/0.793 26.74/0.790 26.59/0.784

C2-Matching-rec [13] 28.24/0.841 27.39/0.813 27.17/0.806 26.94/0.799 26.53/0.784

Ours-rec 28.64/0.850 27.77/0.821 27.46/0.815 27.23/0.807 26.83/0.794

5. Experiments
5.1. Datasets and Metrics
Training datasets. The CUFED5 [40] training set consists

of 11,871 image pairs, and each image pair has one HR im-

age and one reference image both with the resolution of 160

× 160. We train our model with the scale factor x4.

Testing datasets. To evaluate our method, we adopt five

benchmarks: CUFED5 [40] testing set, Sun80 [28], WR-

SR [13], Urban100 [12] and Manga109 [23]. CUFED5

testing set consists of 126 image pairs, and each input im-

age has 5 reference images with different similarity levels.

Sun80 has 80 images, and each image has 20 reference im-

ages. WR-SR consists of 80 images, and each image has

one reference image searched through Google Image. We

evaluate our method on Urban100 and Manga109 follow-

ing [13, 36, 40]. Urban100 has 100 building images with

highly self-similarity, so we use LR images as the reference

image. For Manga109 dataset, we randomly select HR im-

ages from the dataset as the reference image.

Evaluation metrics. The RefSR results are evaluated by

metrics of PSNR and SSIM on Y channel of YCrCb space.

5.2. Comparison with State-of-the-art Methods

Quantitative Comparison. We compare the proposed

method with the following SISR and RefSR methods.

The SISR methods include SRCNN [10], EDSR [21],

RCAN [38], SRGAN [18], ENet [24], ESRGAN [33]
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Figure 5. Visual comparisons on the CUFED5 testing set. We compare the proposed methods with 6 different SISR and Ref state-of-

the-art methods. Among the methods, only RCAN is trained with l1 loss, and others are all trained with GAN loss. Our method restores

more realistic textures compared with other RefSR and SISR methods. (Zoom-in for best view)

and RankSRGAN [37]. As for RefSR methods, Cross-

Net [41], SRNTT [40], TTSR [36], MASA [22] and C2-

Mathcing [13] are included. C2-Mathcing is the current

state-of-the-art method recently, which achieves the best

performance on both PSNR and SSIM.

Table 1 shows that our method outperforms existing

state-of-the-art methods on all five datasets. The quantita-

tive comparisons demonstrate that our proposed model has

a significant improvement over 0.4dB compared with the

state-of-the-art methods in standard CUFED5 benchmark.

Qualitative Evaluation. In Fig.5, we show the visual

comparisons with state-of-the-art SISR and RefSR meth-

ods. Our method can achieve more pleasing visual quality

with more detailed textures transferred from the reference

HR images. As shown in the first row of the Fig.5, our

method can restore the face with more realistic details. Be-

sides, in the last row of Fig.5, our method obtains clear let-

ters, while others generate artifacts or blurry results.

Robustness to irrelevant references. To evaluate the

robustness to irrelevant references, we compare our method

with other RefSR methods at different reference levels on

the CUFED5 testing set. Table 2 shows the results of five

relevant degrees. For different similarity levels, our method

all achieves the best performance, which not only demon-

strates our superiority on texture transfer, but also proves

the robustness to irrelevant references of our method.

5.3. Ablation Studies
In this section, we conduct ablation studies on the two

key components in our methods: (1) the task decoupled

framework,(2) the texture extraction and transfer module.

Task decoupled framework. We set the model with-

out the SISR part of our framework as the baseline, which

achieves the super-resolution and texture transfer jointly

through one single network. Table 3 evaluates the effective-

ness of the task decoupled framework. With similar ref-
erence, we all get a gain over 0.26dB for RefSR datasets,

CUFED5, Sun80 and WR-SR. Meanwhile, in Fig.6(a), the

model with the decoupled framework can produce realistic

images highly similar to the GT, with more textures and de-

tails transferred from the reference image. Both the quan-

titative evaluation and the qualitative comparison indicate

that the task decoupled framework of the RefSR task can

prompt the model to extract and transfer more textures from

reference images. Without similar reference, as for SISR

datasets, Urban100 and Manga109 datasets, Table 3 demon-

strates that the decoupled framework achieves a significant

boost over 1dB compared with baseline. Besides, Fig.6(b)

shows that the baseline method can easily result in blur and

artifacts, while our method with the decoupled framework

alleviates the issue and obtains more details. The results

prove that the task decoupled framework is more robust as

irrelevant references are given. In conclusion, our frame-

work effectively decouples the super-resolution task and the

texture transfer task of RefSR, thus obtaining better perfor-

mance.

Texture Extraction Module. Table 4 evaluates the ef-

fectiveness of flow-based alignment and deformable align-

ment in texture extraction module. We train the following

variations. (A) baseline SISR without reference. (B) with
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Table 3. Quantitative evaluation for ablation study of the decouple framework. The decouple framework brings an enormous improve-

ment on the five datasets. Especially we obtain over 1dB improvement on Urban100 and Manga109.

Decouple CUFED5 Sun80 Urban100 Manga109 WR-SR

w/o Decouple 28.36/0.842 30.01/0.812 25.66/0.769 29.98/0.901 28.16/0.797

w/ Decouple 28.64/0.850 30.31/0.820 26.71/0.807 31.23/0.917 28.52/0.807

w/o Decouple w/ Decouple HRinput image

(a) Situation w/ similar reference content.

w/o Decouple w/ Decouple HRinput image

(b) Situation w/o similar reference content.

Figure 6. Qualitative comparison for ablation study of the decouple framework. (a) Situation with similar reference. The model with

the decoupled framework results in more real textures transferred from reference. (b) Situation without similar reference. The model with

decoupled framework can recover more details. (Zoom-in for best view)
Table 4. Quantitative evaluation for ablation study of texture
extraction and transfer modules. The PSNR/SSIM is computed

on CUFED5.

ID Flow DCN ATT PSNR/SSIM

(A) 26.41/0.783

(B) � 27.91/0.832

(C) � 28.29/0.843

(D) � � 28.50/0.848

(E) � � � 28.64/0.850

input base +Flow +DCN

+Flow+DCNreference HR+Flow+DCN+ATT
Figure 7. Ablation study on texture extraction and transfer
modules.

flow-based (Flow) alignment. (C) with deformable convolu-

tion (DCN) alignment. (D) with both Flow and DCN align-

ment. (E) further with adaptive texture transfer(ATT).

Compared with (A), the setting (B) and (C) turn the SISR

task into the RefSR task, with a gain over 1dB, due to

the additional reference image. (C) has better performance

than (B), indicating the superiority of deformable alignment

against flow-based alignment in RefSR. As shown in Fig.7,

the deformable alignment and the flow-based alignment can

recover clear textures of different regions. Therefore, we

combine the two alignment methods in the texture extrac-

tion module. As shown in Table 4, (D) achieves significant

improvement compared with (B) and (C). Fig.7 also shows

that results of (D) aggregate the realistic texture in (B) and

(C). In conclusion, after combining the stability of flow-

based alignment and the superiority of deformable align-

ment, the model obtains a better performance.

Adaptive Texture Transfer. As show in the last row in

Table 4 and the result with ”Flow+DCN+ATT” in Fig.7, the

adaptive texture transfer module refines textures obtained

from the texture extraction module and has a further gain of

0.14dB in PSNR on the standard CUFED5 benchmark.

6. Conclusion
In this paper, we first deeply investigate the reference-

underuse issue and the reference-misuse issue for RefSR,

which are due to the improper coupled framework de-

sign. Therefore, we propose a novel framework, decoupling

the super-resolution task and the texture transfer task for

RefSR. For the LR image, the super-resolution task coarsely

upsamples the LR image only by LR itself. For the refer-

ence image, the texture transfer task extracts and transfers

the realistic textures from the reference image. The texture

extraction and the adaptive texture transfer modules are fur-

ther proposed to migrate the textures more sufficiently. Ex-

tensive experiments on five benchmarks quantitatively and

qualitatively demonstrate the superior performance of our

proposed method over state-of-the-art methods.

Acknowledgements
This work was supported in part by Chinese National

Key R&D Program (2019YFB1804304), State Key Lab-

oratory of UHD Video and Audio Production and Pre-

sentation, BirenTech Research, Shanghai Key Laboratory

of Digital Media Processing and Transmissions(STCSM

18DZ2270700) and 111 plan(BP0719010).

5938



References
[1] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,

Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video

frame interpolation. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 3703–3712, 2019. 5

[2] Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao,

and Ming-Hsuan Yang. Memc-net: Motion estimation and

motion compensation driven neural network for video inter-

polation and enhancement. IEEE Trans. Pattern Anal. Mach.
Intell., 2019. 5

[3] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and

Chen Change Loy. Basicvsr: The search for essential com-

ponents in video super-resolution and beyond. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 4947–4956, 2021. 5

[4] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and

Chen Change Loy. Understanding deformable alignment in

video super-resolution. In AAAI, 2021. 5

[5] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and

Chen Change Loy. Basicvsr++: Improving video super-

resolution with enhanced propagation and alignment. IEEE
Conf. Comput. Vis. Pattern Recog. Worksh., 2021. 5

[6] Yangdong Chen, Zhaolong Zhang, Yanfei Wang, Yuejie

Zhang, Rui Feng, Tao Zhang, and Weiguo Fan. Ae-net: Fine-

grained sketch-based image retrieval via attention-enhanced

network. In Pattern Recognition, page 108291, 2022. 3

[7] Xianhang Cheng and Zhenzhong Chen. Multiple video

frame interpolation via enhanced deformable separable con-

volution. IEEE Trans. Pattern Anal. Mach. Intell., 2021. 5

[8] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Int. Conf. Comput. Vis., pages 764–773, 2017.

5

[9] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and

Lei Zhang. Second-order attention network for single im-

age super-resolution. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 11065–11074, 2019. 2

[10] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE Trans. Pattern Anal. Mach. Intell., 38(2):295–

307, 2015. 1, 2, 6

[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Adv. Neural Inform. Process. Syst.,
pages 5767–5777, 2017. 5

[12] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single

image super-resolution from transformed self-exemplars. In

IEEE Conf. Comput. Vis. Pattern Recog., pages 5197–5206,

2015. 6

[13] Yuming Jiang, Kelvin C.K. Chan, Xintao Wang,

Chen Change Loy, and Ziwei Liu. Robust reference-

based super-resolution via C2-matching. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 2103–2112, 2021. 1, 3,

6, 7

[14] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

Eur. Conf. Comput. Vis., pages 694–711, 2016. 2, 5

[15] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In IEEE Conf. Comput. Vis. Pattern Recog., pages

1646–1654, 2016. 2

[16] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply

recursive convolutional network for image super-resolution.

In IEEE Conf. Comput. Vis. Pattern Recog., pages 1637–

1645, 2016. 1, 2

[17] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-

Hsuan Yang. Deep laplacian pyramid networks for fast and

accurate super-resolution. In IEEE Conf. Comput. Vis. Pat-
tern Recog., pages 624–632, 2017. 2

[18] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative

adversarial network. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 4681–4690, 2017. 2, 6

[19] Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun

Pak, Yuseok Ban, and Sangyoun Lee. Adacof: Adaptive col-

laboration of flows for video frame interpolation. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 5316–5325, 2020.

5

[20] Zhen Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwang-

gil Jeon, and Wei Wu. Feedback network for image super-

resolution. In IEEE Conf. Comput. Vis. Pattern Recog., pages

3867–3876, 2019. 2

[21] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In IEEE Conf. Comput. Vis. Pattern
Recog. Worksh., pages 1637–1645, 2016. 2, 6

[22] Liying Lu, Wenbo Li, Xin Tao, Jiangbo Lu, and Jiaya Jia.

Masa-sr: matching acceleration and spatial adaptation for

reference-based image super-resolution. In IEEE Conf. Com-
put. Vis. Pattern Recog., pages 6368–6377, 2021. 1, 2, 3, 5,

6, 7

[23] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto,

Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa.

Sketch-based manga retrieval using manga109 dataset. Mul-
timedia Tools and Applications, 76(20):21811–21838, 2017.

6

[24] Mehdi SM Sajjadi, Bernhard Scholkopf, and Michael

Hirsch. Enhancenet: Single image super-resolution through

automated texture synthesis. In Int. Conf. Comput. Vis.,
pages 4491–4500, 2017. 6

[25] Wang Shen, Wenbo Bao, Guangtao Zhai, Charlie L Wang,

Jerry W Hu, and Zhiyong Gao. Prediction-assistant frame

super-resolution for video streaming, 2021. arXiv preprint
arXiv:2103.09455, 2021. 1

[26] Wenzhe Shi, Jose Caballero, Ferenc Husz´ar, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

IEEE Conf. Comput. Vis. Pattern Recog., pages 1874–1883,

2016. 1, 2

[27] Gyumin Shim, Jinsun Park, , and In So Kweon. Robust

reference-based super-resolution with similarity-aware de-

5939



formable convolution. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 8425–8434, 2020. 1, 2, 3, 6

[28] Libin Sun and James Hays. Super-resolution from internet-

scale scene matching. In IEEE Int. Conf. Comput. photo.,
pages 1–12, 2012. 6

[29] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

net: A persistent memory network for image restoration. In

Int. Conf. Comput. Vis., pages 4539–4547, 2017. 2

[30] Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu.

Tdan: Temporally-deformable alignment network for video

super-resolution. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 3360–3369, 2020. 5

[31] Tengfei Wang, Jiaxin Xie, Wenxiu Sun, Qiong Yan, and

Qifeng Chen. Dual-camera super-resolution with aligned at-

tention modules. In Int. Conf. Comput. Vis., pages 2001–

2010, 2021. 1

[32] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and

Chen Change Loy. Edvr: Video restoration with enhanced

deformable convolutional networks. In IEEE Conf. Comput.
Vis. Pattern Recog. Worksh., 2019. 5

[33] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-

hanced super-resolution generative adversarial networks. In

Eur. Conf. Comput. Vis. Worksh., 2018. 2, 4, 6

[34] Yanchun Xie, Jimin Xiao, Mingjie Sun, Chao Yao, and

Kaizhu Huang. Feature representation matters: End-to-end

learning for reference-based image super-resolution. In Eur.
Conf. Comput. Vis., pages 230–245. Springer, 2020. 2

[35] Xu Yan, Weibing Zhao, Kun Yuan, Ruimao Zhang, Zhen

Li, and Shuguang Cui. Towards content-independent multi-

reference super-resolution: Adaptive pattern matching and

feature aggregation. In Eur. Conf. Comput. Vis., pages 52–

68, 2020. 2, 6

[36] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-

ing Guo. Learning texture transformer network for image

super-resolution. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 5791–5800, 2020. 1, 2, 3, 5, 6, 7

[37] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao.

Ranksrgan: Generative adversarial networks with ranker for

image super-resolution. In Int. Conf. Comput. Vis., pages

3096–3105, 2019. 2, 6, 7

[38] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In Eur. Conf. Comput.
Vis., pages 286–301, 2018. 1, 2, 6

[39] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In IEEE Conf. Comput. Vis. Pattern Recog., pages 2472–

2481, 2018. 2

[40] Zhifei Zhang, ZhaowenWang, Zhe Lin, and Hairong Qi. Im-

age super-resolution by neural texture transfer. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 7982–7991, 2019. 1, 2,

3, 5, 6, 7

[41] Haitian Zheng, Mengqi Ji, Haoqian Wang, Yebin Liu, and

Lu Fang. Crossnet: An end-to-end reference-based super

resolution network using cross-scale warping. In Eur. Conf.
Comput. Vis., pages 88–104, 2018. 1, 2, 3, 6, 7

5940


