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Abstract

Training with an emphasis on “hard-to-learn” compo-
nents of the data has been proven as an effective method
to improve the generalization of machine learning models,
especially in the settings where robustness (e.g., generaliza-
tion across distributions) is valued. Existing literature dis-
cussing this “hard-to-learn” concept are mainly expanded
either along the dimension of the samples or the dimension
of the features. In this paper, we aim to introduce a simple
view merging these two dimensions, leading to a new, sim-
ple yet effective, heuristic to train machine learning mod-
els by emphasizing the worst-cases on both the sample and
the feature dimensions. We name our method W2D follow-
ing the concept of “Worst-case along Two Dimensions”.
We validate the idea and demonstrate its empirical strength
over standard benchmarks.

1. Introduction

The remarkable empirical performance of deep learning
over i.i.d data, sometimes paralleling the human visual sys-
tem [23, 37], has encouraged the community to challenge
potentially more demanding scenarios where the models are
trained with data from one or more distributions but tested
with data from other distributions. We refer to this scenario
as the out-of-distribution (OOD) generalization testing set-
ting following the terminology used in [74].

In this OOD test scenario, deep learning techniques often
underdeliver the promising results made with i.i.d data, as
observed by multiple preceding works with different strate-
gies to generate the test data, such as with salient patterns
added to the data [17, 27], with carefully constructed im-
perceptible noise perturbing the data (adversarial attacks)
[20,60], or with additionally collected datasets that humans
can nonetheless generalize to despite potentially significant
disparities between the training and test distributions (e.g.,
domain adaptation/generalization) [6, 48].
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Figure 1. The conceptual illustration of our main idea W2D for
a simple example of canary vs. goldfish image classification. For
a regular model trained on standard images (left-bottom block),
there are two dimensions of hard samples: following the catego-
rization in [74], the vertical dimension corresponds to the “diver-
sity shift” of the images (e.g., photos of the animals vs. cartoons
of the animals) and the horizontal dimension corresponds to the
“correlation shift” of the images (e.g., birds in cage and fish in
water vs. fish in cage and birds in water). The W2D algorithm
conceptually selects the images that are hard at the sample dimen-
sion and augment these samples toward being harder at the feature
dimension.

Despite the variation in multiple OOD settings, the un-
derlying reason leading to the performance drop may have
a shared theme: the models’ incapability to learn what hu-
mans will consider important in the data, as discussed pre-
viously in empirical [70] and statistical [68] perspectives.

Thus, we conjecture that a key to training models that
can perform consistently well in the OOD setting is to de-
sign a new training heuristic that can better imitate the hu-
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man’s learning behaviors. In addition, we also hope the
new heuristic is simple and general so that it can be directly
plugged into and benefit existing methods across different
architectures, optimizers, losses, or regularizations.

A psychological prior: In seeking the answer of how a
human can learn most efficiently, we notice that a world-
renowned psychologist (Dr. K. Anders Ericsson) has de-
voted his life-long career decoding the habits of people with
expert-level performances. His main conclusion [14] is that
the high-end performances are the result of extensive prac-
tices beyond one’s comfort zone.

Back to the discussion of machine learning, we analo-
gize the beyond comfort zone elements of one’s daily life to
the elements of the training data that are particularly hard
to learn for a model. We notice this “element” can be in-
terpreted with two perspectives: one interpretation is that a
certain pattern across many images is hard to learn; and the
other is that some specific images in the dataset are hard to
learn.

Previous discussions devoted exclusively to either one
of these two elements has been expanded extensively. For
example, a line of methods have been invented to counter
the model’s tendency to learn some simple patterns [4, 50,
65, 66], and another line of methods have been introduced
to push the model to learn patterns represented by a small
set of samples [38, 57]. However, there seems to be no
discussion aiming to train the model to overcome the lim-
itations raised from both of these perspectives, while do-
ing so would intuitively improve the model’s performances,
as well as align well with the psychological findings men-
tioned above.

In this paper, inspired by the psychological prior above,
we aim to introduce a simple training heuristic that will
push the model to learn the hard-to-learn concept on both
the feature dimension and the sample dimension. As our
method is intuitively a combination of worst-case training at
the feature level and worst-case training at the sample level,
the new technique can serve as a simple heuristic to replace
the existing training procedure of deep learning models re-
gardless of model architecture, optimizer, loss, or regular-
ization etc, as long as the optimization is within the gradient
descent family. We name our method W2D following the
concept of “Worst-case along Two Dimensions”.

The remainder of this paper is organized as follows. In
Section 2, we first introduce the background of this paper,
with an emphasis on the “worst-case training” along the two
dimensions, and their corresponding effects on OOD gen-
eralization, which inspired us to investigate the integrated
effect of these two worst-case training dimensions. In Sec-
tion 3, we introduce our new heuristic that combines these
two directions, and we demonstrate the method’s empirical
strength in Sections 4 and 5. We offer several related dis-
cussion in Section 6 before we conclude with Section 7.

2. Background
We introduce the background of our work in this sec-

tion. We first offer a brief summary of works that improve
a model’s OOD generalization performance. We then fo-
cus on related work that are devoted to solving the two
challenges at the feature level and at the sample level, re-
spectively. As we notice that some of the methods solving
these two problems have a common theme of emphasizing
the hard-to-learn elements from the data, we continue the
discussion with a focus on the worst-case training methods
along both dimensions. Finally, we wrap up this section
with a summary of the key contributions made in this paper.

2.1. Domain Adaptation, Domain Generalization,
and New Paradigms

The investigation of a model’s generalization ability
across distributions can probably be traced back to the
study of domain adaptation [6, 7], which studies the gen-
eral problem of maintaining a model’s performance over
a test distribution that is different from the training distri-
bution. Early-stage theoretical work suggests one of the
key factors of learning cross-domain generalizable models
is to enforce invariance across distributions [6], and this
has inspired a long line of work aiming to learn invariant
representations across the training and testing distributions
[13, 15, 18, 34, 44, 56, 71, 77], with the most popular recent
examples being domain adversarial neural networks [16].

Domain generalization [48] is another mainstream re-
search topic in the study of OOD generalization. It ex-
tends the setup of domain adaptation to a setting in which
the testing distribution data, even unlabelled, is not avail-
able during training. Instead, models are trained with data
from multiple training distributions, and enforcing invari-
ance across these training distributions has become a major
theme [1, 10, 19, 22, 42, 47, 52, 54, 69].

However, recently, the paradigm of learning invariant
representations has been challenged by the argument that
invariance is not sufficient for cross-domain generalization
if the data have different labelling functions [72,78], poten-
tially leading to a new paradigm of learning across distri-
butions with disparate labelling functions [68], as will be
detailed with examples in the next section.

As a result, recent studies are not always bounded by
the concepts of domain adaptation or domain generaliza-
tion, but are conducted in the new paradigm with disparate
labelling functions.

2.2. Hard-to-learn Patterns and Solutions

One of the mainstream studies in robust machine learn-
ing focuses on the issue of models learning some patterns in
the training data that are not present in the test data, with the
most popular example probably being the snow background
in husky vs. wolf classification [55]. This problem is of-
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ten referred to as biases [61], spurious features [64], con-
founding factors [45], or superficial features [66], but the
solution to counter the problem usually has a unified theme
of leveraging the human knowledge of the differences be-
tween training and testing distributions to either regular-
ize the hypothesis space [4, 50, 65, 66] or to augment the
data [17, 28, 29, 67], as summarized in [68].

Interestingly, the RSC method [31] also aims to solve
the challenge along this line, but it does not require prior
knowledge over the patterns. Building upon an assumption
that learning all the features, instead of just the most dis-
criminative ones, will benefit the OOD generalization, RSC
essentially uses a selective dropout mechanism to perform
augmentation, and achieves good benchmark performances
on popular OOD datasets [31, 74]. Conceptually, RSC pre-
pares the features for each sample by dropping out the most
predictive features (i.e., creating features that are challeng-
ing for the model to learn).

2.3. Hard-to-learn Samples and Solutions

On the other hand, hard-to-learn samples pose a differ-
ent challenge: some samples in the training data are ignored
by the model because these samples are considered to be
the “minority” in the training set [12, 46]. To counter this
problem, training procedures that emphasize the minority
samples have been introduced, such as the family of DRO
methods [30,39,50,51,57], with different strategies to iden-
tify the minority samples and to interpolate the training set
according to weighting factors that favor the minority sam-
ples. Intuitively, these methods prepare the batches of sam-
ples with an emphasis on the samples that are challenging
for the model to learn.

Further along this line, the community extends the idea
of interpolation to extrapolation by adjusting the weighting
factors so that the weights for simpler samples can even be
negative, to further push the models to focus on the hard-
to-learn samples. The VREx method [38] is introduced in
this context and achieves leading empirical performances
on benchmarks [38, 74].

2.4. Worst-case Training in Each Dimension and
the Corresponding Effects

With the proliferation of methods introduced to improve
models’ OOD performances, and various empirical claims,
there have been some integrated comparisons of the vari-
ous methods. For example, interestingly, DomainBed sug-
gests that all these new methods are still shy of the conven-
tional Empirical Risk Minimization (ERM) method [21] un-
der their extensive range of hyperparameter choices. While
this message sets a striking alarm to the community, it may
seem overly pessimistic (more details on this are offered
later in Section 6).

Recently, the OOD-bench [74] extends the spirit of Do-
mainBed but offers a more finer-grained analysis of the

models’ performances. It comprehensively examines the
performances of the recent models over popular benchmark
datasets, but with separate discussions on “diversity shift“
datasets and “correlation shift” datasets. Diversity shift
datasets refer to the benchmarks with a relatively signifi-
cant style shift from training distribution to the test distribu-
tion (such as from photos to sketches), and correlation shift
datasets refer to the benchmarks with clear defined spurious
features that are correlated with the label (such as when the
color of the digits are associated with the labels of the digits
in the image digit classification task).

OOD-bench investigates the popular methods along
these two directions, and shows that for each direction, there
are only a couple of methods that outperform ERM. In-
terestingly, the best performing method for diversity shift
is RSC [31], one of the most advanced methods aimed to
learn hard-to-learn patterns, with a heuristic to push the
model to train with generated worst-case features. On the
other hand, the best performing method for correlation shift
is VREx [38], one of the most advanced methods aimed
to learn hard-to-learn samples, with a heuristic to push the
model to train with selected worst-case samples.

Our contribution is inspired by the above discussion: if
worst-case training in the feature dimension excels at diver-
sity shift, while worst-case training in the sample dimen-
sion excels at correlation shift, if we can integrate these two
worst-case training methods into one simple heuristic, the
new method will likely lead to sufficiently good empirical
performance for both diversity and correlation shift.

2.5. Key Contributions
In comparison to the previous methods discussed along

these two lines, we believe the key contributions we make
in this paper are as follows.

• We discuss the previous methods with a unified theme
of worst-case training along two different dimensions,
and doing so naturally leads to the integration of these
methods.

• We introduce a new method, called W2D, as an inte-
gration of these two types of training methods. W2D
is a simple heuristic that can be directly plugged into
any training process regardless of model architecture,
loss function, regularization or optimizer.

• We demonstrate strong empirical performance on mul-
tiple benchmark datasets, and conduct ablation studies
to understand the contribution of each of component of
the method.

3. Method
In this section, we first formalize the two worst-case

training methods, which naturally leads to the introduction
of our method. Then, with the main framework of our
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method introduced, we continue to discuss a whole-batch
patching heuristic we use in the experiments that have ben-
efited our method empirically with non-negligible margins.

3.1. W2D Method

We first introduce our notations. We use (X,Y) to de-
note a dataset with n (data,label) paired samples. Thus
X ∈ Rn×p and Y ∈ Rn. We use f(·; θ) to denote
the model we aim to train, and use e(·; θe) and d(·; θd) to
denote encoder and decoder, respectively. Thus, we have
f(·; θ) = d(e(·; θe); θd). We use w to denote a weight vec-
tor of length n. We use m to denote a masking vector with
some elements to be 0 and others to be 1; the length of m
is the same as the feature dimension (the output of e(·; θe)).
We use l(·, ·) to denote a generic loss function.

The vanilla training process of a model is

θ̂vanilla = argmin
θ

1

n

∑
i

l(f(Xi; θ),Yi)

Worst-case along feature dimension We formalize the
first worst-case method, with a generic form as follows:

θ̂w feature = argmin
θ

1

n

∑
i

max
m

l(d(m⊙ e(Xi; θe); θd),Yi),

(1)

where ⊙ denotes the element-wise product.
In particular, the RSC method [31] introduces the m with

a hyperparameter ρ, which denotes the ρ fraction of the el-
ements are zeros. The maximization step is achieved by
examining the magnitude of the gradient of ∂d(e;θd)

∂e .

Worst-case along sample dimension We formalize the
second worst-case method, with a generic form as follows:

θ̂w sample =argmin
θ

1

n

∑
i

max
wi

wil(f(Xi; θ),Yi),

subject to
∑
i

wi = 1

In general, the choice of wi depends on l(f(Xi; θ),Yi),
with concrete differences across different methods such as
[39,50,57]. A common theme is that, the higher the loss is,
the bigger wi is.

In practice, because we use batch-wise optimization, the
estimation of w is not straightforward. Fortunately, we can
use a simple alternative: for each batch, we select the sam-
ples with high losses (through a forward pass), and then use
these samples to update the model. This is a heuristic used
by multiple methods such as [9, 11, 33, 73].

Algorithm 1: W2D Algorithm
Input: data set (X,Y), percentage of samples used
per batch ρ, percentage of whole batch patching κ,
batch size η, maximum number of epochs T , and
other RSC hyperparameters;

Output: Classifier f(·; θ);
randomly initialize the model θ0;
calculate the number of iterations K = n/η;
while t ≤ (1− κ)T do

for a batch of data (X,Y)k where k ≤ K do
forward pass to calculate the loss
l(f(Xi; θt,k−1),Yi) of every sample in the
batch;

select the top ηρ samples with highest loss
to construct (X,Y)k,ρ;

Train the model with (X,Y)k,ρ following
(1).

end
end
while (1− κ)T < t ≤ T do

for a batch of data (X,Y)k where k ≤ K do
Train the model with (X,Y)k following (1).

end
end

W2D Method Integrating the two methods above, we
have

θ̂W2D =argmin
θ

1

n

∑
i

max
m,wi

wil(d(m⊙ e(Xi; θe); θd),Yi),

subject to
∑
i

wi = 1

In practice, we use the RSC method to identify the m
for worst-case training in the feature dimension, and use the
above heuristic to perform worst-case training in the sample
dimension.

3.2. Whole-batch Patching Heuristic

As introduced above, W2D selects the worst-case train-
ing samples with highest loss in each training iteration, as
the model evolves over training, it is possible that what was
once considered easy becomes hard, and vice versa. There-
fore, we can intuitively expect the model to see all the sam-
ples in the training set given sufficient training iterations.
However, chances are that some of the samples are never
seen by the model during training as these samples are al-
ways considered not hard enough; it is obvious not ideal
that there is a chance the model does not take full advantage
of the training set.

To counter this potential issue, we simply switch to
whole batch training during the last κ% of training epochs,
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which leads to better empirical performances across differ-
ent model selection strategies. We verify the effectiveness
of this simple approach in our ablation study. More results
can be found in Section 5.4.

The full description of W2D with the whole batch patch-
ing heuristic is detailed in Algorithm 1.

4. Experiments

4.1. Experimental Setup

We follow the setting in [74] and evaluate domain gen-
eralization on both types of distribution shift: diversity shift
and correlation shift. Specifically, we use the same strategy
for model selection, dataset splitting, and network back-
bone. More details of the experimental settings can be
found in the discussion and supplementary materials.

4.2. Datasets, Hyperparameter Search and Model
Selection

We choose datasets that cover as much variety as pos-
sible from the various OoD research areas for our experi-
ments. We conduct experiments on seven OOD datasets:
CMNIST [2], CelebA [43], NICO [25], Terra Incognita [5],
OfficeHome [63], WILDS-Camelyon, [35] and PACS [40].
These datasets are divided into two categories based on their
estimated diversity and correlation shift.

We use the same hyperparameter search protocol as
[21, 74]: a 20-times random hyperparameter search is con-
ducted for every dataset and algorithm pair, and then the
search process is repeated for another two random series
of hyperparameter combinations, weight initializations, and
dataset splits. The three series yield the three best accura-
cies in total over which a mean and standard error bar is
computed for every dataset-algorithm pair.

To be consistent with existing line of work, models
trained on PACS, OfficeHome, and Terra Incognita are se-
lected by training-domain validation; models trained on
WILDS-Camelyon and NICO are selected by leave-one-
domain-out validation; while models trained on Colored
MNIST and CelebA are selected by test-domain validation.
Details of these selection strategies can be found in [74].

4.3. Empirical Results

The benchmark results are shown in Table 1 and Table
2. In addition to mean accuracy and standard error bar,
we follow the Ood-bench [74] to report a ranking score for
each algorithm with respect to Empirical Risk Minimiza-
tion (ERM) [62]. Specifically, depending on whether the
attained accuracy is lower than, within, or higher than the
standard error bar of ERM accuracy on the same dataset,
scores -1, 0, +1 are assigned to every dataset-algorithm pair.
Adding up the scores across all datasets listed in the table
produces the ranking score for each algorithm. The ranking

score reflects a relative degree of robustness against diver-
sity and correlation shift compared to ERM.

Note, for CMNIST, Ood-bench [74] evaluates the results
using the -90 as testing domain while DomainBed [21] re-
ports the results averaged over the +90, +80, and -90 do-
mains. We follow Ood-bench’s setting to report the results
in Table 2 and we also report the results of the DomainBed’s
setting in the supplementary material. The choice of the
settings does not affects our ranking score in Table 2. In
Section 5, we discuss a special property of CMNST and
propose a modified version of W2D which can achieve a
significant gain on CMNIST.

We observe that W2D is the only algorithm that can
achieve consistently better performance than ERM on both
types of distribution shifts. Specifically, W2D is among
the top three in both the datasets dominated by diversity
shift as well as the datasets dominated by correlation shift.
This comprehensive evaluation supports the view that W2D
could serve as a simple heuristic to replace existing training
approaches for real-world applications because real-world
data have both kinds of distribution shifts.

5. Ablation Study

There are altogether four hyperparameters for W2D, two
of them are directly inherited from RSC [31]: feature drop-
ping percentage, ϕ, controls the different dropping percent-
ages to mute feature maps; batch dropping percentage, β,
controls the different batch size percentages to apply feature
dropping. There are two new hyperparameters introduced
along the sample dimension by W2D: worse-case sample
percentage, ρ, controls the fraction of the batch size sam-
ples with the highest loss used for training; whole batch
patching percentage, κ, controls the percentage of training
time trained using the whole batch.

We use the default hyperparameters from RSC for fea-
ture dropping percentage and batch dropping percentage.
For selecting the worst-case along the sample dimension,
we conduct two ablation studies on possible configurations
for it on the standard benchmarks. All results are produced
by following Ood-bench’s setting.

Overall, we set the hyperparameter search space of W2D
as ϕ ∈ [0.1, 0.4], β ∈ [0.1, 0.3], ρ ∈ [0.1, 0.5], κ ∈
[0.2, 0.4].

5.1. Effect of Worst-case sample percentage ρ

We test W2D with different percentages of worst-case
batch samples in Table 3. For PACS, the fewer the worst-
case samples used for training, the higher the test-validation
accuracy. This result suggests that focusing on more hard-
to-learn worse-case samples can better push the limit of the
model’s potential generalization power as indicated by the
higher test-validation accuracy.
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Algorithm PACS OfficeHome TerraInc Camelyon Average Ranking score
W2D 83.4± 0.3 63.5± 0.1 44.5± 0.5 95.2± 0.3 71.7 +3
RSC [31] 82.8± 0.4 62.9± 0.4 43.6± 0.5 94.9± 0.2 71.1 +2
MMD [42] 81.7± 0.2 63.8± 0.1 38.3± 0.4 94.9± 0.4 69.7 +2
SagNet [49] 81.6± 0.4 62.7± 0.4 42.3± 0.7 95.0± 0.2 70.4 +1
ERM [62] 81.5± 0.0 63.3± 0.2 42.6± 0.9 94.7± 0.1 70.5 0
IGA [36] 80.9± 0.4 63.6± 0.2 41.3± 0.8 95.1± 0.1 70.2 0
CORAL [59] 81.6± 0.6 63.8± 0.3 38.3± 0.7 94.2± 0.3 69.5 0
IRM [2] 80.9± 0.4 63.6± 0.2 41.3± 0.8 95.1± 0.1 70.2 0
VREx [38] 81.8± 0.4 63.5± 0.1 40.7± 0.7 94.1± 0.3 70.0 -1
GroupDRO [57] 80.4± 0.3 63.2± 0.2 36.8± 1.1 95.2± 0.2 68.9 -1
ERDG [79] 80.5± 0.5 63.0± 0.4 41.3± 1.2 95.5± 0.2 70.1 -2
DANN [16] 81.1± 0.4 62.9± 0.6 39.5± 0.2 94.9± 0.0 69.6 -2
MTL [8] 81.2± 0.4 62.9± 0.2 38.9± 0.6 95.0± 0.1 69.5 -2
Mixup [75] 79.8± 0.6 63.3± 0.5 39.8± 0.3 94.6± 0.3 69.4 -2
ANDMask [53] 79.5± 0.0 62.0± 0.3 39.8± 1.4 95.3± 0.1 69.2 -2
ARM [76] 81.0± 0.4 63.2± 0.2 39.4± 0.7 93.5± 0.6 69.3 -3
MLDG [41] 73.0± 0.4 52.4± 0.2 27.4± 2.0 91.2± 0.4 61.0 -4

Table 1. Performance of domain generalization algorithms on datasets dominated by diversity shift. W2D achieves better performance
than ERM on three datasets with top 1 ranking score.

Algorithm CMNIST NICO CelebA Average Prev score Ranking score
VREx [38] 56.3± 1.9 71.0± 1.3 87.3± 0.2 71.5 -1 +1
GroupDRO [57] 32.5± 0.2 71.8± 0.8 87.5± 1.1 63.9 -1 +1
W2D 31.0± 0.3 71.6± 0.9 87.7± 0.4 63.4 +3 +1
ERM [62] 29.9± 0.9 71.4± 1.3 87.2± 0.6 62.8 0 0
MTL [8] 29.3± 0.1 70.2± 0.6 87.0± 0.7 62.2 -2 0
ERDG [79] 31.6± 1.3 70.6± 1.3 84.5± 0.2 62.2 -2 0
ARM [76] 34.6± 1.8 63.9± 1.8 86.6± 0.7 61.7 -3 0
MMD [42] 50.7± 0.1 68.3± 1.0 86.0± 0.5 68.3 +2 -1
IGA [36] 29.7± 0.5 70.5± 1.2 86.2± 0.7 62.1 0 -1
IRM [2] 60.2± 2.4 67.6± 1.4 85.4± 1.2 71.1 -1 -1
MLDG [41] 32.7± 1.1 51.6± 6.1 85.4± 1.3 56.6 -4 -1
SagNet [49] 30.5± 0.7 69.3± 1.0 85.8± 1.4 61.9 +1 -2
CORAL [59] 30.0± 0.5 68.3± 1.4 86.3± 0.5 61.5 -1 -2
ANDMask [53] 27.2± 1.4 72.2± 1.2 86.2± 0.2 61.9 -2 -2
Mixup [75] 28.6± 1.5 66.6± 0.9 87.5± 0.5 60.6 -2 -2
RSC [31] 27.6± 1.8 69.7± 0.9 85.9± 0.2 61.4 +2 -3
DANN [16] 24.5± 0.8 68.6± 1.1 86.0± 0.4 59.7 -2 -3

Table 2. Performance of domain generalization algorithms on datasets dominated by correlation shift. Prev score indicates the ranking
score produced in Table 1. Although W2D is in third place, the top three methods have the same ranking score, and the gap in averaged
accuracy mainly comes from the simplest dataset CMNIST.

5.2. Effect of Whole Batch Patching Percentage κ

In Table 4, we vary κ: 0 percent means never training
with the whole batch. As we increase κ, we observe higher
training-validation accuracy, but lower testing-validation
accuracy. This ablation study demonstrates that whole batch
training can boost training validation results, while slightly
decreasing the model’s potential generalization ability at the
same time.

5.3. Dimensions of Worst-case Training

In Table 5, we evaluate each component of W2D. Both
components (sample dimension and feature dimension) are
shown to outperform ERM. We believe each component can
be easily plugged into other domain generalization methods
and achieve consistent gains. Also, integrating both com-
ponents is the best setting (W2D) for most of the diversity
shift and correlation shift datasets.
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Percentage Dataset Acc(Train-Val/Test-Val)
10 PACS 82.4 / 83.7
20 PACS 83.0 / 83.5
33 PACS 82.7 / 83.2
50 PACS 82.7 / 83.1

Table 3. Ablation study of Top Worst-case ρ%. We fix other hy-
perparamters here and only change ρ.

Percentage Dataset Acc(Train-Val/Test-Val)
0 PACS 82.2 / 83.7
5 PACS 82.5 / 83.5

10 PACS 82.7 / 83.3
20 PACS 83.0 / 83.3
40 PACS 82.9 / 83.3

Table 4. Ablation study of Whole Batch Training During The Last
κ% Epoch. We fix other hyperparameters here and only change κ.

Methods Dataset Acc(Train-Val/Test-Val)
ERM PACS 81.5 / 82.2

feature-dim. PACS 82.8 / 83.3
sample-dim. PACS 82.2 / 83.5

W2D PACS 83.4 / 84.0
ERM OfficeHome 63.3 / 63.5

feature-dim. OfficeHome 62.9 / 63.3
sample-dim. OfficeHome 63.3 / 63.7

W2D OfficeHome 63.5 / 63.8
ERM TerraInc 42.6 / 43.9

feature-dim. TerraInc 43.6 / 44.8
sample-dim. TerraInc 42.9 / 45.1

W2D TerraInc 44.5 / 46.3
ERM CelebA 86.3 / 87.2

feature-dim. CelebA 86.2 / 85.9
sample-dim. CelebA 85.8 / 87.4

W2D CelebA 86.5 / 87.7

Table 5. Analysis of each dimension of W2D.

5.4. Training Validation vs Testing Validation
For training-domain validation, each training domain is

split into training and validation subsets. The models are
trained using the training subsets and the final model is cho-
sen as the one that maximizes the accuracy on the union of
the validation subsets. Training validation is designed to
apply on real-world applications. For testing-domain val-
idation, the model is selected by maximizing the accuracy
on a validation set that follows the distribution of the test
domain. Testing validation is used to measure a method’s
highest potential generalization ability. In Table 5, we see
that compared to RSC (feature-dim.), W2D tends to ob-

tain bigger improvements when testing-domain validation
is used for model selection than training-domain validation.
This is mainly because worst-case training along sample di-
mension can increase the model’s potential generalization
power.

5.5. A special property of Colored MNIST

As mentioned earlier, we evaluate the results in CMNIST
using the -90 as testing environment in Table 2 following
Ood-Bench [74]. In this section, we report the results av-
eraged over three environments (+90, +80 and -90) in CM-
NIST, which is the protocol used in DomainBed [21]. The
study of these results leads us to notice a special property of
CMNIST in comparison to other methods used. Then, this
special property leads us to introduce a modified version of
W2D that improves over ERM by a clear margin by taking
advantage of this property.

Treating the -90 domain as a testing domain is consid-
ered to be the most difficult setting because the training and
testing domain’s distribution are totally flipped. (In com-
parison, the discussions of the other two testing domains,
+90 and +80, are omitted as they are much simpler.) If
we can train on only a small subset of the training samples
that share the same distribution as that of testing, the results
could be largely improved. Worst-case training along the
sample dimension would be a natural solution for this prob-
lem. However, we found that a vanilla usage of this method
can heavily affect training for this toy dataset.

To solve this problem, we first train a biased classifier
at the beginning of training with a few epochs. The biased
classifier is then fixed and used as a pre-trained classifier to
select the worse-case samples. Specifically, we utilize the
worse-case samples selected in each iteration by the biased
classifier to train a debiased classifier. Since the distribution
flips between the training and testing domain (from +80/+90
to -90), the worse-case samples selected by the pre-trained
biased classifier should share a similar distribution with the
samples during testing, which leads to surprisingly high per-
formance in Table 6.

We hope this ablation study can motivate the community
to rethink the evaluation method of Colored MNIST. We
conjecture a more reasonable protocol is to, rather than only
reporting results on -90, evaluate the methods with multiple
different distribution domains: e.g., averaged over +/-90,
+/-70, +/-50, +/-30, +/-10 domains.

6. Discussion

Additional Benefit with Stochastic Weight Averaging
Stochastic Weight Averaging (SWA) [32] is an ensemble
technique that finds the solution at the center of a wide flat
region of the loss landscape. It performs an equal averaging
of the model parameters derived from multiple local min-
ima during the training procedure. SWA was shown to im-
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Method Dataset Acc(Train-Val/Test-Val)
ERM [62] CMNIST 51.5 / 58.5

GroupDRO [57] CMNIST 52.1 / 61.2
VREx [38] CMNIST 51.8 / 56.3
ARM [76] CMNIST 56.2 / 63.2
IRM [2] CMNIST 52.0 / 70.2

RSC [31] CMNIST 51.7 / 58.5
W2D CMNIST 51.9 / 59.0

W2D* CMNIST 70.8 / 72.9

Table 6. The CMNST results are adopted from [21] and averaged
over three domains. * means modified version of W2D.

prove the performance in semi-supervised learning and do-
main adaptation [3].

In addition to whole batch training, SWA is another ef-
fective way to improve the model’s generalization at later
epoches. Intuitively, SWA is able to leverage the worse-case
samples from different training stages regardless of whether
the samples the model considered worse-case in previously
epoches later switches to be easy ones or not. In Table
7, we notice that SWA works especially well with worse-
case-based methods. For example, in PACS, W2D obtains a
1.3% improvement from SWA while ERM and feature-dim.
(RSC) obtains 0.9% and 0.7% improvement, respectively.

Method Dataset Acc(Train-Val/Test-Val)
ERM PACS 81.5 / 82.2

feature-dim. PACS 82.8 / 83.3
sample-dim. PACS 82.2 / 83.5

W2D PACS 83.4 / 84.0
ERM(w SWA) PACS 82.5 / 83.0

feat-dim.(w SWA) PACS 83.5 / 83.7
sam-dim.(w SWA) PACS 83.4 / 83.7

W2D(w SWA) PACS 84.7 / 84.8

Table 7. W2D can further improve the performances if used to-
gether with Stochastic Weight Averaging. We apply SWA at the
last 25 percent of training time and do not apply whole batch
patching here.

Challenges for our method in DomainBed First, meth-
ods such as RSC [31] or the family of DRO methods [38,57]
are simple heuristic extensions of ERM along the feature
or sample dimension. It seems counter-intuitive that these
methods cannot compete with ERM if used properly. When
closely studying the experimental settings in DomainBed,
first, we notice the hyperparameter range of RSC goes as
high as dropping 50% of the features, and with such a high
dropout rate, we find that RSC can barely learn any useful
patterns. Second, DomainBed changes the default model
setting of ResNet50 [24] by adding dropout [58] in the fully
connected layers. The highest dropout rate in DomainBed

is 50%, which might be beneficial to other algorithms but
could degrade RSC’s performance due to the overuse of
dropout from both aspects. For the other dimension, the
batchsize range goes as small as 8, which limits the poten-
tial of the DRO-family methods to use the hard samples.
Why Ood-bench? First, Ood-bench uses a ranking score
to reflect a relative degree of robustness against both kinds
of distribution shift instead of mean accuracy over different
datasets, which is more reasonable. Several algorithms are
superior to ERM in the toy case datasets, but they are still
vulnerable to the distribution shift from the real data. Thus,
using mean accuracy is a less meaningful way to compare
these algorithms. Second, unlike DomainBed, Ood-bench
uses a smaller model, ResNet18 [24], for all algorithms
and datasets excluding Colored MNIST. It is known that
larger models are usually more robust to distribution shift
data and thus their performance may be more easily satu-
rated on small datasets [26]. Thus, using a smaller base
model on which to build on could provide a better testbed
for OoD generalization of different algorithms. Third, the
search space of the non-algorithm-specific hyperparame-
ters is carefully designed, such as the learning rate. It al-
lows each algorithm to converge during training at each run.
More importantly, Ood-bench measures each method’s gen-
eralization ability in a more objective and fair manner: it ex-
cludes previous domain generalization techniques that can
be plugged into any algorithm, such as dropout [58].
Limitations In the more realistic dataset dominated by
correlation shift, such as CelebA and NICO, although W2D
achieves the best improvement among all the algorithms, it
does not surpasses ERM by a statistically significant mar-
gin. Despite the high empirical performances, there are
no sufficient evidence suggesting that W2D will be ideal
when facing common challenge such as spurious correla-
tions. Study to extend W2D to further overcome these chal-
lenges is likely expected in the future.

7. Conclusion
Inspired by a simple heuristic that training with a partic-

ular focus on hard-to-learn concepts will benefit the learn-
ing process, in this paper, we introduce a training heuristic
method that can iteratively force the model to learn the hard-
to-learn concepts on both the feature dimension and the
sample dimension. We name our method W2D following
the idea of “Worst-case along Two Dimensions”. W2D can
be directly applied to almost any model architecture, opti-
mizer, loss, or regularization etc. After evaluating W2D in
OoD-Bench comprehensively, we observe W2D is the only
algorithm that can achieve consistently better performance
than ERM on both diversity shift and correlation shift.
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