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Abstract

As the basis for developing glaucoma treatment strate-
gies, Anterior Chamber Angle (ACA) evaluation is usu-
ally dependent on experts’ judgements. However, experi-
enced ophthalmologists needed for these judgements are
not widely available. Thus, computer-aided ACA evalua-
tions become a pressing and efficient solution for this is-
sue. In this paper, we propose a novel end-to-end frame-
work GCNet for automated Glaucoma Classification based
on ACA images or other Glaucoma-related medical images.
We first collect and label an ACA image dataset with some
pixel-level annotations. Next, we introduce a segmenta-
tion module and an embedding module to enhance the per-
formance of classifying ACA images. Within GCNet , we
design a Cross-Module Aggregation Net (CMANet) which
is a weakly-supervised metric learning network to capture
contextual information exchanging across these modules.
We conduct experiments on the ACA dataset and two pub-
lic datasets REFUGE and SIGF. Our experimental results
demonstrate that GCNet outperforms several state-of-the-
art deep models in the tasks of glaucoma medical image
classifications. The source code of GCNet can be found at
https://github.com/Jinggi—H/GCNet.

1. Introduction

Glaucoma is a leading cause of irreversible blindness in
the world [44]. The main basis for determining clinical
treatment protocols when glaucoma is diagnosed is using
Anterior Chamber Angle (ACA) images and gonioscopy is
widely regarded as the “Gold Standard” in ACA evalua-
tion. There are five ACA levels that correspond to different
glaucoma treatments. In order to determine these ACA lev-
els, ophthalmologists examine four local structures in ACA
images: Schwalbe Line (SL), Trabecular Meshwork (TM),
Scleral Spur (SS), and Ciliary Body Band (CBB), with the
help of microgonioscopy [8, 1] as shown in Figure 1. How-
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Figure 1. The main structures in ACA consist of Schwalbe line
(SL), pigmentation of trabecular meshwork (TM), scleral spur
(SS), and ciliary body band (CBB). The bottom figure shows the
color annotations of these four structures.

ever, ACA evaluation needs expert ophthalmologists, while
the availability of experienced ophthalmologists is severely
sparse given the large number of glaucoma patients. There-
fore, computer-aided systems are urgently needed for effi-
cient ACA evaluation.

Recently, Deep Neural Networks (DNNs) have be-
come a default choice given its successful applications in
Glaucoma-related medical image analysis. For instance,
DNNs have been used to segment optic cup (OC) regions
and optic disk (OD) regions [9], and to detect glaucoma-
tous optic neuropathy [25]. Li et al. [21] apply a ResNet-18
model for automatic measurement of trabecular-iris angle
(TTA). Peroni et al. [36] exploit a dense U-Net architecture
to segment irido-corneal interface images. However, di-
rectly applying traditional DNN models for ACA level clas-
sification is suboptimal and the following challenges need
to be overcome:

(1) In ACA images, the four spatial structures (SL, TM,
SS, and CBB) are the main basis for ophthalmologists in
their ACA level evaluations. However, these four structures
concentrate in a small area of a full ACA picture as shown in
Figure 1. This leads to great challenges for machine learn-
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Figure 2. The illustration of GCNet. We introduce a weakly-
supervised metric learning network for capturing pixel-level de-
tails of spatial features and a cross-module communication strat-
egy (two type of pipes in red) for augmenting information across
three sub-modules.

ing models to distinguish this important information from
background noise.

(2) The appearance of SL, TM, SS, and CBB corre-
sponds to different levels of glaucoma diseases. In ACA im-
ages, these four structures are adjacent with blurred bound-
aries between each other. Recognizing each feature and
learning their hidden representations are crucial in ACA
classification. However, pixel-level annotations of these
structures are rare for supervised learning.

(3) With sparse pixel-level labels of the four structures,
deep learning models often suffer from capturing inter-class
similarities and intra-class variations of these structures.
Fusing the knowledge of these four structures in the task
of image classification is another obstacle.

To overcome the above challenges, we propose a deep
neural network with weakly-supervised metric learning and
interactive module communications on glaucoma image
classification. To the best of our knowledge, this is the first
work for classifying ACA images using deep learning tech-
niques with three sub-modules. The main contributions of
our paper include:

e We propose a weakly-supervised metric learning
framework for glaucoma image classification. We augment
glaucoma ACA images with pixel-level annotations for four
structures (SL, TM, SS, and CBB) and utilize these annota-
tions to enhance image classification.

e We propose a cross-module communication strategy to
fuse features from multiple granularity levels as shown in
Figure 2. The proposed network, CMANet, is able to cap-
ture semantic information in picture levels as well as pixel
levels. This method can also be extended to other types of
Glaucoma clinical images such as the REFUGE dataset [32]
including both image-level and pixel-level annotations.

e We collect and label an ACA evaluation image dataset.
The dataset includes 999 ACA images which are labeled by
several senior ophthalmologists. In addition, 100 ACA im-
ages are labeled with SL, TM, SS, and CBB at pixel levels.

We conduct extensive experiments on three real-world
datasets to demonstrate the effectiveness of the proposed
framework in classification compared with several deep
learning baselines.

2. Related Work
2.1. Glaucoma Detection

Early detection and intervention are essential to pre-
vent the deterioration of glaucoma. With the overwhelming
application of DNNs in medical image analysis in recent
years, more and more DNN models have been designed for
glaucoma detection [20,48]. In these models, most are
based on anterior segment optical coherence tomography
(AS-OCT) [10,12,15,16] or fundus photographs [25,28,50].

Some recent work focuses on ACA structures. For in-
stance, DNN models are designed to segment geometri-
cal structures such as AS-OCT [9, 33, 35]. A fully auto-
matic segmentation method is proposed to segment corneal
boundary, iris region, and trabecular-iris contact [13].
Moreover, a model based on transfer learning and multi-
level convolutional neural networks is designed to detect the
angle-closure glaucoma [10].

2.2, Weakly-supervised Learning

Medical image labeling is expensive because of its need
for senior doctors [48]. Thus, weakly-supervised learn-
ing [40] with little supervision has been actively studied in
medical image analysis recently. As a branch of weakly-
supervised learning, semi-supervised learning (SSL) has
made remarkable achievements in representation learning
in recent years [19,27].

Consistency regularization and pseudo-labeling are two
common strategies in SSL. The goal of consistency regular-
ization is to obtain similar output distribution, which can be
achieved by adding various degrees of augmentation [29],
by embedding different perturbations [34], or by embedding
different networks [18,26]. The goal of pseudo-labeling is
to assign reasonable labels to unlabeled samples for the pur-
pose of training. Knowledge distillation is a technology to
train a student model with pseudo-labeled data and labeled
data [5, 51-53], of which, the pseudo-labels are predicted
with a pre-trained teacher model.

Considering the erroneous high confidence predictions
from poorly calibrated models, UPS framework [38] is
proposed to alleviate noisy training with negative pseudo-
labels. Based on MixMatch [3], UDA [49], and ReMix-
Match [2], FixMatch [42] produces artificial labels using
both consistency regularization and pseudo-labeling.

2.3. Aggregation

Many classification methods based on fully convolu-
tional networks achieve remarkable classification perfor-
mance in recent years. However, convolution as a local
operation establishes pixel relationships in a local neighbor-
hood. Long-range dependency modeling is necessary [22].
In order to model long-range information dependency [31],
two categories of context aggregation have been used: (1)
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Table 1. ACA classification system described by Shaffer [!]. Five
levels from wide to narrow angle are based on visible structures.

Level Clinical Feature Percentage (%)
Narrow I part of CBB visible 22.12
Narrow II SS visible 20.42
Narrow III posterior TM visible 12.91

Narrow IV only SL visible or none 25.43

Wide all structures visible 19.12

pairwise based [14,46]: non-local modules utilize pairwise
similarity to learn the global context for each location; (2)
context fusion based: considering large computational ca-
pacities, a channel attention mechanism [4] is proposed to
distinguish important features from minor features. A spa-
tial attention mechanism [45] is proposed to find where to
focus on features. A Convolutional Block Attention Mod-
ule [47] is proposed to combines the advantages of chan-
nel attention and spatial attention by cascade connections.
These methods enhance information representations, but
such enhancement is self-correlation and is limited to one
module only.

Panoramic segmentation requires both semantic segmen-
tation and instance segmentation to perform well. Thus,
a bidirectional aggregation network [6] is proposed to en-
able feature-level interaction between instance segmenta-
tion and semantic segmentation. However, different from
panoramic segmentation, our framework has three differ-
ent modules (classification, segmentation, embedding). Se-
mantic and discriminative information cannot be fed back
to the classification module from a unidirectional learning
pipeline, since the classification module is before segmen-
tation/embedding modules.

Semantic segmentation concentrates on capturing spatial
details of local structures and the embedding module makes
the information of the four structures more recognizable.
Such information can be used in classification to understand
both entire object features and local contexts. Based on
these observations, the following two important problems
need to be solved when applying DNN-based methods to
ACA evaluation. (1) How do we find and label useful in-
formation for learning on ACA images based on domain
knowledge and (2) How do we design a strategy to synthe-
size useful semantic information into classification?

3. Method

Our GCNet contains two major components: a back-
bone network and a cross-module aggregation network, as
shown in Figure 2. The backbone network is composed of
a deep residual network (ResNet) and a feature pyramid
network (FPN). The former is used for feature extraction
and the latter is used for resolution recovery. The cross-
module aggregation network includes three sub-modules: a
classification module, a segmentation module, and an em-

bedding module. The communication among these three
sub-modules is described in the section of Framework
Overview.

3.1. Problem Formulation

To overcome the challenges in computer-aided ACA
classification, we propose an end-to-end DNN framework
named GCNet in this paper. The goal of GCNet is to
map an ACA image into five levels as described in Table 1.
Besides the image-level classification labels of the whole
dataset, we also provide pixel-level labels (SL, TM, SS, and
CBB) for some ACA images.

e Image-level labels: each image is associated with a
label indicating the level of ACA: Narrow I, Narrow II,
Narrow III, NarrowlIV, or Wide.

o Pixel-level labels: for some images in the dataset, each
image has pixel-level labels. Each pixel label denotes if this
pixel belongs to SL, TM, SS, CBB, or background.

We design two auxiliary tasks with these weakly labeled
samples: (1) dense prediction; (2) pixel embedding. The
dense prediction is developed to distinguish the four struc-
ture areas SL, TM, SS, and CBB, while the pixel embedding
is developed to map each pixel into a semantic vector so
that pixels from the same structure are close to each other in
terms of semantic distance. GCNet is able to learn effective
spatial details and semantic embeddings for the four struc-
tures, while improving ACA classification performance.

3.2. Dataset

To establish an automatic ACA classification system,
1038 ACA images from 2015 to 2017 are collected from
the hospital we are collaborating with. For each patient, two
to five digital images are taken for each eye. Normally go-
nioscopy is only used when glaucoma has been diagnosed.
So the size of our ACA dataset is limited. In our dataset,
each image is labeled by a senior ophthalmologist with over
10 years of working experience.

We apply an examination on these images, and 39 im-
ages are removed due to quality issues. The remaining 999
images are labeled as one of the following: Narrow I (N1),
Narrow II (N2), Narrow III (N3), Narrow IV (N4) and Wide
(W) as shown in Table 1. The distribution of the labeled data
is depicted in the last column of the table.

Furthermore, we can observe that the four types of struc-
tures named SL, TM, SS, and CBB are distributed near the
boundary between cornea and iris as shown in Figure 1.
Given that the background is relatively large compared to
these structures and the majority of the useful area is ex-
ceedingly narrow, it will be a big challenge for ophthal-
mologist to manually annotate such small and concentrated
structures in ACA images. We use a labeling tool, Labelme,
to perform pixel-level masking with manual scribbles on
images. Among the 999 labeled images, 100 of them are an-
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Figure 3. Our proposed architecture is composed of a shared backbone and cross-module aggregation net (CMANet). CMANet has three
sub-modules: (i) a classification module; (ii) a segmentation module for dense prediction; (iii) an embedding module for pixel embedding.
Meanwhile, CMANet has two key pipes for information exchanging among multi-granularity feature representations: Classification-To-
Segmentation (c2s) and Segmentation/Embedding-To-Classification (se2c).

notated at pixel levels for these four structures. Our work is
conducted according to the Declaration of Helsinki. Given
the fully anonymity of ACA images, we are exempted by
the medical ethics committee to inform the patients.

3.3. Framework overview

As shown in Figure 3, given an ACA image x €
REXHXW “GCNet is designed to output an image-level
prediction y¢ € RN¢, a dense prediction y° € RNsxHxW
and a pixel feature map y¢ € RZ*H*W  In the train-
ing phase, we have image-level ground-truth label y¢ &
{0,1,2,3,4} for each image where O, 1, 2, 3, 4 denote
N1, N2, N3, N4, W respectively and pixel-level labels
y® € RNs*HXW for the annotated images. N, denotes the
class number in classification, N, denotes the class num-
ber in segmentation, and g denotes the length of embedding
vector. In this work, N, = 5 because we have 5 class levels
(N1, N2, N3, N4, W) and N; = 5 because we have four
structures (SL, CBB, SS, TM) and background.

3.3.1 Backbone

The backbone of GCNet is composed of three parts: an en-
coder, a decoder, and a feature pyramid network (FPN) [24],
as show in Figure 3. The encoder is a typical pre-trained
convolutional neural network by freezing first two layers,
and the decoder is an upsampling subnet like that of U-
Net [39]. Given an input image x, the backbone outputs
two latent feature maps F’ and F”. While F’ is the output
of the encoder, and F” is the output of the FPN.

3.3.2 Cross-Module Aggregation Network

In GCNet, the role of the classification module is to classify
an ACA image into 5 classes as described in Table 1. We

apply a global average pooling (GAP) [23] to map the latent
feature map F’ to a feature vector by F. = AvgPool (F”).

In clinical practices, the basis of ACA classification for
ophthalmologist is the previous introduced four structures.
Thus, the spatial distribution of these features is critical in
classifying ACA levels. Given this motivation, we design
a segmentation module to induce the classification module
to pay attention to these four structures. The segmentation
module assigns each pixel with a class label. Given that
multi-scale features have been fused in FPN by concatena-
tion, rich spatial details and semantic information can be
captured in the segmentation module:

Fy =6 (F") = g (W (gWOF" 4+ 50)) + b)),
ey
where g denotes the ReLu activation function, as it will for
the rest of the paper. F” is the output of the FPN model.

However, when incorporating the four structures using a
segmentation module, we face a new challenge due to inter-
class similarities and intra-class variations in the four struc-
tures:

o Inter-class similarity: the neighboring structures of SL,
TM, SS, and CBB looks similar in shape, color, and tex-
ture. For example, the adjacent structures TM and SS share
a similar fuscous color.

e Intra-class variation: same structures in different ACA
images may have different appearances for different genes.
For example, the color depth of TM is related to congeni-
tal pigment deposition. Some people are born with deeper
color of TM due to more pigment deposition while others
are born with lighter color of TM due to less pigment.

Thus, it is difficult for computers to distinguish the four
structures in dense predictions. However, the shape and ap-
pearance of these four structures are the basis for the oph-
thalmologist to evaluate the ACA levels. A weak dense pre-
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diction will result in poor classification performance. To
overcome this challenge, we add an embedding module to
the framework. We use the module to map each pixel into
an embedding vector. Here five convolution layers are used
to map F” into embedding feature map: 3¢ = ¢, (F).

With three sub-modules, our weakly-supervised met-
ric learning framework is formed. To resolve com-
munication issues among ACA classification, dense pre-
diction, and pixel embedding, we propose a cross-
module communication strategy CMANet. Specifically,
CMANet provides two communication mechanisms among
the three modules: Classification-To-Segmentation (c2s)
and Segmentation/Embedding-To-Classification (se2c).

(1) ¢2s. The segmentation model cannot be trained effi-
ciently due to the small number of pixel-level annotated
samples. Moreover, the contextual information of F; may
be lost after applying upsampling and convolutions for
many times. We propose to supplement the contextual in-
formation of segmentation module by building a communi-
cation pipe from the ACA classification module to the seg-
mentation module. We aggregate F'¢ and F . as follows:
Fos=F; 0 Q(¢C(Fc))a 2

where ¢ is a 1 x 1 convolution layer and €2 is a repeat oper-
ation to align the feature space. ® denotes the aggregation
operation which is element-wise multiplication. As a result,
feature F .o aggregates the semantic information of F; and
F.. Then we apply 3 x 3 and 1 x 1 convolution layers to
obtain the dense prediction y°:

7 =W (g(WPFes +02)) +80. (3)
(2) se2c. The ACA classification model is inadequate in
capturing hidden features of the four structures. The seg-
mentation model can capture the spatial details for four
structures while embedding module can learn the inter-class
similarities and intra-class variations among SL, TM, SS,
and CBB. Therefore, we propose to supplement the ACA
classification module with hidden semantic information of
these four structures by building two communicate pipes.
As shown in Figure 3, one is from the segmentation mod-
ule to the ACA classification module, and the other is from
the embedding module to the ACA classification module.
Global average pooling and concatenation are used to fuse
F,and F, into F.:

Fyeac = F. || AvgPool (Fy) || AvgPool (¢ (")), (4)
where || denotes concatenation. Then we apply a multi-
layer perceptron (MLP) to map aggregated latent features
Fe. to class distributions:

e =W (g (WO (gWOF e + ) + 5D ) )45,

(@)
3.4. Loss Function

The GCNet framework is designed for multi-task im-
age classification with image-level annotations and partial

pixel-level annotations. Some images have pixel-level la-
bels while some do not. If we have K ACA images as
training samples, we have K image-level annotations and
nK (0<n<0.5) pixel-level annotations. The classification
module is trained with fully annotated images, while the
segmentation module and the embedding module are opti-
mized with weakly labeled samples. Note that pseudo la-
bels are generated based on the predicted probabilities of
pixels (¥7) and are only used in the segmentation module.
In GCNet, the loss is composed of three parts: the classifi-
cation module uses Cross-Entropy loss, denoted as L,; the
segmentation module uses Dice Loss, denoted as Lqg; and
the embedding module uses discriminative loss, denoted as
Lem. The total loss function Ly, is defined as:

Ltntal =« - Lcla + ﬂ : Lseg + - Lem7 (6)
where a, 3, 7y are the weights of three loss items.

The segmentation task takes advantage of the spatial an-
notations of the four structures to assist the ACA classifica-
tion. However, it is hard and expensive to obtain pixel-level
labeled data in the medical image analysis domain because
only experts can provide reliable annotations. We focus
on weakly-supervised segmentation approaches because it
is relatively easy to acquire a large amount of image-level
labels. In addition, we adapt a discriminative loss based on
distance metric learning [7,30] to learn inter-class similari-
ties and intra-class variations among the four structures.

3.4.1 Weakly-supervised Segmentation Loss

We train the segmentation model using a small number of
samples with pixel-level annotations for SL, TM, SS, and
CBB. In the segmentation module, each pixel is classified
into five categories: SL, TM, SS, CBB, and background. In
our framework, the segmentation loss is defined as:

LSEg = L(liice + Lgice? (7)
where L, is a loss used in pixel-labeled data and L%, is
used in pixel-unlabeled data. Specifically, we denote

2502 933

N,
1
Léice =N Z <1 - N N ) ) )]
Ns j=1 21‘:}1 yi + Zi:]1 yi

where y7 and y? are the predicted probability and ground
truth label for pixel 7, respectively; N; denotes the number
of pixels in structure j.

Let m; = I[y; > 7] be the selected pseudo-label for
pixel ¢, where I is the indicator function and 7 is a hyper-
parameter which denotes a confidence threshold. For in-
stance, if the probability score is sufficiently high (y7 > 7)
then the corresponding pseudo label is selected. We choose
7 = (.7 empirically. For the unlabeled pixels, we define

N N, s
1 2> .2 myiys
Lice = A Z (1 - =7 Zle mzy]z\;},/l . ) , 9
S =1 Zi:ﬁ m;y; + Zizjl m;y;
where y? indicates the pseudo label for pixel 7.
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3.4.2 Discriminative Loss

Inspired by the success of pixel embeddings in instance seg-
mentation [/, 30], we use a discriminative loss function to
guide the model to learn structural details in feature space.
Discriminative losses enforce the model to map each pixel
in an image to a g-dimensional vector such that embedding
vectors of pixels with the same label (same structure) should
be close to each other while embedding vectors of pixels
with different labels should be far apart.

By doing so, different structures of an image and the
same structure in different ACA images should be well rec-
ognized through this loss. The discriminative loss is de-
scribed as a weighted sum of three parts:

Lem = A 'Lvar+p'Ldisl+w'Lreg> (10)
N, N;
1 <1 e 2
Lvar = -, N, - ey =95l =), ap
Jj=1 i=1
1 S NS 2
List = m Z [25d - H“J'A — Mg HL?
sAs ja=ljp=1 (12)
1 &
Lg = 3~ > [l (13)
S ]=1

where y¢ is the embedding vector of a pixel ¢; ps are class
mean vectors and 4,0, are the margins for the variance
and distance loss. We set §,, = 0.0001 and §; = 1.0 em-
pirically. Equation 11 represents the variance term which
applies a pull force on each embedding vector towards the
mean vector of a structure. Equation 12 denotes a distance
term that pushes the cluster centers away from each other.

4. Experimental Evaluation
4.1. Dataset Preprocessing

To eliminate the influence of background noise and to
extract the features of four structures, critical region detec-
tion is applied to automatically crop the target region of SL,
TM, SS and CBB. Here, we use the YoLo detector [37] to
preprocess our original images. These segmented ACA im-
ages are then resized to [700 x 2, 100] for better quality.

In addition, we also investigate the REFUGE dataset [32]
which contains 1,200 images with two classes (10% pos-
itive and 90% negative) and pixel-level annotations (back-
ground, optic disc, and optic cup). SIGF dataset [20] is used
for a glaucoma forecasting task. This dataset contains se-
quential fundus images of a patient, which is different from
glaucoma evaluation. Therefore, we convert SIGF to a stan-
dard classification task by ignoring sequential information.
All fundus images are annotated with binary labels of glau-
coma, i.e., positive (4%) or negative (96%), corresponding
to 3,671 images in total.

Table 2. Inference time for an input tensor of size 2 %3 128 x 256.

Methods VGG GoogleNet ResNet FixMach CCT UPS  GCNet

Time(ms)  39.27 56.19 47.51 87.18 50.79  86.75  56.12
Flops(G) ~ 20.07 22.33 24.05 770.75 4620 770.75 119.44
Params(M) 18.93 3.35 5.37 87.76 46.86 8776  64.85

4.2, Training and Evaluation

We conduct experiments on our ACA dataset and the
public REFUGE dataset [32]. Table 2 shows the infer-
ence time of all baseline models and GCNet. For the ACA
dataset, we partition the dataset into a training set (80%)
and a test set (20%) based on a random seed of 72. We shuf-
fle the training set and select a subset as our validation set
from training samples. The validation set accounts for one-
fifth of the training set. For the REFUGE dataset, We use
the standard train/val/test split with 800 images for train-
ing/validating and 400 images for testing. Note that we use
all image-level annotations and 83 images with pixel-level
annotations during training to carry out weakly-supervised
metric learning framework.

We use standard metrics of Accuracy (ACC), Area Un-
der Curve (AUC), and F1 to evaluate the classification accu-
racy for ACA and REFUGE. Given the extreme imbalanced
class distributions of SIGF, we only use AUC to demon-
strate the evaluation results. All methods are implemented
in Ubuntu 18.04 with NVIDIA GeForce RTX 3080 graph-
ics cards with 10 GB memory. Both pepper-noise and hor-
izontal flipping are used as data augmentation in the ACA
training images. On the basis of this augmentation, we also
add vertical flipping when training on REFUGE and SIGF.
In our experiments, we enumerate hyperparameter values
with a tolerance of 0.1 in the interval [0,1]. Then we set
a=p=v=10,A=p=1.0,and w = 0.01 empirically
on the ACA dataset.

4.3. Results

4.3.1 Classification results

To evaluate the performance of GCNet, we first compare
it with other state-of-the-art methods on two datasets: ACA
dataset and REFUGE dataset. We improve the original UPS
with additional segmentation modules to get the results in
Table 3, which makes our comparison fairer. UPS is de-
signed for classifications initially. With an additional seg-
mentation module, UPS performs better.

As shown in Table 3, GCNet outperforms all baselines
on all metrics for both datasets. More details of base-
line models can be found in the Appendix. From the re-
sults, we have the following interesting observations. First,
our method achieves the best Accuracy (ACC) (79.19%),
AUC (94.32%), and F1 (78.53%) scores compared with
state-of-the-art approaches on ACA classification. Second,
weakly-supervised models (e.g., FixMatch [42], CCT [34],
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Table 3. Classification results of Accuracy (ACC), Area Under
Curve (AUC), and F1 on two test sets.

Methods  ACC(%) AUC(%) F1(%)
ACA
VGG 68.32+1.18  88.85+0.96  66.64+1.79
GoogLeNet 70.6621.41  91.62+0.73  70.04%1.20
ResNet  74.82+0.52  91.64+0.41  73.03%1.07
FixMatch ~ 73.81£1.89  92.96+0.32  73.02+1.66
CCT 72.69+£1.08 92374023  70.92+1.41
UPS 76.75£1.55  93.74+0.68  75.701.56
GCNet  79.1920.72 94.3220.42  78.53+0.29
REFUGE

VGG 92.15£0.78  92.38+0.84  95.62+0.46
GoogLeNet 93.00+1.99  93.19+1.07  96.131.04
ResNet  95.2520.57 94.00£1.92  97.37+0.32
FixMatch ~ 93.65+1.75 93.85+0.82  96.43%1.03
CCT 90.00£0.42  92.35+0.60  94.51+0.31
UPS 93.20+£1.79  94.60+0.72  96.22+1.07

GCNet 96.30+0.43 97.20+0.326 97.97+0.23
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Figure 4. Classification results (AUC) on the SIGF test set.

and UPS [38]) are mostly superior to traditional methods
(including VGG [41], GoogLeNet [43], and ResNet [17])
on AUC. For instance, the weakly-supervised model UPS
achieves 1.93% higher ACC than the traditional method
ResNet (without considering pixle-level information).

We also test the proposed method on the SIGF dataset.
We add pixel-level annotations to 36% of the training set,
leading the model to pay more attention to the information
near the optic and disc. As shown in Figure 4, the results
show that weakly-supervised models deal effectively with
the challenging task of glaucoma evaluation under the guid-
ance of pixel-level annotations. Due to the extreme imbal-
ance of classes in SIGF, we only report AUC scores. We
observe that GCNet obtains the highest AUC score on glau-
coma classification.

To further illustrate the predictive power of the proposed
model, we analyze the confusion matrices of state-of-the-art
methods and our method, as shown in Figure 5. From con-
fusion matrices, we observe that it is difficult for a model to
distinguish adjacent ACA levels. For example, N1 is easily

mis-classified as N2 because the CBB structure is difficult
to recognize. The difference between N1 and N2 is that N1
has the CBB structure while N2 does not, as shown in Ta-
ble 1. The same pattern appears again in N2/N3 and N3/N4.
Thus, we conclude that two closely related categories are
also the easiest to confuse with each other.

We plot the ROC curves of all methods as shown in Fig-
ure 6. Our proposed GCNet achieves good ROC perfor-
mance and the best AUC value when compared to the com-
peting methods. These results further suggest the efficiency
of GCNet in ACA evaluation.

4.3.2 Ablation studies

To evaluate the contributions of weakly-supervised met-
ric learning and cross-module communications, we further
compare GCNet with its four types of variants, includ-
ing GCNet-C, GCNet-CE, GCNet-CEP, GCNet-CEPS
on both datasets. Each variant corresponds to the proposed
model removing one or more proposed modules. We re-
move modules one by one from top to bottom in Table 4
based on the dependence between modules. Module “P”
(Pseudo Labeling) would not be possible without “S” (Seg-
mentation). Therefore, we remove more than one element
of our method at once, rather than comparing the effective-
ness of each permutation of element removals. The experi-
mental results are shown in Table 4.

First, we analyze the prediction performance of weakly-
supervised metric learning. From Table 4, GCNet-
C achieves the second-highest ACC/AUC without cross-
module communications in the ACA dataset and the
REFUGE dataset respectively, indicating that weakly-
supervised metric learning has improved on the proposed
network. Note that we used ACC as the main evaluation
criteria for ACA dataset because of the relatively balanced
samples across 5 levels and AUC for the REFUGE dataset
because of the imbalance of positive and negative cases.
Then, compared to GCNet-CEPS, the ACC of GCNet-CE
increases from 74.82% to 76.39%. Besides, the ACC of
GCNet-C increases from 76.39% to 76.95% due to met-
ric learning. The performance of the proposed model on
the REFUGE dataset has similar improvements on AUC.
The results show that GCNet finds useful information based
on domain knowledge utilizing weakly-supervised metric
learning in ACA images, e.g., structural details and discrim-
inative information.

Next, GCNet achieves better prediction scores compared
with GCNet-C which uses weakly-supervised metric learn-
ing only. It suggests that CMANet with information com-
munication in picture levels as well as pixel levels improves
classification results. This confirms that spatial details of
structures in dense predictions contribute to image-level
classifications.
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Figure 5. Confusion matrices of all methods on five classes. Abscissa is ground-truth and ordinate is prediction.
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Figure 6. The ROC curves with AUC scores of multiple baselines
from the classification results

5. Societal Impact and Limitations

Glaucoma is an irreversible blindness disease and ACA
evaluation is an important basis to judge the severity of
glaucoma. The proposed GCNet is, to our best knowledge,
the first to use deep learning for ACA evaluations. Our re-
search can be used as auxiliary means to help the prognosis
and treatment of glaucoma. In addition, the proposed re-
search can also improve the efficiency of ophthalmologists.

This study has some potential limitations. For instance,
all of our ACA images are collected from one race. The four
structures will be different due to individual differences, af-
fecting the evaluation of the ACA levels.

6. Conclusion

In this paper, we propose GCNet, an end-to-end DNN
framework to overcome the challenges in computer-aided
ACA classification. We introduce a weakly-supervised met-
ric learning convolution network to mine spatial and struc-

Table 4. Ablation study on the ACA and REFUGE datasets. List
of abbreviations: S, Segmentation module; P, Pseudo label; E,
Embedding module; C, Cross-module communication strategy.

Methods ACC(%)  AUC(%) F1(%)
ACA
GCNet  79.19+0.72 94.32+0.42 78.53+0.29
-C 76.95£0.76  93.52+0.72  76.430.77
CE  76.39+0.26 93.10£0.63 75.70+0.04
CEP 75974024 93274070 74.611.10
.CEPS  74.82+0.52 91.64+0.41 73.03£1.07
REFUGE

GCNet  96.30+0.43 97.20£0.33  97.97+0.23
C 95.58+0.24 96.70£0.53 97.58+0.14
CE  95.83+031 95.60+0.42 97.71+0.19
.CEP  95.33#0.12 94.78+0.22 97.44%0.08
-CEPS  95.25+0.57 94.00£1.92 97.37+0.32

tural details and fuse them into image-level classifications
using a cross-module communication strategy. Experiments
on the ACA and REFUGE datasets show that GCNet out-
performs other state-of-the-art DNN baseline models. In the
current work, we only focus on using image data to capture
the entire context and spatial information of structures. In
the future, we plan to investigate communication strategies
such as self-supervised frameworks to find complementary
information including other modalities (e.g., domain knowl-
edge). We plan to examine structure correlations to learn
effective semantic information for the critical structures.
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