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Abstract

This paper introduces a novel framework called DT-
Net for 3D mesh reconstruction and generation via Dis-
entangled Topology. Beyond previous works, we learn a
topology-aware neural template specific to each input then
deform the template to reconstruct a detailed mesh while
preserving the learned topology. One key insight is to de-
couple the complex mesh reconstruction into two sub-tasks:
topology formulation and shape deformation. Thanks to the
decoupling, DT-Net implicitly learns a disentangled repre-
sentation for the topology and shape in the latent space.
Hence, it can enable novel disentangled controls for sup-
porting various shape generation applications, e.g., remix
the topologies of 3D objects, that are not achievable by
previous reconstruction works. Extensive experimental re-
sults demonstrate that our method1 is able to produce high-
quality meshes, particularly with diverse topologies, as
compared with the state-of-the-art methods.

1. Introduction
Polygonal meshes, as a compact 3D shape representa-

tion, are widely used in many applications, such as model-
ing, rendering, and animation. In recent years, generative
modeling and reconstruction of 3D meshes has received in-
creasing interest and we may also guide the generative pro-
cess by using various forms of input, e.g., images [22,43,63]
and point sets [10,14,25]. Yet, typical challenges remain—
how to deal with the diverse topologies of 3D meshes, and
also how to effectively provide high-level controls for new
shape generation, e.g., in a topology-aware manner.

To directly reconstruct a 3D mesh, one popular scheme
is to learn to deform the vertices of an initial template [5,
37, 43, 52, 56, 62, 63], e.g., a manually-defined skeleton or a
universal sphere, into the target mesh. However, the topolo-
gies of the final reconstructed meshes are typically limited
by the template model. To address this, other works learn to
cover a 3D mesh with planar or curved patches [22,64]; yet,
the visual quality is often tampered due to the patch mis-
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1Code available at https://github.com/edward1997104/

Neural-Template.

Figure 1. Our DT-Net learns to construct a topology-aware neural
template (b) adapted to the input (a) and then deform it towards an
accurate 3D mesh while preserving the initial (learned) topology.
This decoupled design enables a disentangled latent representa-
tion of topology (ZT ) and shape (ZS), promoting controllable 3D
mesh generation, e.g., remixing codes for object re-synthesis.

alignment, so the resulting meshes often have rough surface
appearance. While other 3D representations such as vox-
els [20, 61, 65, 66, 71, 72], point clouds [2, 16, 28], and im-
plicit functions [3, 21, 39, 44, 55] have been explored, these
representations typically require conversions to meshes via
a post-processing step for supporting visual applications.

Another drawback is that most works focus on capturing
the mesh geometry directly in a single step, without pro-
viding high-level interpretability, e.g., structure or topology.
So, it is particularly hard to control the mesh generation
process. Some recent works tried to address this shortcom-
ing by generating objects using parts and parts composi-
tion, e.g., in terms of voxels [68], point clouds [40, 67], and
meshes [17]. While the approach allows certain part-aware
generation, these works highly rely on the availability and
the quality of the extra parts annotations.

In this paper, we present a novel framework, namely
DT-Net, for 3D mesh reconstruction and generation via
disentangled topology (DT). Distinctively, DT-Net enables
the reconstruction of high-quality 3D meshes with diverse
topologies, well-adapting to the input, e.g., images or vox-
els. Also, our novel design facilitates controllability in the
generative process, since DT-Net implicitly learns a disen-
tangled latent representation for the topology and shape.
Therefore, we can achieve disentangled mesh generations
with separate topology and shape manipulations.
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Figure 1 illustrates the pipeline of DT-Net. Beyond pre-
vious works, we learn a topology-aware neural template
(e.g., genus of chairs) that fits each input then deform the
template to reconstruct a detailed mesh. A key insight be-
hind our design is that we decouple the mesh reconstruction
into two sub-tasks: (i) topology formation for adapting var-
ious topologies; and (ii) shape deformation for reconstruct-
ing accurate objects while respecting their initial topologies.
Our decoupling scheme eases the learning process and ac-
counts for the topology, while enhancing the reconstruction
quality and enriching mesh generation with diverse topolo-
gies. Another important design is that we extract a topology
code (blue) and a shape code (red) from the input, to guide
the learning of the two decoupled sub-tasks, respectively.
By doing so, two key aspects of 3D objects, topology and
shape, can be jointly learned to ensure the reconstruction
plausibility, while being disentangled in the latent space, for
enabling novel disentangled controls in the mesh generation
process; see Figure 1 (right). Please refer to Section 3.2 for
further elaborations on our framework.

Method-wise, we design an end-to-end framework with
the topology-learning module to first learn to produce a
topology-aware neural template composed of convexes. To
decouple topology learning and shape learning, we learn a
family of invertible maps [23, 73] to maintain the topology
between the neural template and the final reconstructed ob-
ject. Also, we propose to use a dual (implicit and explicit)
representation for the neural template, so it can be train-
able via the implicit functions and extractable as polygonal
meshes at the inference. Importantly, our approach can di-
rectly learn the topology-aware neural template without in-
termediate topology annotations, while well-aligning it with
an inversely-deformed version of the ground-truth mesh.

Both quantitative and qualitative results show that DT-
Net enables the reconstruction of high-quality meshes with
diverse topologies, performing favorably over the state of
the arts. Further, our method supports various genera-
tive applications via disentangled controls, which cannot be
achieved by existing reconstruction-based methods.

2. Related Work

Learning-based shape synthesis and analysis have at-
tracted increasing research interest recently, benefiting from
the availability of large shape collections [6, 41] and ad-
vances in the design of generative neural networks. In this
section, we briefly review the recent advances in 3D recon-
struction and generative modeling. We first focus on the
mesh representation of object surfaces, learned explicitly or
implicitly, and then discuss related works on shape abstrac-
tion and disentangled representation learning.

Explicit surface representation has been extensively stud-
ied for 3D voxels [20, 61, 65, 66, 71, 72, 78], octrees [24,

49, 58, 64], and point clouds [2, 16, 28, 35]. However, these
representations are usually restricted to low resolutions and
lack an explicit topology for detailed shape reconstruction.

In contrast, polygonal mesh is an efficient and contin-
uous surface representation with local topological infor-
mation explicitly defined by the connections between ver-
tices. Since the learning of connection relations is challeng-
ing, most mesh-based approaches strive to learn a vertex-
based deformation of an initial mesh template with graph
convolutions [63], MLPs [22, 59], or neural ODEs [23].
These initial meshes are either searched from a set of CAD
models [26, 32, 47, 53], customized category-based tem-
plates [31, 80], or category-agnostic meshes [22, 43, 51, 52,
56,63], such as a genus-zero ellipsoid or 2D planer patches.

While these mesh-based methods achieve finer recon-
structions, the topologies of the generated objects are con-
strained by the template models that they deform from. In-
stead of manually or explicitly defining a template, we learn
to produce a topology-aware neural template adapted to the
input, promoting a high-quality reconstruction with varying
topologies. Particularly, the disentangled topology also en-
ables our method to support controllable shape generation,
which is not achievable by the existing methods.

Implicit surface representation models a 3D shape as a
level set of discrete volume or continuous field, from which
we can extract a surface mesh, e.g., via iso-surfacing [36].
From an input image, these methods extract a context vec-
tor then train a neural network to predict a signed distance
field [3,21,39,44,55] or occupancy probabilities [12,38] for
3D reconstruction. Some recent works attempted to adopt
extra information, e.g., camera pose [34, 69, 70] and shape
skeletons [56, 57], to enhance the 3D reconstructions.

While these methods improve the reconstruction quality,
they lack interpretability on the 3D structure or topology.
In this work, we propose to implicitly learn a disentangled
representation for the topology and shape, facilitating novel
controls on the 3D mesh generation process.

Shape abstraction aims to coarsely approximate shapes
with few primitives like cuboids [42, 54, 60, 79], super-
quadrics [46, 48, 50], and spheres [25]. Recent works [10,
14,18,19,45] also leverage a structured set of implicit prim-
itives to compose shapes. With primitives defined explicitly,
these methods enable a direct extraction of 3D meshes. We
draw inspiration from them to design our framework.

Disentangled representations have been widely studied in
image generation, allowing manipulations separately in dif-
ferent aspects, e.g., texture style [27, 33], facial attribute [9,
30], etc. For disentanglement in 3D shapes [1, 4, 77], some
existing works focus on specific categories such as human
faces and animal bodies. Alternatively, with additional part
annotations [41], some recent works [17,40,67,68,74] tried
to achieve certain part-based disentanglement by encoding
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Figure 2. Overview of our DT-Net framework. Given an input, either a single-view image or 3D voxels, the encoder predicts two separate
feature vectors: topology code ZT and shape code ZS . Then, from ZT , we produce neural template T with an implicit representation
TI and an explicit representation TE through f in the topology formation module. During the inference, we progressively deform TE by
function g in the shape deformation module conditioned on ZS to obtain the final reconstructed shape M. We supervise the training by
using the occupancy pairs M̂I sampled in the shape space from the ground-truth mesh M̂. Also, we inversely map M̂I to the topology
space by inverse function g−1 to produce T̂I for evaluating the corresponding occupancy on the implicit template representation TI ,
promoting a correct alignment between the learned topology TI and the inversely-deformed shape T̂I by the loss L.

parts separately and composing parts into objects via decod-
ing. Yet, the above works depend greatly on the availability
and quality of the parts or structures annotations. In con-
trast, our new approach decouples the reconstruction pro-
cess into topology formation and shape deformation, pro-
moting topology and shape disentanglement automatically,
without requiring these annotations as supervision.

Other related works. Our work shares some conceptual
similarities with neural cages [75], as both predict an input-
adaptive mesh (template (our) or cage [75]) for further de-
formation. Yet, our objectives and applications are very dif-
ferent. Also, we noticed few recent works [15, 76] learn a
shared implicit-field-based template per category for mod-
eling dense correspondence among shapes. Different from
them, we learn a topology template adapted to each input
for enhancing 3D reconstructions with diverse topologies.

3. Method

3.1. The DT-Net Framework

Figure 2 shows an overview of our DT-Net framework,
which consists of two modules, the topology formulation
module and shape deformation module. Given input I,
which can be a 2D image or a 3D voxelized data, DT-Net
first encodes it to produce two separate feature vectors, the
topology code ZT and shape code ZS . To match the given
input, the topology formulation module takes ZT to gener-
ate topology-aware neural template T , whereas the shape
deformation module takes ZS as a guidance to refine T to
produce the final output M with geometric details. In the
topology formation module, we learn function f to compose
T = f(ZT ) using a set of learned convexes. Then in the
shape deformation module, we learn an invertible homeo-
morphic flow function g to progressively deform T towards

M = g(ZS , T ). Note that both f and g are implemented
as neural networks; see the details in Section 3.3.

Very importantly, we design T to have a dual represen-
tation; see again Figure 2. The explicit representation TE
is in the form of 3D meshes (i.e., vertices and faces on ob-
ject surface), while the implicit representation TI is in the
form of an implicit field (i.e., an occupancy function that in-
dicates whether any given query point is inside/outside the
object). By this design, the training of DT-Net (essentially
f and g) can be differentiable via the implicit representa-
tions (see the top branch in Figure 2); see more details later
in this section. On the other hand, during the inference (see
the bottom branch), TE and M can be directly extracted as
explicit meshes using the trained f and g.

Further, we refer to the 3D space of T as the topology
space and the 3D space of M as the shape space. To
obtain a continuous gradient between the two spaces, we
learn inverse function g−1 from the shape space to topol-
ogy space, i.e., T̂I = g−1(ZS ,M̂I). As shown in Figure 2
(top right), during the training, we sample occupancy field
M̂I (i.e., point coordinates and occupancy values) from the
ground-truth mesh M̂ in the shape space. Using M̂I , we
can then construct T̂I using g−1 and formulate a regulariza-
tion in the topology space as L(T̂I , TI):

  \label {eq:topology} \min _{f,g}~\mathcal {L}(g^{-1}(\mathbf {Z}_{S},\hat {\mathcal {M}_{I}}),f(\mathbf {Z}_{T})) . 


     (1)

This optimization function defines how well the inversely-
transformed implicit shape T̂I (from g−1) aligns with the
composed implicit neural template TI (from f ).

Implicit representation TI can be derived by the bijective
mapping g between the topology and shape spaces. Since
g : R3 ↔ R3 is a point-wise continuous function, T , or
more specifically TI , can be derived by using

  \label {eq:implicit} O(\mathcal {T}_{I}, \hat {\mathcal {T}_{I}}) = O(\mathcal {T}_{I}, g^{-1}(\mathbf {Z}_{S}, p))          (2)
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where {p} are sample points in M̂I . To evaluate point p rel-
ative to M̂, it suffices to find whether the transformed point
g−1(ZS , p) is inside or outside the surface of T , calculated
via an occupancy function O(·). In other words, points that
are originally inside (outside) M̂, after an inverse transfor-
mation, should also be inside (outside) the T as well.

Explicit representations TE and M are 3D meshes that
have the same face set F but different vertex sets VT and
VM = g(ZS , VT ), respectively. Here, functions g and g−1

map between corresponding vertices in VT and VM. So, the
final reconstructed object M can be obtained through a de-
formation (function g) from the template mesh TE . We can
extract TE by grouping a set of learned primitives, such that
we can flexibly represent 3D objects of various topologies.
More details will be given in Section 3.3.

3.2. Framework Design

Before elaborating on the details of the DT-Net frame-
work, we first discuss the key ideas in framework design.

(i) Topology-aware learning. We learn to produce neural
template T whose topology specifically follows the in-
put I, instead of manually defining a template as pre-
vious works. To adapt T for varying topologies, we
produce it by composing geometric primitives, which
are based on well-defined implicit and explicit repre-
sentations [10, 14]. Thus, T is trainable via implicit
functions and extractable directly as explicit meshes.

(ii) Topology-preserved deformation. To decouple topol-
ogy learning and shape learning, we preserve the topol-
ogy of the neural template T while deforming it to
form the output mesh. Particularly, we learn a fam-
ily of invertible maps [23, 73] between the topology
space and shape space, such that we can impose vari-
ous constraints on T from M̂ for efficiently computing
its implicit and explicit representations.

(iii) Without topology annotations. DT-Net learns to pro-
duce the topology-aware neural template T directly
from input I and ground-truth mesh M̂ without requir-
ing topology annotations as the intermediate supervi-
sion. We achieve so by inversely mapping M̂ from the
shape space into the topology space, i.e., by inversely
deforming sample points M̂I into T̂I . So, DT-Net can
learn to produce TI in an unsupervised manner by pre-
cisely aligning T̂I with the learned T , as Eq. (1).

(iv) Topology & shape disentanglement. Also, we provide
controllability in the generation by injecting the topol-
ogy code ZT and shape code ZS into the training of f
and g, respectively. By this means, topology and shape
are jointly learned to ensure plausible reconstructions,
while being as disentangled as possible in the latent
space. This design provides a family of novel high-
level controls, such as manipulating a mesh by modify-

ing its shape code while preserving its topology code;
examples will be presented in Section 3.5.

3.3. Network Architecture

Topology formation module. We learn function f to map
topology code ZT to neural template T = f(ZT ). Inspired
by [10,14,45,46,60], we propose to compose the topology-
aware neural template via a union of geometric primitives.
As referred to the key idea (i) in Section 3.2, we adopt the
formulation in [10] to group a collection of convex polyhe-
dra to assemble the implicit field of the neural template.

Specifically, given ZT , we implement f using multi-
layer perceptrons that first predict the parameters to define
the various hyperplanes H ∈ RNh∗4 (i.e., ax+by+cz+d =
0) then group these planes to form a set of convexes C via
a learnable binary matrix B ∈ RNh∗Nc (a selective mask),
where Nh and Nc denote the number of hyperplanes and
convexes, respectively. Lastly, these convexes are assem-
bled to form the neural template T . This formulation en-
ables an explicit representation TE (i.e., a union of the con-
vexes) and also an implicit representation TI (i.e., a scalar
function O(·) in Eq. (2) for indicating the occupancy: a
given point is inside/outside these convexes).

Shape deformation module. We learn invertible deforma-
tion function g that preserves the topology between output
object and learned neural template; see key idea (ii) above.
Given ZS , it learns to progressively deform the neural tem-
plate T towards the detailed surface M = g(ZS , T ).

Specifically, we adopt the neural ordinary differential
equation module (NODE) in [23, 73] to achieve a contin-
uous deformation on the topologies. It defines an invertible
transformation g : R3 ↔ R3 via a parameterized ODE
pT = g(ZS , p0) = p0 +

∫ T

0
ĝ(ZS , pt) dt, where p0 and pT

are input to and output from neural network ĝ (i.e., [x, y, z]),
and T is a hyperparameter that denotes the number of de-
formation steps from p0 to pT . This integration is approx-
imated using numerical solvers, while its gradient can be
computed by using the adjoint method proposed in [8]. Due
to the diffeomorphic nature of g, we can then preserve the
general topology of T in the deformation process.

3.4. Network Training

Without topology annotations, as mentioned in Sec-
tion 3.1, we propose to train DT-Net via L(T̂I , TI). The
joint-optimization function is composed of two terms:

  \label {eq:loss} \mathcal {L}(\hat {\mathcal {T}_{I}},\mathcal {T}_{I}) = \mathcal {L}_{\text {align}} + \mathcal {L}_{\mathbf {B}},         (3)

where Lalign encourages a correct alignment between the
learned topology TI = f(ZT ) and the inversely-deformed
shape T̂I = g−1(ZS ,M̂I). Also, we adopt the sparsity
term LB in [10] to encourage the learned topology to be
composed by a sparse set of convexes.
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Figure 3. Our DT-Net framework learns a disentangled representation for the topology and shape, thus facilitating novel generation
applications via disentangled manipulation on the topology code ZT and/or the shape code ZS , e.g., (a) remix the shape and topology of
two different objects; (b) object interpolation by manipulating the topology/shape code; and (c) arithmetic operations in the latent space.

Specifically, M̂I = {p′i, oi}
Np

i=1 denotes Np occupancy
pairs sampled from the shape space of ground-truth mesh
M̂; p′i is the i-th sample point coordinates, and oi=1 (oi=0)
indicates that p′i is inside (outside) the object. By inversely
mapping p′i into the topology space as pi = g−1(ZS , p

′
i),

we then obtain T̂I = {pi, oi}
Np

i=1 as the intermediate signal
to optimize topology learning function f . For each query
point pi ∈ T̂I and associated ground-truth occupancy value
oi, Lalign measures the difference between O(T , pi) and oi,
promoting the network to predict the right occupancy value.

To ease the gradient flow, we adopt the two-stage train-
ing strategy in [10]: stage 1 (continuous) computes a re-
lax approximation Lcon(T̂I , TI) from TI to T̂I , then stage 2
(discrete) promotes an accurate alignment Ldis(T̂I , TI) be-
tween TI and T̂I . Specifically, Lcon

align adopts a least-squares
model to approximate the ground-truth occupancy value oi,
whereas Ldis

align adopts binary cross entropy to encourage the
output occupancy value to be discrete as oi:

Lcon
align =

1

Np

Np∑
i=1

(O(TI , pi)− oi)
2

and Ldis
align =

1

Np

Np∑
i=1

[
oi ∗max(O(TI , pi), 0)

+(1− oi) ∗ (1−min(O(TI , pi), 1))
]
.

3.5. Shape Generation with Controllability

With the disentangled representation, i.e., the topology
code ZT and shape code ZS , DT-Net enables novel forms
of 3D object manipulations, opening up new possibilities
for high-level object generation and re-synthesis:

• Object Remix. ZT and ZS jointly contribute to recon-
structing a 3D object, so we can remix them between
objects to manipulate the shape (topology) while pre-
serving its original topology (shape); see Figure 3(a)
for two re-synthesized coffee tables. Figure 4 shows
more results produced by remixing different tables as
sources of ZT (leftmost column) and ZS (top row).

• Object Interpolation. Also, we can produce a dis-
entangled interpolation between objects, either on ZT

Figure 4. Remixing shape and topology. Objects on top provide
the shape codes and objects on the left provide the topology codes.

Figure 5. Object interpolation separately on topology (top) and
shape (bottom). Note the smooth transitions achieved by DT-Net.

or ZS , as shown in Figure 3(b). From left to right,
the chair (top) morphs towards the target, yet preserv-
ing its rectangular-like shape, whereas the car (bottom)
becomes taller towards a truck with the same topology.
Figure 5 shows more results of our disentangled inter-
polation on topology (top) and shape (bottom).

• Latent Code Arithmetic. With the learned smooth la-
tent space, we can exploit arithmetic operations in the
latent space. Figure 3(c) shows that we can subtract
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Figure 6. Galleries showcasing the results produced by our DT-Net. Each pair shows the learned topology-aware neural template (left)
and the associated reconstructed object (right). The produced objects cover various shapes and diverse topologies, ranging from smooth
surface (e.g., car and lamp), to complex geometry (e.g., chair and airplane). It is observed that the neural template visually appears like a
coarse version of the final shape, even without regularizing the amplitude of the deformation module.

the topology codes of two tables, i.e., with and without
a storage plate, and add the difference to the topology
code of another table to augment it with a plate. Fig-
ure 7 shows more results on latent code arithmetics.

Please refer to the supplement for more results.

4. Result and Evaluation
4.1. Dataset and Metric
Dataset. We employ 13 classes in ShapeNet [6] for mesh
reconstruction as [10–12] and adopt input voxels directly
from [24] and input images from [13]. For each reconstruc-
tion task (voxels/images), we train one model on all cate-
gories and use the same train-test split as previous works.
At inference, we directly obtain the mesh of the topology-
aware neural template as a union of convexes and deform
it to obtain the final mesh. Please find details on training,
testing, network architecture, etc., in the supplement.

Evaluation metric. To quantitatively evaluate the predicted
mesh M relative to ground-truth mesh M̂, we employ (i)
Light field distance (LFD); inspired by human vision sys-
tem [7, 10], LFD measures the visual similarity in rendered
images of M and M̂ at different views; (ii) Point-to-surface
distance (P2F) measures the minimum distance from the
sampled points of M to the surface of M̂; and (iii) Chamfer
distance (CD) measures the bidirectional shortest distance
between the point samples of M and M̂. Importantly, LFD
measures the visual quality of object surfaces, whereas P2F
and CD merely account for point-wise distances. For all
metrics, a lower value indicates a better performance.

4.2. Mesh Reconstruction from 3D Voxels
Gallery. Figure 6 showcases our learned neural templates
(odd columns) paired with the reconstructed objects (even
columns). These results manifest that our DT-Net is able to
produce topology-aware templates of various connectivity

Figure 7. Arithmetic operations between different objects.

and genus specific to the target objects, and the final meshes
cover a wide variety of global shapes and local structures.

Quantitative evaluation. Beyond achieving a controllable
topology-aware generation of 3D meshes, we further eval-
uate the quality of our generated meshes against those pro-
duced by the state-of-the-art models, IM-Net [12] and BSP-
Net [10]. Using the same train-test split as [22], we directly
leverage their pre-trained models provided in the original
implementations. BSP-Net and our DT-Net can directly ex-
tract meshes via a union operation of primitives from in-
put voxels of resolution 643. For IM-Net, we extract the
final meshes via [36] from a higher resolution input (2563).
Table 1 reports the quantitative evaluation results, showing
that DT-Net has good performance on most categories and
its overall performance also outperforms others for all met-
rics. Particularly, benefited from our topology-aware neural
template, DT-Net has a large improvement on object cate-
gories with high diversity in topology, e.g., chair.

Qualitative evaluation. Figure 8 shows visual comparison
results, revealing that other methods tend to produce miss-
ing parts (e.g., table’s beam) and less details (e.g., chair’s
pulley). In contrast, our method can produce more com-
plete objects that are visually the closest to the targets, and
our reconstructed objects exhibit more tiny local structures
(e.g., airplane and gun) and manifest various object topolo-
gies. More results are shown in the supplement.
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Table 1. Quantitative evaluations on mesh reconstruction from 3D voxels. The units of LFD, P2F, and CD are 1.0, 10−2, and 10−3, resp.

Metric Method Category
Mean Plane Bench Cabinet Car Chair Display Lamp Speaker Riffle Couch Table Phone Vessel

LFD(↓)
IM-NET(2563) 2918.9 4065.3 3452.7 1542.6 2069.7 2479.1 2606.2 6073.9 1763.0 5466.9 2110.7 2374.4 2109.1 4366.5

BSP-NET 3026.0 4287.0 3599. 1489.7 2101.1 2643.1 2602.8 6384.3 1769.8 5545.1 2170.1 2471.9 2187.7 4495.2
Ours 2835.0 3955.1 3329.9 1509.1 2070.4 2368.7 2460.2 5899.3 1707.1 5333.1 2043.5 2257.6 2078.6 4366.9

P2F(↓)
IM-NET(2563) 0.820 0.597 0.739 0.749 0.584 0.876 0.821 1.543 1.045 0.794 0.768 0.930 0.564 0.864

BSP-NET 0.899 0.677 0.826 0.755 0.654 1.016 0.889 1.859 0.985 0.830 0.793 0.946 0.632 1.062
Ours 0.796 0.542 0.677 0.751 0.674 0.847 0.769 1.422 0.978 0.651 0.854 0.851 0.567 0.843

CD(↓)
IM-NET(2563) 0.648 0.322 0.499 0.727 0.526 0.663 0.641 1.351 1.012 0.374 0.611 0.781 0.384 0.628

BSP-NET 0.750 0.377 0.595 0.764 0.583 0.807 0.741 1.727 1.099 0.414 0.672 0.874 0.524 0.770
Ours 0.573 0.259 0.434 0.651 0.460 0.581 0.479 1.442 0.849 0.268 0.576 0.674 0.313 0.550

Figure 8. Visual comparison on mesh reconstruction from voxels.

4.3. Mesh Reconstruction from Single-View Images

For the single-view reconstruction task, we compare
our method with two lines of works: (i) explicit methods:
Pixel2Mesh [63], AtlasNet [22], and TMNet [43] that di-
rectly deform a template towards the final mesh; and (ii)
implicit methods: IM-Net [12], BSP-Net [10], and DI2M-
Net [34] that produce implicit surfaces. For DI2M-Net,
their authors kindly help us generate the visual results. For
other methods, we use their released implementations with
the same train-test split (i.e., 80%-20%) and the inputs are
gray-scale images. We also noticed a very recent work [51],
improved from TMNet [43] and we will make a proper com-
parison when the source code is available in the future.

Quantitative evaluation. Table 2 lists the overall results,
showing that our method consistently outperforms the other
implicit methods in terms of LFD, P2F, and CD. Note that
we did not include DI2M-Net, since it requires an additional

Table 2. Quantitative results on reconstruction from 2D images.
Overall, our method is better on LFD and comparable with others
on distance metrics P2F and CD. Details are shown below.

Method Metric
LFD(↓) P2F(↓) CD (↓)

Explicit
Pixel2Mesh 4056.2 1.903 1.855

AtlasNet 3880.9 1.289 1.041
TMNet 3765.5 1.285 1.149

Implicit
IM-NET(2563) 3559.2 1.422 1.497

BSP-NET 3426.5 1.354 1.478
Ours 3388.3 1.294 1.396

camera pose as input for the training. On the other hand,
comparing with the explicit methods, our method is better
on LFD and comparable on the distance-based metrics CD
and P2F; this might be attributed to their CD-wise regular-
ization in the training. Also, distance-based metrics may
not be ideal for measuring the quality of the reconstructed
meshes (see [10, 29]), as evidenced by the visual compari-
son results in Figure 9. We also show the detailed results on
individual categories in the supplement.

Qualitative evaluation. Figure 9 shows the visual com-
parison results. Referring to the ground-truth meshes (a),
explicit methods (b-d) are typically hard to adapt objects
of various genus, therefore further confirming our motiva-
tion for topology-aware template formulation. On the other
hand, implicit methods (e-g) can describe the topology flex-
ibly, yet tend to produce over-smooth or noisy surfaces with
less details, e.g., chair’s armrest and boat’s hull. In contrast,
our method (h) can produce high-quality meshes, in which
the surfaces exhibit smooth and sharp features simultane-
ously. More visual results are in the supplement.

4.4. Model Analysis and Discussion
Framework analysis. We first verify the framework de-
sign of DT-Net. In Figure 10, we compare the usage of other
primitives [46, 60] such as superquadrics (b) and cuboids
(c), vs. our convexes (e) for composing the topology-aware
neural templates. Figure 10 (d) shows results when using
another invertible neural network (INN) [45] to implement

18578



Figure 9. Visual comparison on 3D mesh reconstruction from 2D images.

Figure 10. Given the reference mesh (a), we may use alternative
representations (b-c) to compose the neural template or use INN
(d) for shape deformation. Our method (e) shows better results.

the shape deformation module; see details and evaluation
results in supplement. Generally, we take a generic design
for the topology formation and shape deformation modules
(see Section 3.2), meaning that we may use alternative im-
plementations, yet our current choices provide better topo-
logical approximations and lead to better reconstructions.
Visualization of the topology space. To show the smooth-
ness and meaningfulness of the learned topology space, we
produce a visualization of the TSNE embedding for ZT on
chairs. From the visualization shown in Figure 8 of the sup-
plement, we can see that DT-Net can learn a smooth embed-
ding space for objects of varying topological structures and
objects of similar topologies are closely clustered.
Cross-category manipulation. Since our model is trained
on multiple object categories, we may conduct object
remixing across different categories; see the results in Fig-
ure 11. Interestingly, we can obtain a chair-like car, which
follows the car’s topology and the chair’s shape. We show
more cross-category results in the supplement.
Limitation and Discussion. First, like most of the previ-
ous methods on 3D mesh generation, it is still very chal-
lenging to produce objects of extremely complex and fine
structures; see the supplement. In the future, we aim to
further formulate the topology-aware neural template in a

Figure 11. Cross-category object remix between different classes.

hierarchical manner and deform it in a part-wise manner for
more fine-grained reconstructions and controls. Also, since
DT-Net is built on a reconstruction task, the generated new
objects are still limited to the diversity of the given objects.
We would like to extend it into an unsupervised generation
framework and take into account voice, text, or other input
modality for more intuitive object manipulations.

5. Conclusion

We presented a novel framework called DT-Net that en-
ables a topology-aware mesh reconstruction and promotes
mesh generation with disentangled controls. A key design
is to learn to form a topology-aware neural template specific
to each input then deform it to reconstruct a detailed 3D ob-
ject. This scheme decouples the 3D reconstruction process
into two sub-tasks, effectively accommodating for the vari-
ations in topology. Importantly, our new design provides a
disentangled representation of topology and shape in the la-
tent space, enabling controllable object generations by ma-
nipulating the learned topology code and shape code, which
are not achievable by the existing reconstruction methods.
Extensive experiments also manifest that our method pro-
duces high-quality meshes with diverse topologies and fine
details, performing favorably over the state of the arts.
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