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Abstract

Unsupervised methods have showed promising results on
monocular depth estimation. However, the training data
must be captured in scenes without moving objects. To push
the envelope of accuracy, recent methods tend to increase
their model parameters. In this paper, an unsupervised
learning framework is proposed to jointly predict monocu-
lar depth and complete 3D motion including the motions of
moving objects and camera. (1) Recurrent modulation units
are used to adaptively and iteratively fuse encoder and de-
coder features. This improves the single-image depth infer-
ence without overspending model parameters. (2) Instead
of using a single set of filters for upsampling, multiple sets
of filters are devised for the residual upsampling. This fa-
cilitates the learning of edge-preserving filters and leads to
the improved performance. (3) A warping-based network
is used to estimate a motion field of moving objects without
using semantic priors. This breaks down the requirement
of scene rigidity and allows to use general videos for the
unsupervised learning. The motion field is further regular-
ized by an outlier-aware training loss. Despite the depth
model just uses a single image in test time and 2.97M pa-
rameters, it achieves state-of-the-art results on the KITTI
and Cityscapes benchmarks.

1. Introduction
Visual perception is an important ability for human to

understand and perceive the world. As a consequence, re-
search work on scene geometry has attracted a lot of atten-
tion over several decades. This promotes the deployment of
technology to numerous applications such as autonomous
vehicle, interactive robot, virtual and augmented reality, and
more. The problem of scene geometry generally involves
estimating depth, camera motion1, and optical flow from an

*This research work is not for commercial use unless a prior arrange-
ment has been made with the author.

1The words, ego-motion, camera motion and pose, are interchangeably
used throughout the paper.

image sequence. The above computer vision tasks are often
recovered together since they are coupled through geomet-
ric constraints [34, 44].

Unlike depth from triangulation, single-image depth es-
timation is inherently ill-posed because there are multiple
possible 3D points along each light ray towards the camera
center. Convolutional neural networks have demonstrated
the ability to exploit the relationship between a captured
image and the corresponding scene depth [9, 25]. Recently,
unsupervised methods [13, 14,34, 44,47] have achieved ap-
pealing performance than the early supervised counterparts.
Their successes primarily rely on the use of structure from
motion. Given at least two images, a novel view gener-
ated from an image will be consistent with another image
in the pair if depth and camera motion are correctly esti-
mated. This strictly requires the training data to be captured
in static scenes without moving objects, i.e. scene rigidity.
To get rid of this requirement, stereo image sequences [13]
and masking out dynamic objects [34, 47] are commonly
adopted. Recent works tend to devise a multi-image ap-
proach [42], a large amount of model parameters [16], and
semantic priors [39] for improving the depth accuracy.

In this paper, an unsupervised learning framework of re-
current monocular depth, dubbed RM-Depth, is proposed
to jointly predict depth, camera motion, and motion field of
moving objects without requiring static scenes. RM-Depth
requires neither a large number of parameters nor semantic
prior. Particularly, image pairs are used in training while
only a single image is used for depth inference at test time.
The contributions of this work are summarized as follows:

1. Recurrent modulation unit – Fusion of feature maps
across encoder and decoder often appears in top-down
approach [14, 35]. I propose to iteratively refine the
fusion by adaptive modulating of the encoder features
using the hidden state of the decoder. This in turn im-
proves the single-image depth inference.

2. Residual upsampling – Conventionally, feature maps
are upsampled using a single set of filters [37, 45]. I
propose to use multiple sets of filters such that each
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set of them is specifically trained for upsampling some
of the spectral components. This effectively improves
upsampling along edges.

3. Motion field of moving objects – Besides camera mo-
tion, I propose to estimate a 3D motion field of moving
objects in a coarse-to-fine framework through a warp-
ing approach. This breaks down the scene rigidity as-
sumption and allows to use general videos for the un-
supervised learning. The unsupervised learning of mo-
tion field is further improved by introducing an outlier-
aware regularization loss.

With the above innovations, RM-Depth achieves state-
of-the-art results on the KITTI and Cityscapes benchmarks.
The depth model only requires 2.97M parameters, while
it achieves 4.8 and 44 times reduction in model size com-
paring to Monodepth2 [14] and PackNet [16], respectively.
Code and trained models are made publicly available at
https://github.com/twhui/RM-Depth.

2. Related Work
2.1. Unsupervised Joint Learning of Depth and Ego-

motion

Depth from a Single Image. A pioneer work from Zhou et
al. [47] proposes an unsupervised learning framework for
estimating depth and ego-motion. Based on [47], Godard et
al. [14] introduce the per-pixel minimum reprojection loss,
auto-masking of stationary pixels, and full-scale estimation
loss for improving the unsupervised training. Mahjourian et
al. [31] and Bian et al. [3] explore the consistencies of 3D
point clouds and depth maps across consecutive frames,
respectively. Wang et al. [40] devise to use direct vi-
sual odometry for pose estimation without requiring addi-
tional pose network. Recently, Guizilini et al. [16] utilize
3D convolutions for packing and unpacking feature maps.
Johnston et al. [22] propose to estimate depth map using
self-attention and disparity volume. Poggi et al. [33] im-
pose depth uncertainty during unsupervised training. Un-
like the prior works, RM-Depth introduces recurrent mod-
ulation units (RMU) and residual upsampling in the depth
model. The proposed components lead to the improved per-
formance while the depth model just requires a very small
number of parameters (2.97M).

The previous works recover rigid flow2 through the pro-
jection of estimated scene depth, but moving objects in the
scene cannot be taken into account. To recover full flow,
Yin et al. [44] propose to use a network cascade to esti-
mate the residual flow accounting for moving objects. Ran-
jan et al. [34] propose a framework that facilitates the co-
ordinated trainings of depth, ego-motion, and optical flow.

2A component of optical flow that is solely due to camera motion with-
out considering moving objects in the scene.

Their method reasons about segmenting a scene into static
and moving regions. Chen et al. [5] recover optical flow us-
ing a separated network and develop an online refinement
scheme. Different from the prior works, RM-Depth recov-
ers both camera and object motions. Full flow, but not rigid
flow, is used for the unsupervised training of depth model.
This eliminates the requirement of scene rigidity.
Depth from Multiple Images. Wang et al. [41] exploit
the temporal correlation across consecutive frames by us-
ing convolutional long short-term memory (LSTM). De-
spite a 10-frame sequence is used, it just performs on par
with Monodepth2 [14]. Li et al. [28] utilize the encoded
feature resulting from a self-contained optical flow network
as the input to each LSTM. However, their model requires
15 LSTM modules for a proper depth inference. Li et
al. [27] propose a self-supervised online meta-learning that
uses LSTM to aggregate spatial-temporal information in
the past. Watson et al. [42] propose a cost volume based
approach to fuse temporal information. Unlike LSTM or
GRU [6], the proposed RMU uses features from a sin-
gle static image as the input but not features from a time-
varying image sequence.

2.2. Unsupervised Joint Learning of Depth, Ego-
motion, and Object Motion

Video data is often captured in scenes involving dynamic
objects. Therefore, the assumption of scene rigidity is vio-
lated. Most of the prior works rely on additional segmen-
tation labels to assist the unsupervised learning of object
motion. With semantic prior, Casser et al. [4] estimate the
3D motion of each dynamic object using a network similar
to the one used for ego-motion. Gordon et al. [15] propose
a network for estimating the motion field of moving objects.
A pre-computed segmentation mask that pinpoints the loca-
tions of moving objects imposes regularization of the mo-
tion field. Li et al. [27] eliminate the use of semantic priors
in [15] by introducing a sparsity loss. Gao et al. propose
attentional CNN blocks to disentangle camera and object
motion without semantic priors [10], but their experimen-
tal results are limited to the KITTI dataset. Lee et al. [26]
propose an instance-aware photometric and geometric con-
sistency loss that imposes self-supervisory signals for static
and moving object regions. RM-Depth estimates the motion
field of moving objects without using semantic priors. A
warping-based network is proposed for the motion field es-
timation. An outlier-aware training loss is further exploited
for regularizing the motion field. RM-Depth outperforms
the prior works because of the proposed innovations.

2.3. Unsupervised Learning of Depth Using Stereo
Training Data

The scene rigidity requirement limits unsupervised
methods to use monocular data without involving dynamic
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Figure 1. An overview of the unsupervised learning framework. For brevity, a 3-level design is shown. Given an image sequence
{I1, I2, I3}, define It=2 as the target image and the rest {Is=1,3} as the source images. Depth map and motion field are estimated in
a coarse-to-fine framework. For the motion network, {Is} are warped towards It in accordance to the image projection computed by
Eq. (2) using motion field Tobj , camera pose (Rcam, tcam), and scene depth Dt. For the depth network, encoder and decoder features are
adaptively and iteratively fused by RMUs. More details of the depth and motion networks are presented in Sects. 3.2 and 3.4, respectively.

objects in scenes. Since the left and right images in a
stereo rig are captured simultaneously, stereo data provides
an alternative option for the unsupervised training. Garg et
al. [11] propose to use the photometric difference between
images in each stereo pair for governing the learning of
monocular depth estimation. Godard et al. [13] explore the
consistency between the disparities produced relative to the
left and right images. Zhan et al. [46] devise the temporal
and spatial clues in stereo image sequences for improving
the unsupervised training. Yang et al. [43] aligns the illu-
mination of the training images and model the photometric
uncertainties of pixels on the input images.

3. Depth from a Single Image
Unsupervised learning of single-image depth estimation

is achieved by training two networks together [14, 47]. The
primary (depth) network takes an image as the input and
gradually predicts scene depth (up to a scale factor) with
increasing spatial resolutions. The secondary (pose) net-
work estimates camera motion for each image pair. Source
frames in a given image sequence are warped towards the
target frame by projecting the computed 3D point cloud to
the target frame. The difference between the target and each
synthesized frame is used as the driving force for the un-
supervised training. In this work, an unsupervised learn-
ing framework RM-Depth is proposed for joint learning of
depth, ego-motion, and object motion in general scenes. An
overview of the learning framework is shown in Fig. 1. In
more details, the depth network utilizes Recurrent Modu-
lation Units (RMU) to adaptively and iteratively combine
encoder and decoder features (Sec. 3.2). Residual upsam-
pling (Sec. 3.3) is used to facilitate the learning of edge-
aware filters. Furthermore, a 3D motion field of moving ob-
jects (Sec. 3.4) is recovered. As it will show in Sec. 4, the
proposed innovations lead to the improved depth accuracy
despite not using any segmentation labels.

3.1. Preliminaries

Perspective Projection. Denote O as the camera coordi-
nate system associated with image I and Ω ⊂ R2 as the
image domain. Suppose D : Ω → R is the depth map. A
point x ∈ Ω on I is the image projection from a 3D point
p ∈ R3. Once D(x) (i.e. z-coordinate of p) is given, p can
be recovered by back-projection as follows:

p = D(x)K−1
(
x 1

)ᵀ
, (1)

where K denotes a 3× 3 camera intrinsic matrix.
Novel View Synthesis. Suppose an image sequence
{I1, I2, ..., IN} is given. In the following, subscripts t and
s will be used to denote variables that are defined in the tar-
get and source views, respectively. Let’s consider one of the
frames It being the target view and the rest being the source
views Is(1 ≤ s ≤ N, s 6= t). The transformation from Ot

to Os is governed by a 3×3 rotation matrix R and a 3D
translation vector t. Using Eq. (1), the image projection of
pt onto Is is given by:(

xs 1
)ᵀ ∼= K

(
RDt(xt)K

−1
(
xt 1

)ᵀ
+ t
)
, (2)

where “∼=” denotes equality up to a positive scale factor and
Dt is the depth map at the target view. Is is warped towards
It to form a novel view Is→t in accordance with the visual
displacement xs − xt.

3.2. Recurrent Depth Network

Top-down approach [14,47] often adopts U-Net architec-
ture [35] for depth inference. Fig. 2a provides an overview
of the network architecture. The upsampled decoder feature
x from the previous level is fused with the corresponding
encoder feature F through a concatenation followed by a
convolution layer. The feature fusion can be represented as
follows:

h = θ(conv([x,F ])), (3)
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Figure 2. The network architectures of different depth models: (a)
Conventional method [14, 47] and (b) RMU-based model. For the
ease of representation, a 3-level design is illustrated.

where “θ” and “conv” represent an activation function and a
convolution layer, respectively. Since the convolution ker-
nels are fixed, the fusion cannot be adapted for different
inputs. This limits the performance of depth inference.

It is desired to make the feature fusion to be adaptive.
Intuitively, the decoder feature can be augmented with a
modulated encoder feature. To this end, the encoder fea-
ture is adaptively transformed according to the current hid-
den state of the decoder. This is equivalent to change the
feed-forward behavior of the encoder despite using the same
input. Besides, recurrent CNN has been shown useful in
improving network performance [23]. Taking these inspi-
rations, Recurrent Modulation Unit (RMU) is devised for
dynamic and iterative feature fusion in the depth network.
Fig. 2b provides an overview of the proposed network. This
design leads to the improved depth accuracy (Sec. 4). In the
following, when the operations are discussed in a pyramid
level, the same operations are applicable to other levels.
Recurrent Modulation Unit (RMU). There are two com-
ponents inside a RMU, namely modulation and update.
Fig. 3 shows the details. At iteration step k, the encoder
feature F is adaptively modulated according to the previous
fused feature hk−1 (i.e. the hidden state at iteration k − 1)
through an affine transformation3 consisting of weight and
bias terms (wk, bk) as follows (modulation phase):

wk, bk = convs([hk−1,F ]), (4a)

F ′k = tanh(conv(wk �F + bk)), (4b)

where “convs” and “�” denote convolutions and the
Hadamard product, respectively. Eq. (4a) can be re-written
to a residual form as conv(conv(hk−1) + conv(F)). Since
F is fixed, the second term can be pre-computed to reduce

3There could be other choices for the modulation function, affine trans-
formation is selected because of its low computational complexity.

Figure 3. The details of a RMU. At iteration k, the encoder feature
F is modulated to F ′k. The new hidden state hk is a weighted
average betweenF ′k and the previous hidden state hk−1 according
to the element-wise adaptive scalar zk.

the computational complexity. The hidden state hk−1 is
combined with the modulated encoder feature F ′k for the
feature fusion according to an element-wise adaptive scalar
zk as follows (update phase):

zk = σ(conv([hk−1,F ′k])), (5a)

hk = (1− zk)� hk−1 + zk �F ′k, (5b)

where “σ” denotes a sigmoid function. Particularly, the con-
ventional feature fusion in Eq. (3) is static while the pro-
posed feature fusion is both dynamic and iterative.

Comparing to GRU [6], RMU uses features from a sin-
gle static image as the input but not features from a time-
varying image sequence. GRU uses an extra memory state
that depends on the input at the current time for the update.
As a whole, GRU uses two sigmoid gates while RMU uses
one sigmoid gate.
Hidden State Initialization. Instead of initializing the first
hidden state h0 with zero, F resulting from the top level of
the encoder is converted to h0 as follows:

h0 = tanh(convs(F)). (6)

Depth Inference. Depth map Dt is inferred from the last
hidden state. To prevent numerical issues during back-
propagation, Dt is bounded by [Dmin, Dmax] as follows:

D̂t = σ
(

convs(hk)
)
, (7a)

Dt = Dmin(1− D̂t) +DmaxD̂t. (7b)

3.3. Residual Upsampling

Upsampling decoder feature is required when passing
from a low-resolution to a high-resolution level in top-down
approach [14, 47]. A feature map x is upsampled to x′ by a
upsampling function f (such as deconvolution [45] or sub-
pixel convolution [37]). The process can be represented by

x′ = θ
(
f(x;W)

)
, (8)
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where “θ” denotes an activation function. Since a feature
map like a colour image consists of different spectral com-
ponents, a single filter W is not universal enough to perform
well on all regions. It is desired to use different upsampling
filters on different regions (flat region: averaging filter, edge
region: high-pass filter). To this end, a generic upsampling
layer that uses multiple filters {Wi} is proposed as follows:

x′ = θ

(∑
i

fi(x;Wi)

)
. (9)

Particularly, each upsampling operator fi is band-limited
to some spectral components. The individual upsampled
feature maps are summed before applying the activation.
To compromise between accuracy and speed, RM-Depth is
limited to use two kinds of upsampling operators, namely
low-frequency fl and high-frequency fh ones, as follows:

x′ = θ
(
fl(conv1×1(x)) + fh(x;Wh)

)
, (10)

where a 1×1 convolution is used to squeeze x for match-
ing the channel dimension of fh(·). A bilinear upsampling
is chosen as fl. Besides the 1×1 convolution, there is no
additional increase in model parameters or computational
overhead in comparison to Eq. (8).

3.4. Object Motion

Unsupervised learning of depth relies on novel view syn-
thesis as presented in Sec. 3.1. Prior works tend to jointly
recover depth and camera motion but leaving out motions of
moving objects [14,16]. As a result, the visual displacement
that is computed by Eq. (2) is just a component of full flow
(so-called rigid flow) inferred by the camera motion. The
novel view is not correctly synthesized and in turn affects
the unsupervised training. Artifacts often exist in moving
objects when the object motion is not taken into consider-
ation (see Fig. 6 in Sec. 4.2). To resolve this issue, both
the camera and object motions are necessarily recovered.
Since it is rare to have objects spinning on their owns with
large magnitudes in street-view scenes, it can be assumed
that the rotational motion of moving objects is nearly zero.
An overview of the proposed motion network is shown in
Fig. 4. More details are presented below.
Warping-Based Motion Field Inference. Motions of
moving objects are estimated in form of a motion field
Tobj : Ω → R3 in a coarse-to-fine framework as shown in
Fig. 4. The motion field Tobj is combined with camera mo-
tion tcam to form a complete motion field. Source images
{Is} are warped towards the target image It in accordance
with the full flow ufull = xs − xt, where xs is computed
by Eq. (2). For the initialization, {Is} are warped towards
It in accordance with the rigid flow by setting Tobj = 0.
The warped source images {Is→t} together with the target
image It are fed into the motion encoder to generate a new

Figure 4. The architecture of the proposed motion network. The
encoder is shared by the pose and object motion decoders. Object
motion field Tobj is refined in a multi-scale framework by feed-
backwarding the previous estimate to the encoder through novel
view synthesis (see Sec. 3.4).

set of multi-scale encoder features {F(It, Is→t)}. The en-
coder features are more aligned to It since {Is} have been
warped towards It. This in turn makes the generation of mo-
tion field easier as inspired by the feature warping proposed
in LiteFlowNet series [19–21]. The object motion decoder
refines the previous estimate Tobj,l+1 by augmenting with
the encoder feature at the same scale as follows:

Tobj,l = convs([T ↑2obj,l+1,Fl(It, Is→t)]) + T ↑2obj,l+1, (11)

where “convs” represents several convolution layers and
(·)↑2 denotes an upsampling operator by a factor of 2. Par-
ticularly, the encoder features are warped for the motion re-
finement. This is different from prior works [15,27] that use
fixed encoder features.
Outlier-Aware Regularization Loss. Motion field is gen-
erally sparse since moving objects do not fully occupy a
scene, i.e. Tobj(x) = 0 when an image position x is not
affected by non-rigid motion. This observation can impose
a constraint on the unsupervised training and in turn im-
proves the depth accuracy. A motion maskM is constructed
by comparing full flow ufull (computed by Eq. (2) using
depth, camera and object motions) against rigid flow urig

(using only depth and camera motion). If there are no mov-
ing objects in the scene other than the moving camera itself,
then ufull = urig . Otherwise, ufull 6= urig . This mo-
tivation allows us to segment image locations affected by
non-rigid motions using the following condition:

M(x) = [‖ufull − urig‖2 < α] , (12)

where [·] is the Iverson bracket. A thresholding approach is
used to suppress outliers by setting α = 0.5. When an im-
age position x is affected by non-rigid motions, M(x) = 0.
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Otherwise, M(x) = 1. With the motion mask, an outlier-
aware regularization loss Lreg on the motion field is pro-
posed as follows:

Lreg(Tobj) =
∑
x∈Ω

g
(
M · Tobj

)
, (13)

where g(·) is chosen to be the sparsity function [27] as it
encourages more sparsity than L1 norm. Lreg helps the
motion network to properly learn Tobj by suppressing the
growth of undesired object motion in rigid regions.

4. Experiments
4.1. Implementation Details

Network Architecture. The overviews of depth and mo-
tion networks can be referred to Figs. 2 and 4, respectively.
A modified 6-level ResNet18 [17] that contains an addi-
tional convolution layer at level 1 and excludes the clas-
sification head is adopted as the encoders. Particularly, the
top two levels are not used in the depth encoder. For ego-
motion network, the decoder is adopted from [14]. Other
unmentioned parts are custom-designed. 9 and 2 RMUs are
assigned to level 4 and the remained levels, respectively.
RMUs are not shared across different levels in order to max-
imize filter diversity for different scales.
Training Details. The system is implemented in Ten-
sorFlow [1]. Same augmentations are performed on the
training data as [14], namely 50% horizontal flips, ran-
dom brightness, contrast, saturation, and hue jitter. Fol-
lowing [47], the length of each image sequence is fixed
to 3 frames. The central frame is treated as the target
view. The depth and motion networks are jointly trained
using Adam [24] with a batch size of 16 to 24. To address
the stationary pixels and the occlusion problem, the auto-
masking and the per-pixel minimum reprojection loss [14]
are adopted. Depth map and motion field are regular-
ized by an edge-aware smoothness loss [14] while the pro-
posed outlier-aware regularization loss is further imposed
on the object motion field. The self-supervision [38] is also
adopted but no cropping is applied. All the loss weights
keep the same as the suggested values. The overall network
is trained for 25 epochs. A learning rate of 1e-4 for the first
15 epochs and reduce the learning rate to 1e-5 for the re-
mained epochs. All the encoders have been pre-trained on
ImageNet [36]. Other specific training details are available
in the code package.
Dataset. The system is trained and validated on KITTI [12]
and Cityscapes [7]. The image resolution is set to 640×192.
For KITTI, the data split of Eigen et al. [8] is used excluding
all the static and evaluation frames as Zhou et al. [47]. For
Cityscapes, the standard training split is used and no static
frames are neglected. The cropping scheme “A” defined
in [42] is used for the evaluation.

4.2. Results

RM-Depth is compared against prior state-of-the-art
methods such that they are also trained on monocular im-
age sequences and perform single-image depth inference
without using online refinement unless otherwise specified.
Depth map is capped to 80m [13] and is normalized using
median scaling [47]. Other experimental results (related
to generalization on unseen dataset, visual odometry, and
more) are available in the supplementary material [18].

Depth (KITTI). As shown in the upper half of Table 1,
RM-Depth outperforms the compared methods. Examples
of estimations are provided in Fig. 5. It can be observed
that RM-Depth is superior in recovering thin structures and
moving objects than GeoNet [44]. Monodepth2 [14] can-
not correctly predict depth values on objects with reflective
surface (the on-road train in the first example and the white
car in the third example) while RM-Depth is free of such
defects. PackNet [16] and RM-Depth recover depth maps
with sharp discontinuities. However the moving car in the
second example is not correctly estimated by PackNet.

Depth (Cityscapes). This dataset is more challenging since
it involves more moving objects than KITTI. Only a few
works report the evaluation results on Cityscapes. The bot-
tom half of Table 1 summarizes the results. Despite RM-
Depth does not use segmentation labels, it outperforms the
prior works. Visual comparison is provided in Fig. 6. When
object motion is neglected, holes (i.e. depth values tend to
the maximum) often appear on moving objects.

Object Motion and Segmentation. The protocol as [34] is
followed and the motion segmentation is evaluated on the
KITTI 2015 dataset [32]. The results are summarized in
Table 2. RM-Depth performs on par with Distilled Seman-
tics [39] while RM-Depth neither uses semantic labels for
training nor semantic network. Fig. 7 show examples of
motion field and segmentation predictions.

Optical Flow. It is computed by Eq. (2) using depth, cam-
era and object motions. As provided in Table 3, AEE is im-
proved when object motion is considered. The performance
is reasonable since no stand-alone optical flow network is
constructed. Examples of optical flow are shown in Fig. 7.

Model Size and Runtime. As shown in Fig. 8, RM-Depth
just requires 2.97M parameters for the depth model while it
outperforms the prior works even for those with semantics.
RM-Depth runs at 40FPS for a single depth prediction on a
machine equipped with a GeForce GTX 1080.

4.3. Ablation Study

The contributions of the proposed components are stud-
ied by evaluating different variants of RM-Depth. Since
moving objects are limited on KITTI, the proposed com-
ponents that are related to object motion are evaluated on
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Table 1. Monocular depth results on the KITTI dataset (K) by the testing split of Eigen et al. [8] and the testing split of Cityscapes dataset
(CS). Models that require explicit semantic data are highlighted. The best in each category is in bold and the second best is underlined.

Method Semantics Dataset Error (lower is better) Accuracy (higher is better)
AbsRel SqRel RMS RMSlog δ <1.25 δ <1.252 δ <1.253

Zhou et al. [47] K 0.208 1.768 6.856 0.283 0.678 0.885 0.957
GeoNet [44] K 0.164 1.303 6.090 0.247 0.765 0.919 0.968
Mahjourian et al. [31] K 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet (ResNet) [44] K 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DDVO [40] K 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Li et al. [28] K 0.150 1.127 5.564 0.229 0.823 0.936 0.974
DF-Net [48] K 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Pilzer et al. [2] K 0.142 1.231 5.785 0.239 0.795 0.924 0.968
EPC++ [29] K 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2Depth [4] • K 0.141 1.026 5.291 0.215 0.816 0.945 0.979
CC [34] K 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Bian et al. [3] K 0.137 1.089 5.439 0.217 0.830 0.942 0.975
GLNet [5] K 0.135 1.070 5.230 0.210 0.841 0.948 0.980
Li et al. [27] • K 0.130 0.950 5.138 0.209 0.843 0.948 0.978
Gordon et al. [15] • K 0.128 0.959 5.230 0.212 0.845 0.947 0.976
Distilled Semantics [39] • K 0.126 0.835 4.937 0.199 0.844 0.953 0.982
Monodepth2 [14] K 0.115 0.882 4.701 0.190 0.879 0.961 0.982
PackNet [16] K 0.111 0.785 4.601 0.189 0.878 0.960 0.982
PackNet [16] (weak velocity sup.) K 0.111 0.829 4.788 0.199 0.864 0.954 0.980
Johnston et al. [22] K 0.111 0.941 4.817 0.189 0.885 0.961 0.981
Monodepth2-Boot+Self [33] K 0.111 0.826 4.667 0.184 0.880 0.961 0.983
Monodepth2-Snap+Log [33] K 0.117 0.900 4.838 0.192 0.873 0.958 0.981
Lee et al. [26] • K 0.112 0.777 4.772 0.191 0.872 0.959 0.982
Gao et al. [10] K 0.112 0.866 4.693 0.189 0.881 0.961 0.981
RM-Depth K 0.108 0.710 4.513 0.183 0.884 0.964 0.983
Struct2Depth [4] • CS 0.145 1.737 7.280 0.205 0.813 0.942 0.976
GLNet [5] (with online refinement) CS 0.129 1.044 5.361 0.212 0.843 0.938 0.976
Gordon et al. [15] • CS 0.127 1.330 6.960 0.195 0.830 0.947 0.981
Li et al. [27] CS 0.119 1.290 6.980 0.190 0.846 0.952 0.982
Lee et al. [26] • CS 0.111 1.158 6.437 0.182 0.868 0.961 0.983
RM-Depth CS 0.100 0.839 5.774 0.154 0.895 0.976 0.993

RGB image GeoNet [44] Monodepth2 [14] PackNet [16] RM-Depth

Figure 5. Examples of depth map predictions on KITTI.

RGB image without object motion Struct2Depth [4] Gordon et al. [15] RM-Depth

Figure 6. Examples of depth map predictions on Cityscapes.

Table 2. Motion segmentation results on the KITTI 2015 dataset.

Method Semantics Intersection over Union (IoU)
Overall Static car Moving car

EPC++ [29] 50.00 - -
CC [34] • 56.94 55.77 58.11
DS [39] • 62.66 58.42 66.89
DS (semantic network) [39] • 63.98 64.16 63.79
RM-Depth 64.48 66.91 62.04

Cityscapes. All the results are evaluated on their testing
splits and are capped at 80m per standard practice.

RMU and Residual Upsampling. As shown in Table 4, the

Table 3. Average end-point error on the KITTI 2015 dataset.

Method Flow net. All F1
Distilled Semantics (ego-motion) [39] 13.50 51.22%
Distilled Semantics [39] • 11.61 25.78%
GeoNet (DirFlowNetS) [44] • 12.21 -
RM-Depth (ego-motion) 13.14 44.17%
RM-Depth (complete motion) 11.77 41.62%

full model outperforms the baseline by a large margin. The
proposed components are effective in improving the depth
accuracy. By removing either the residual upsampling or
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RGB image Depth Motion field Segmentation mask Optical flow

Figure 7. Examples of depth, object motion field, segmentation mask, and optical flow predictions on the KITTI 2015 dataset.
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Figure 8. Error of depth models on KITTI against the number of
model parameters. Red dots denote models requiring semantics.

Table 4. Ablation study of RM-Depth on KITTI.

Model Error (lower is better)
AbsRel SqRel RMS RMSlog

full 0.1081 0.7100 4.5138 0.1831
w/o residual upsampling 0.1097 0.7313 4.5269 0.1839
w/o RMU 0.1167 0.8186 4.7100 0.1895
w/o modulation 0.1165 0.7546 4.6623 0.1910
baseline (w/o my contributions) 0.1187 0.8382 4.7894 0.1927

RGB image Conventional [37] Residual upsampling
Figure 9. Depth map predictions using different upsamplings.

RMU, the depth error is increased. Thanks to the residual
upsampling, depth edges are less dispersed comparing to
the results using conventional upsampling [37] as demon-
strated in Fig. 9. A RMU consists of modulation and update
parts. When the modulation part is removed, the depth er-
ror is increased. This indicates that the depth improvement
is largely benefited by the modulation since it adaptively
modifies the feed-forward behavior of the encoder.
Object Motion. The full model performs the best among
all the variants as summarized in Table 5. The proposed

Table 5. Ablation study of RM-Depth on Cityscapes.

Model Error (lower is better)
AbsRel SqRel RMS RMSlog

full 0.1002 0.8387 5.7742 0.1540
w/o warping 0.1022 0.9847 5.9272 0.1563
w/o outlier-aware regularization 0.1052 0.9291 6.1911 0.1638
with sparsity loss [27] 0.1108 1.1254 7.4494 0.1825
baseline (w/o my contributions) 0.1238 1.1508 6.5320 0.1780

Table 6. Ablation study of the number of RMUs on KITTI.

Number of RMUs Error (lower is better) Runtime
AbsRel SqRel RMS RMSlog [ms]

3 (L4: 1, L3: 1, L2: 1) 0.1161 0.7713 4.6799 0.1906 14.99
6 (L4: 2, L3: 2, L2: 2) 0.1135 0.7490 4.6128 0.1877 20.40
8 (L4: 4, L3: 2, L2: 2) 0.1098 0.7251 4.5535 0.1845 22.07

13 (L4: 9, L3: 2, L2: 2) 0.1081 0.7100 4.5138 0.1831 24.78

components are effective in improving depth accuracy on
non-rigid scenes. When warping is disabled, the source im-
ages are not warped towards the target image. There is a
large “visual gap” between images in the pair, and hence
the depth error is increased. By disabling the outlier-aware
regularization, the depth accuracy is deteriorated. Compar-
ing to the variant using the sparsity loss [27], the full model
performs much better. When all of the proposed compo-
nents are disabled, it has been experienced that the training
becomes diverged after 6 epochs. Holes often appear on
moving objects as revealed in Fig. 6.
Number of RMUs. Compromising accuracy and computa-
tional complexity, at most 2 RMUs are assigned for levels 2
– 3. As summarized in Table 6, depth accuracy and runtime
increase with the number of RMUs.
5. Conclusion

RM-Depth, an unsupervised learning framework, is pro-
posed for single-image depth estimation. Complete motion
that includes camera and object motions is used to assist the
unsupervised learning. This breaks down the scene rigidity
requirement. The depth network utilizes recurrent modu-
lation units for dynamic and iterative feature fusion. The
use of residual upsampling enables specific upsampling of
different spectral components. For the motion network, a
warping-based approach has been devised to recover ob-
ject motion. An outlier-aware regularization loss has also
been exploited. With the proposed innovations, the depth
network achieves promising results while it only requires
2.97M model parameters.
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