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Abstract

Unsupervised domain adaptation (UDA) is an impor-
tant topic in the computer vision community. The key diffi-
culty lies in defining a common property between the source
and target domains so that the source-domain features can
align with the target-domain semantics. In this paper,
we present a simple and effective mechanism that regular-
izes cross-domain representation learning with a domain-
agnostic prior (DAP) that constrains the features extracted
from source and target domains to align with a domain-
agnostic space. In practice, this is easily implemented as an
extra loss term that requires a little extra costs. In the stan-
dard evaluation protocol of transferring synthesized data to
real data, we validate the effectiveness of different types of
DAP, especially that borrowed from a text embedding model
that shows favorable performance beyond the state-of-the-
art UDA approaches in terms of segmentation accuracy.
Our research reveals that UDA benefits much from better
proxies, possibly from other data modalities.

1. Introduction
In the deep learning era, the most powerful approach

for visual recognition is to train deep neural networks with
abundant, labeled data. Such a data-driven methodology
suffers the difficulty of transferring across domains, which
raises an important research field named domain adaptation.
This paper focuses on the setting of unsupervised domain
adaptation (UDA), which assumes that the source domain
offers full supervision but the target domain has no annota-
tions available. In particular, we investigate semantic seg-
mentation – provided the increasing amount of unlabeled
data and the expensiveness of annotation, it becomes in-
creasingly important to gain the ability of transferring mod-
els from a known domain (e.g., labeled or synthesized data).

The goal of semantic segmentation is to assign each pixel
with a class label. In the scenarios that annotations are ab-
sent, this is even more challenging than image-level pre-
diction (e.g., classification) because the subtle differences

(b) without DAP supervision

？

(a) Source    →    Target

(c) with DAP supervision

Figure 1. Top: The goal is to transfer a segmentation model trained
in the source domain to the target domain, but some semantically
similar classes (see the left of (a) for examples of bike and mo-
torbike) are difficult to distinguish due to domain shift. Bottom:
segmentation results of the upper-right image without and with
DAP, where (b) shows incorrect segmentation (bike→motorbike
and sidewalk→road) of the baseline (DACS [49]), and (c) shows
how DAP improves segmentation.

at the pixel level can be easily affected by the change of
data distribution. Note that this factor can bring in the
risk that pseudo labels are inaccurate and thus deteriorate
transfer performance, and the risk becomes even higher
when the target domain lacks sufficient data for specific
classes or class pairs. Fig 1 shows an example that such ap-
proaches [64, 49] are difficult in distinguishing semantically
similar classes (e.g., motorbike vs. bike, road vs. sidewalk)
from each other.

To alleviate the above issue, we first offer a hypothesis
about the confusion – the proportion of similar categories in
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the two domains varies too much or they often appear adja-
cent to each other and the border is difficult to find ( there
are limited pixels around the boundary). Consequently, it
is difficult for the deep network to learn the discrimina-
tion boundary based on the transferred image features. To
compensate, we propose to add a domain-agnostic prior
(DAP) to force the features from the source and target do-
mains to align with an auxiliary space that is individual to
both domains. According to the Bayesian theory, a properly
designed prior relieves the instability of likelihood (pro-
vided by the limited training data with similar classes co-
occurring) and leads to more accurate inference.

We implement our algorithm upon DACS, a recent ap-
proach built upon an advanced data augmentation named
ClassMix [37]. The training procedure of DACS involves
sampling a pair of source and target images and making use
of pseudo labels to generate a mixed image with partly-
pseudo labels, and feeding the source and mixed images
into the deep network. We introduce DAP into the frame-
work by defining a high-dimensional, domain-agnostic em-
bedding vector for each class, and force the features ex-
tracted from both the source and mixed images to align with
the embedding vectors through an auxiliary module. We in-
vestigate two types of domain-agnostic embedding, namely,
one-hot vectors and the word2vec features [35], and show
that both of them bring consistent gain in transferring. As
a side note, DAP is efficient to carry out – the auxiliary
module is lightweight that requires around 7% extra train-
ing computation and is removed during the inference stage.

We evaluate DAP on two standard UDA segmentation
benchmarks, in which the source domain is defined by a
synthesized dataset (i.e., GTAv [39] or SYNTHIA [40])
while the target domain involves Cityscapes [10], a dataset
captured from the real world. With the word2vec features as
prior, DAP achieves segmentation mIOU scores of 55.0%
and 50.2% from GTAv and SYNTHIA, respectively, with
absolute gains of 2.9% and 1.3% over the DACS baseline,
setting the new state-of-the-art among single-model, single-
round approaches for UDA segmentation.

The main contribution of this work lies in the proposal
and implementation of domain-agnostic prior for UDA seg-
mentation. With such a simple and effective approach, we
reveal that much room is left behind UDA. We expect more
sophisticated priors and/or more effective constraints to be
explored in the future.

2. Related Work
Unsupervised domain adaptation (UDA) aims to trans-

fer models trained in a known (labeled) source domain to
an unknown (unlabeled) target domain [15, 32, 64]. It dif-
fers from semi-supervised learning [63, 27] mainly in the
potentially significant difference between the labeled and
unlabeled data. The past years have witnessed a fast de-

velopment of UDA , extending the studied task from im-
age classification [42, 5] to fine-scaled visual recognition
including detection [8, 25], segmentation [50, 4], person re-
identification [14, 45], etc. Specifically, segmentation is a
good testbed for UDA for at least two reasons. First, com-
pared to classification, pixel-level segmentation requires
more sophisticated manipulation of domain transfer. Sec-
ond, UDA can reduce the annotation cost for segmentation
which is often expensive. The recent approaches of UDA
segmentation is roughly categorized into three parts, adver-
sarial learning, self-training, and data generation.
• Adversarial learning is an important tool for domain
adaptation [52, 2]. When it was applied to UDA segmen-
tation [50, 48], the segmentation modules are regarded as
the generator that produce prediction, and an auxiliary dis-
criminator is trained to judge which domain the inputs are
from. By confusing the discriminator, the purpose of do-
main adaptation is achieved. Extensions beyond this idea
include [24] that facilitated the domain alignment from the
input image and transferred the low-level representation
(e.g. the texture and brightness) from the target domain to
the source domain, [56] that applied a Fourier transform to
narrow the low-frequency gap between the two domains,
and others.
• The idea of self-training was borrowed from semi-
supervised learning [47, 41, 21] and few-shot learning [28,
31], and was applied well to domain adaptation [44]. The
key to self-training is to produce high-quality pseudo la-
bels [27], but prediction errors are inevitable especially
when the domain gap is significant. Many efforts have been
made to alleviate the inaccuracy, including entropy mini-
mization [65, 54, 7] that tried to increase the confidence on
unlabeled data, class-balance regulation [64] that improved
the prediction probability for hard categories and thus alle-
viated the burden that minor categories may be suppressed,
and [17, 60] that reduced the uncertainty of prediction to
rectify pseudo labels.
• The data generation branch tried to integrate the ad-
vantages of adversarial learning and self-training. The idea
is to bridge the gap between the source and target domains
using a generated domain in which source and target data
are mixed. The images can be generated either by per-
forming GAN [62, 19] or pixel-level mixing [37, 57]. Our
approach follows the second path which is verified power-
ful in UDA segmentation [49, 16, 61], and we introduce a
domain-agnostic prior to constrain representation learning
on the target domain.

There have been studies of combining visual data with
other types of information, in particular, with text data [23,
36, 26]. Powered by pre-training on a large amount of
image and text data, either paired [38] or unpaired [22],
deep neural networks gain the ability of aligning visual
and linguistic features in a shared space, hence facilitating
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Figure 2. The proposed framework of that involves building DAP (the blue-shaded region) upon DACS [49] (the yellow-shaded region).
We omit the illustration of using ClassMix [37] to generate xT

n,m. The details of producing the embedding map (i.e., the proj(·) function)
is shown in Fig 3. This figure is best viewed in color.

cross-modal understanding [46, 29] and retrieval [55, 13].
Recently, the rapid development of Transformers [53, 12]
brings the possibility of unifying image and text data within
one framework. Transferring the learned knowledge from
one modality to another may cause the setting somewhat
similar to zero-shot learning [3, 59]. There are also some
discussions on safe and/or efficient cross-modal learning,
including [20] that introduced knowledge distillation into
cross-modal retrieval, and [1] that introduced boundary-
aware regression and semantic consistency constraint and
improved the discrimination for the unlabeled classes.

3. Our Approach
3.1. Problem Setting and Baselines

Unsupervised domain adaptation (UDA) starts with
defining two domains corresponding to different data dis-
tributions. In our setting for semantic segmentation, com-
plete pixel-level annotations are available for the source do-
main, S, but unavailable for the target domain, T, yet we
hold an assumption that the class sets on S and T are iden-
tical. From the data perspective, let the training samples on
S from a set of DS = {(xS

n,y
S
n)}Nn=1 where both xS

n is a
high-resolution image and yS

n of the same size offers pixel-
wise semantic labels. Similarly, we have a training set on T
being DT = {(xT

m)}Mm=1 where ground-truth labels are not
provided. The goal is to train a model y = f(x;θ) on both
DS and DT so that it works well on a hidden test set DT′

which is also sampled from T.
The major difficulty of UDA comes from the domain

gap between S and T, e.g., in our testing environment,

S corresponds to synthesized data [39, 40] but T corre-
sponds to real-world data [10]. The potential differences
in lighting, object styles, etc., can downgrade prediction
confidence as well as quality on the target domain. One
of the popular solutions to bridge the domain gap is to
use the source model to generate pseudo labels ŷT

m for
xT
m by a mean-teacher model [47], and uses both DS and
D̂T = {(xT

m, ŷT
m)}Mm=1, the extended target set, for updat-

ing the online student model. We denote the teacher and
student models as f te(x;θte) and f st(x;θst), respectively,
where in the mean-teacher algorithm, f te(·) is the moving
average of f st(·).

The above mechanism, though simple and elegant, suf-
fers the unreliability of ŷT

m. To alleviate this issue, in a re-
cently published work named DACS [49], researchers pro-
posed to replace the training data from the target domain
with that from a mixed domain, M, where the samples
are generated by mixing images at the pixel level guided
by class labels [37]. In each training iteration, a pair of
source and target images with (true or pseudo) labels are
sampled and cropped into the same resolution, denoted as
(xS

n,y
S
n,x

T
m, ŷT

m). Next, a subset of classes is randomly
chosen from yS

n and a binary mask Mn,m of the same size
as xS

n is made, with all pixels that yS
n belongs to the subset

being 1 and otherwise 0. Upon Mn,m, a mixed image with
its label is defined:{

xM
n,m = xS

n ⊙Mn,m + xT
m ⊙ (1−Mn,m)

yM
n,m = yS

n ⊙Mn,m + ŷT
m ⊙ (1−Mn,m)

, (1)

where ⊙ denotes element-wise multiplication. The student

37077



A: motor, B: bike A: road, B: sidewalk
Methods Data cos⟨µ·

A,µ
·
B⟩ IOU (%) cos⟨µ·

A,µ
·
B⟩ IOU (%)

Source
Only

S 0.42 6.36 0.35 1.43
T 0.60 27.76 0.43 5.53

DACS T 0.60 26.62 0.38 1.95
DAP T 0.56 22.19 0.23 1.29

Table 1. Statistics of features extracted two pairs of semanti-
cally similar classes, where S and T corresponds to GTAv and
Cityscapes, respectively. Please refer to the main text for details.

model, f st(x;θst), is trained with (xS
n,y

S
n) and (xM

n ,y
M
n ):

Lseg = LCE(f
st(xS

n;θ
st),yS

n)+LCE(f
st(xM

n,m;θst),yM
n,m),
(2)

where LCE(·, ·) is the pixel-wise cross-entropy loss. The
teacher model, f te(x;θte), is updated with the student
model using the exponential moving average (EMA) mech-
anism, namely, θte ← θte · λ + θst · (1 − λ), where λ
controls the window of EMA and is often close to 1.0. The
entire flowchart of DACS is illustrated in the yellow-shaded
part of Fig 2.

3.2. Confusion of Semantically Similar Classes

Despite the effectiveness in stabilizing self-learning,
DACS still has difficulties in distinguishing semantically
similar classes, especially when these classes do not appear
frequently in the target domain, e.g., motorbike accounts for
only 0.1% of the total number of pixels. Fig 1 shows an ex-
ample that the class pair of motorbike and bike can easily
confuse the model, and so can the pair of road and side-
walk. According to experimental results, such confusion
contributes significantly to segmentation error, e.g., 20.8%
mis-classification of bike pixels goes to motorbike.

We offer a hypothesis for the above phenomenon. Since
data from the target domain, say xT

m, are not labeled, the
semantic correspondence is learned by mapping xT

m to the
source domain, e.g., by image-level style transfer for GAN-
based approaches [62, 19] and by label-level simulation for
DACS. Mathematically, this is to learn a transfer function
(which transfers visual features from the target domain to
the source domain) in a weakly-supervised manner. This
causes approximation of visual representation and conse-
quently incurs inaccuracy of recognition.

In addition, we consider two semantically similar classes
denoted as A and B, and the corresponding features ex-
tracted from these classes form two sets of F ·

A and F ·
B, re-

spectively, where the superscript can be either S or T. Let
us assume that each feature set follows a multi-variate Gaus-
sian distribution denoted by N (µ·

A,Σ
·
A) and N (µ·

B,Σ
·
B),

abbreviated as N ·
A and N ·

B, respectively. Since A and B
are semantically similar, we assume that µS

A and µS
B are

close in the feature space, and the source model learns to
distinguish A from B by reducing cos⟨µS

A,µ
S
B⟩ and hence

the IOU between N S
A and N S

B
1. However, in the target do-

main, these conditions are not necessarily satisfied since no
strong supervision is present – the distance between µT

A and
µT

B gets smaller (i.e., cos⟨µT
A,µ

T
B⟩ gets larger), and, conse-

quently, the IOU betweenN T
A andN T

B is larger. Tab 1 offers
quantitative results from transferring a segmentation model
from GTAv to Cityscapes. The features of two semantically
similar class pairs, namely, motorbike vs. bike, and road vs.
sidewalk, are both made easier to confuse the network.

3.3. Domain-Agnostic Prior for UDA Segmentation

To obtain more accurate estimation for N T
A and N T

B , we
refer to the Bayesian theory that the posterior distribution
is composed of a prior and a likelihood. In our setting, the
likelihood comes from the target dataset, DT, where there
are insufficient data to guarantee accurate estimation. The
solution lies in introducing an informative prior for the el-
ements, namely, zTA ∼ N T

A and zTB ∼ N T
B . This involves

defining constraints as follows:

zTA = g(eA), zTB = g(eB), (3)

where eA and eB are not related to any specific domain –
we name them domain-agnostic priors (DAP), and g(·) is
a learnable function that projects the priors to the semantic
space. In practice, it is less likely to strictly satisfy Eqn (3),
so we implement it as a loss term to minimize.

We instantiate DAP into two examples. The first one is
a set of one-hot vectors, i.e., for a target domain with C
classes, the c-th class is encoded into Ic, a C-dimensional
vector in which all entries are 0 except for the c-th di-
mension being 1. The second one is borrowed from
word2vec [35], a pre-trained language model that represents
each word using a 300-dimensional vector. Note that both
cases are completely independent from the vision domain,
i.e., reflecting the principle of being domain-agnostic. We
denote the set of embedding vectors as E = {ec}Cc=1, where
ec is the embedding vector of the c-th class.

Back to the main story, DAP and the embedded vectors
are easily integrated into DACS, the baseline framework.
Besides the segmentation loss Lseg defined in Eqn (2), we
introduce another loss term LDAP that measures the dis-
tance between the embedded domain-agnostic priors and
visual features extracted from training images,

LDAP =∥gvi(f̃ st(xS
n;θ

st))− gpr(proj(ỹ
S
n; E))∥22+

∥gvi(f̃ st(xM
n,m;θst))− gpr(proj(ỹ

M
n,m; E))∥22,

(4)
where f̃ st(·) is the backbone part of f st(·) that extracts mid-
resolution features (i.e., visual features), ỹS

n and ỹM
n,m de-

1To calculate the IOU between N S
A and N S

B, we sample an equal
amount of points from N S

A and N S
B, and calculate rA as the probability

that a point sampled from N S
A actually has a higher density at N S

B, and rB
vice versa. The IOU is then approximated as (rA + rB)/(2− rA − rB).
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Figure 3. An illustration of constructing the domain-agnostic em-
bedding map with prior vectors. Each number in the label map
stands for a class ID. The total number of classes can be arbitrary.

note the supervisions adjusted to the same size of the back-
bone outputs, proj(·) projects the domain-agnostic embed-
ding vectors to the image plane based on the labels (to be
detailed later), and gvi(·) and gpr(·) are each a learnable
convolution layer that maps initial features from the vision
and prior spaces to the common space.

We elaborate the construction of proj(·) in Fig 3. The
computation is simple: for each position on the image
plane, we refer to the ground-truth label ỹS

n or partly-pseudo
label ỹM

n,m, and directly paste the class-wise embedding
vectors to the corresponding positions. Since E is fixed, this
procedure does not need any gradient back-propagation. We
are aware that advanced versions of proj(·) (e.g., perform-
ing local smoothing) are available, and we leave these prop-
erties to be learned by gvi(·) and gpr(·).

Finally, the overall loss function is written as

Loverall = Lseg + α · LDAP, (5)

where α is the balancing coefficient which is by default set
to be 1.0 – an analysis of the effect of α is provided in the
experimental part (see Tab 6).

Back to Tab 1, one can observe how DAP reduces the
IOU between N T

A and N T
B , and thus alleviate the confu-

sion between the semantically similar classes. Interestingly,
the gains of two class pairs are consistent and significant,
even though the training samples of road vs. sidewalk be-
ing more abundant. In experiments, we shall see how the
ability of discriminating these class pairs is improved.

3.4. Discussions

To the best of our knowledge, this is the first work that
integrates text embedding into UDA segmentation and pro-
ducing considerable accuracy gain, which demonstrating
the effectiveness of linguistic cues assisting visual recog-
nition. However, it is yet a preliminary solution, and some
possible directions can be discovered.
• Enhancing text embedding. The currently used
word2vec features it does not consider different words that

correspond to the same semantics (e.g., person can be
pedestrian). Interestingly, we tried to enhance the prior by
searching for semantically similar words, but obtained little
accuracy gain. This may call for a complicated mechanism
of exploring the text world.
• Constructing domain-agnostic yet vision-aware pri-
ors. This is to answer the question: what kind of image data
is considered to offer domain-free information? The an-
swer may lie in generalized datasets like ImageNet [11] or
Conceptual Captioning [43], or even the pre-trained image-
text models such as CLIP [38] that absorbed 400 million
image-text pairs. Note that it is a major challenge to disen-
tangle domain-related information to avoid over-fitting, and
we will continue exploring the possibility in the future.

4. Experiments
4.1. Datasets and Implementation Details

• Datasets. We evaluate our method on a popular sce-
nario transferring the information from a synthesis domain
to a real domain. We use GTAv [39] and SYNTHIA [40] as
composite domain datasets and Cityscapes [10] as the real
domain. GTAv [39] is a synthetic dataset extracted from
the game of Grand Theft Auto V. There are 24,966 images
with pixel-level semantic segmentation ground truth. The
resolution of these images is 1914 × 1052 and we resize
them into 1280 × 720 in our experiments. GTAv shares 19
common classes with Cityscapes. SYNTHIA [40] contains
9,400 virtual European-style urban images whose resolu-
tion is 1280 × 760 and we keep the original size in our ex-
periments. We evaluate two settings (13 and 16 categories)
in SYNTHIA. Cityscapes is a large-scale dataset with a res-
olution of 2048× 1024. There are 2,975 and 500 images in
the training and validation sets, respectively.
• Implementation Details. To be consistent with other
methods, we use the Deeplabv2 [6] framework with a
RseNet101 [18] backbone as our image encoder and an
ASPP classifier as segmentation head. The output map is
up-sampled and operated by a softmax layer to match the
size of the inputs. The pre-trained model on ImageNet [11]
and MSCOCO [30] is applied to initialize the backbone.
The visual and prior feature projectors, gvi(·) and gpr(·),
are both convolution layers with a 1× 1 kernel to adjust the
channel to 256. The batch size of one GPU is set to 2. We
use SGD with Nesterov acceleration as the optimizer which
is decreased based on a polynomial decay policy with expo-
nent 0.9. The initial learning rate of backbone and feature
projectors is 2.5 × 10−4, that of segmentation head is 10×
larger. The momentum and weight decay of the optimizer
are 0.9 and 5×10−4. During the training process, we apply
color jittering and Gaussian blurring on the mixed data and
only resize operation on source and target data. Teacher
model is updated with an EMA decay and λ equals 0.99.
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mIOU
AdaptSegNe [50] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
PatchAligne [51] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

LTIR [24] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
PIT [33] 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6
FDA [56] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

MetaCorrect [17] 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1
DACS [49] 89.9 39.7 87.9 39.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
IAST [34] 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2
DPL [9] 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3

Source only 75.6 17.1 69.8 10.7 16.1 21.1 27.0 10.6 77.3 15.1 71.1 53.4 20.5 73.9 28.6 31.1 1.62 32.4 21.5 35.5
DACS (rep) 93.1 48.1 87.3 36.7 35.1 38.7 42.5 49.3 87.5 41.9 87.9 64.8 30.7 88.3 40.2 51.0 0.0 25.1 42.6 52.1
DACS+DAP 93.5 53.9 87.5 30.0 36.4 39.0 43.9 49.5 87.5 45.4 88.8 66.6 36.8 89.4 49.1 51.4 0.0 42.2 53.1 55.0
ProDA [58] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 50.4 1.0 48.9 56.4 57.5

Chao et al. [4] 94.4 60.9 88.1 39.5 41.8 43.2 49.1 56.0 88.0 45.8 87.8 67.6 38.1 90.1 57.6 51.9 0.0 46.6 55.3 58.0
DAP + ProDA 94.5 63.1 89.1 29.8 47.5 50.4 56.7 58.7 89.5 50.2 87.0 73.6 38.6 91.3 50.2 52.9 0.0 50.2 63.5 59.8

Table 2. Segmentation accuracy (IOU, %) of different UDA approaches from GTAv to Cityscapes. DACS (rep) indicates our re-
implementation of DACS. For each class, we mark the highest number with bold and the second highest with underline. The top and
bottom parts are achieved without and with multi-stage training or multi-model fusion.
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mIOU mIOU*
PatchAlign [51] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

AdaptSegNe [50] 84.3 42.7 77.5 – – – 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 – 46.7
FDA [56] 79.3 35.0 73.2 – – – 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 – 52.5
LTIR [24] 92.6 53.2 79.2 – – – 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 – 49.3
PIT [33] 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 78.8 64.2 27.6 79.6 31.2 31.0 31.3 44.0 51.8

MetaCorrect [17] 92.6 52.7 81.3 8.9 2.4 28.1 13.0 7.3 83.5 85.0 60.1 19.7 84.8 37.2 21.5 43.9 45.1 52.5
DPL [9] 87.5 45.7 82.8 13.3 0.6 33.2 22.0 20.1 83.1 86.0 56.6 21.9 83.1 40.3 29.8 45.7 47.0 54.2

DACS [49] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8
IAST [34] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.6 30.8 86.5 38.2 33.1 52.7 49.8 57.0

Source only 24.7 12.1 75.4 11.3 0.1 22.4 7.5 16.6 71.7 78.3 52.9 10.1 56.6 23.3 4.0 13.0 30.0 34.3
DACS (rep) 82.1 31.0 82.4 22.1 1.2 33.1 32.7 25.1 84.4 88.2 65.2 34.3 83.4 42.9 24.1 50.8 48.9 55.9
DACS+DAP 83.9 33.3 80.2 24.1 1.2 33.4 30.8 33.8 84.3 88.5 65.7 36.2 84.3 43.3 33.3 46.3 50.2 57.2

Chao et al. [4] 88.7 46.7 83.8 22.7 4.1 35.0 35.9 36.1 82.8 81.4 61.6 32.1 87.9 52.8 32.0 57.7 52.6 60.0
ProDA [58] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0

DAP + ProDA 84.2 46.5 82.5 35.1 0.2 46.7 53.6 45.7 89.3 87.5 75.7 34.6 91.7 73.5 49.4 60.5 59.8 64.3

Table 3. Segmentation accuracy (IOU, %) of different UDA approaches from SYNTHIA to Cityscapes. DACS (rep) indicates our re-
implementation of DACS. For each class, we mark the highest number with bold and the second highest with underline. The top and
bottom parts are achieved without and with multi-stage training or multi-model fusion. mIOU* denotes the average of 13 classes, with the
classes marked with * not computed.

We train the model for 250K iterations on a single NVIDIA
Tesla-V100 GPU and adopt an early stop setting. The back-
ground and invalid categories are ignored during training.
The weight of LDAP, i.e. α, is set to be 1.0. We adapt bilin-
ear interpolation to down-sample the embedding map from
the input size to that of the visual feature map – this is an
important step for DAP, which is ablated in Section 4.3.

4.2. Quantitative Results and Visualization

We first evaluate DAP on the transfer segmentation task
from GTAv to Cityscapes. The comparison against recent
approaches are shown in Tab 2. To ensure reliability, we

run DACS (the baseline) and DAP three times and report
the average accuracy. DAP achieves a mean IOU of 55.0%
over 19 classes, which claims a 2.9% gain beyond the base-
line and also outperforms all other competitors except for
Chao et al. [4] and ProDA [58]. Specifically, Chao et al. [4]
used ensemble learning to integrate the prediction from
four complementarily-trained models, including DACS, but
DAP used a single model; ProDA [58] improved the seg-
mentation accuracy significantly via multi-stage training,
yet its first stage reported a 53.7% mIOU.What is more, the
results on transferring SYNTHIA to Cityscapes, as shown
in Tab 3, demonstrate the similar trend – DAP outperforms
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road sidewalk building wall
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vegetation
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terrain sky person
rider car truck bus
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Ground-truth

Image

Figure 4. An example of transfer segmentation from GTAv to Cityscapes. The top row shows the ground-truth and three segmentation
results, while the input and legend is in the bottom row. The yellow boxes indicate the regions that the segmentation quality is largely
improved, and the number corresponds to single-image mIOU (over the existing classes). The bottom row also shows the t-SNE of visual
features colored by the predicted class. The blue boxes locate the features of bike and motorbike, in which DAP achieves a favorable ability
to distinguish them. This figure is best viewed in color and we suggest the reader to zoom in for details.

all the competitors, except for ProDA and RED, in terms of
either 13-class or 16-class mIOU. To show that DAP offers
complementary benefits, we feed the output of DAP as the
pseudo labels to the 1st stage of ProDA, and the 2nd and 3rd
stages remain unchanged. As shown in Tables 2 and 3, the
segmentation mIOUs of ProDA in GTAv→Cityscapes and
SYNTHIA→Cityscapes are improved by 2.3% and 4.3%,
respectively, setting new records in these two scenarios.

Next, we investigate the ability of DAP in distinguishing
semantically similar classes. From GTAv to Cityscapes, the
segmentation mIOUs of bike and motorbike are improved
from 42.6% and 25.1% to 53.1% and 42.2%, with abso-
lute gains of 10.5% and 17.1%, respectively. From SYN-
THIA to Cityscapes, the mIOU of bike drops by 4.5% and
that of motorbike increases by 9.2%, achieving an average
improvement of 2.4%. We visualize an example of seg-
mentation in Fig 4. Besides a qualitative observation on
the improvement of distinguishing bike from motorbike and
road from sidewalk, we also notice the reason behind the
improvement being a scattered feature distribution of these
similar classes. This aligns with the statistics shown in
Tab 1, indicating that DAP reduces the IOU between the
estimated distributions of bike and motorbike as well as that
between road from sidewalk.

From another perspective, we study how the language-
based prior assists visual recognition. In Fig 5, we show
the relationship matrix of the features learned from the
source (GTAv) and target (Cityscapes) domains as well as
the word2vec features. There is an interesting example that
person and rider are semantically similar in both GTAv and
Cityscapes but not so correlated according to word2vec.

GTAv Cityscapes Word2vec

Figure 5. The relationship matrix of all 19 classes, where the left
and middle are generated by the class-averaged feature vectors ex-
tracted from the models directly trained on GTAv and Cityscapes,
and the right uses the word2vec features. Each cell is the inner
product of two normalized features. The order of class is identical
to that in Tab 2 – for easier reference: 1 for road, 2 for sidewalk,
12 for person, 13 for rider, 18 for motorbike, 19 for bike.

Source Dataset GTAv SYNTHIA
mIOU (%) gain std(%) mIOU (%) gain std(%)

Baseline 52.1 – 1.6 48.9 – 0.3
w/ random vectors 52.3 0.2↑ 2.3 48.0 0.9↓ 0.8
w/ one-hot vectors 53.0 0.9↑ 0.8 49.8 0.9↑ 0.4

w/ CLIP [38] 54.6 2.5↑ 0.6 50.6 1.7↑ 0.5
w/ word2vec [35] 55.0 2.9↑ 0.5 50.2 1.3↑ 0.4

Table 4. The results of different vectors choices include the adap-
tation from GTAv and SYNTHIA

This may cause a strong yet harmful correlation of these
two feature sets, leading to confusion in segmentation. The
relatively weaker correlation of word2vec features allevi-
ates the bias and improves the IOU of both classes (refer to
Tab 2). Similar phenomena are also observed for the class
pairs of road vs. sidewalk, and bike vs. motorbike.
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4.3. Diagnostic Studies

• The choice of domain-agnostic prior. We investigate
three other options except for word2vec embedding [35],
namely, (1) that generating a 300-dimensional, normalized
random vector for each class, (2) directly creating a one-
hot vector for each class, where the dimensionality equals
to the number of classes, (3) classes embeddings generated
by the language branch of CLIP [38]. Similar to the main
experiments, we run each option three times and report the
averaged accuracy. Results are summarized in Tab 4.

One can see that random vectors achieve a slight
0.2% accuracy gain on GTAv→Cityscapes, but incurs a
0.9% accuracy drop on SYNTHIA→Cityscapes, implying
the instability. Throughout the three individual runs on
GTAv→Cityscapes, the best run achieves a 54.4% mIOU,
just 0.6% lower than using word2vec, but the worst one
reports 49.2% which is even significantly lower than the
baseline. Regarding the one-hot vectors, the results over
three runs are less diversified, and the average improvement
is consistent, (i.e., 0.9% on both GTAv→Cityscapes and
SYNTHIA→Cityscapes), though smaller than that brought
by word2vec embedding. The prior from CLIP [38] re-
ports 54.6% and 50.6% mIOUs on the GTAv and SYN-
THIA experiments, respectively. Despite the fact that CLIP
is stronger than word2vec, the mIOUs are just comparable
to that using word2vec (55.0% and 50.2%). From these
results, we learn the lesson that (1) even a naive prior al-
leviates the inter-class confusion caused by domain shift,
however, (2) it would be better if the inter-class relation-
ship is better captured so that the model is aware of seman-
tically similar classes – text embedding offers a safe and
effective option. (3) The limited number and diversity of
target categories may have diminished the advantages of a
stronger language model (e.g., CLIP), and we still pursue
for a vision-aware yet domain-agnostic embedding method.
• Different Backbones. To verify the effectiveness of
DAP on different network structures, we replace the convo-
lution backbone (ResNet101) with a transformer network
(ViT-Base [12]). The numbers of the block layers, token
size, and heads are 12, 768 and 12 respectively in the trans-
former encoder. The input size of the training data is set
768 × 768. And we initiate the ViT encoder with a model
pre-trained on ImageNet-21k then fine-tune the segmenta-
tion network with a base learning rate of 0.01 adopted with
the ’poly’ learning rate decay and use SGD as the optimizer.
The gpr is one layer transformer structure and weight of
LDAP is 0.25. On GTAv, source-only, DACS, DAP report
49.4%, 58.4%, 61.1% mIOUs. As for the transferring from
SYNTHIA, the numbers of the three settings are 42.7%,
53.2%, 59.1% when evaluating on 16 classes and 48.1%,
60.9%, 66.1% on 13 classes. We can see that DAP still
obtains consistent accuracy gain. To the best of our knowl-
edge, the DAP numbers are SOTA.

Setting source only DACS DAP w/o interp DAP w/ interp
GTAv 35.5 52.1 53.8 55.0

SYNTHIA 30.0 48.9 49.6 50.2
Table 5. Ablation on the contribution of each module in both
GTAv→Cityscapes and SYNTHIA→Cityscapes experiments.

α 0.50 0.75 1.00 1.25 1.50
GTAv 54.5 54.1 55.0 54.3 54.7

SYNTHIA 50.0 49.4 50.2 49.6 49.1
Table 6. Impact of tuning the balancing coefficient, α. All numbers
are segmentation mIOU (%).

• The importance of feature interpolation. From the
model that only uses the source domain, we gradually add
mixed data (by DACS [49]), introduce DAP (using the
word2vec embedding), and perform feature interpolation
to down-sample the embedding map. As shown in Tab 5,
for the both two transferring scenarios, feature interpola-
tion contributes nearly half accuracy gain of DAP over
DACS. Intuitively, feature interpolation enables the features
on small-area classes to be preserved, yet nearest-neighbor
down-sampling can cause these features to be ignored.
• Parameter Analysis. Lastly, we study the impact of the
coefficient α that balances between Lseg and LDAP. The re-
sults shown in Tab 6 suggest that α = 1.0 is the best option.
In addition, increasing α causes a larger accuracy drop com-
pared to decreasing it, which may indicate that Lseg is the
essential goal and LDAP serves as an auxiliary term.

5. Conclusions

In this paper, we investigate the UDA segmentation prob-
lem and observe that semantically similar classes are easily
confused during the transfer procedure. We formulate this
problem using the Bayesian theory and owe such confusion
to the weakness of likelihood, e.g., insufficient training data.
To alleviate the issue, we introduce domain-agnostic priors
to compensate the likelihood. Experiments on two standard
benchmarks for UDA segmentation in urban scenes verify
its effectiveness both quantitatively and qualitatively

Limitations of this work. Currently, the best option of
DAP is to leverage the text embedding vectors. We are look-
ing forward to more powerful priors, e.g., from the cross-
modal pre-trained models [38, 22]. This may call for more
sophisticated designs of prior embedding, projection, align-
ment, etc., which we leave for future work.
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