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Abstract

Open-vocabulary instance segmentation aims at seg-
menting novel classes without mask annotations. It is an im-
portant step toward reducing laborious human supervision.
Most existing works first pretrain a model on captioned
images covering many novel classes and then finetune it
on limited base classes with mask annotations. However,
the high-level textual information learned from caption pre-
training alone cannot effectively encode the details required
for pixel-wise segmentation. To address this, we propose a
cross-modal pseudo-labeling framework, which generates
training pseudo masks by aligning word semantics in cap-
tions with visual features of object masks in images. Thus,
our framework is capable of labeling novel classes in cap-
tions via their word semantics to self-train a student model.
To account for noises in pseudo masks, we design a robust
student model that selectively distills mask knowledge by
estimating the mask noise levels, hence mitigating the ad-
verse impact of noisy pseudo masks. By extensive experi-
ments, we show the effectiveness of our framework, where
we significantly improve mAP score by 4.5% on MS-COCO
and 5.1% on the large-scale Open Images & Conceptual
Captions datasets compared to the state-of-the-art.1

1. Introduction
Instance segmentation is a crucial yet challenging task of

segmenting all objects in an image with applications in au-
tonomous driving, surveillance systems, and medical imag-
ing. Segmentation works have achieved impressive results
thanks to advances in training high capacity models with
large amounts of mask annotations [1–4]. To be specific,
most methods adopt a two-stage object detection architec-
ture [5] for this task by learning an additional mask head to
segment objects within box proposals [6–9]. Recent works

*This work was done during Dat Huynh’s internship at Adobe Re-
search.

1Code is available at https://github.com/hbdat/cvpr22_
cross_modal_pseudo_labeling.

Figure 1. Conventional pseudo-labeling (top) only segments ob-
jects based on visual modality, which produces incorrect labels
and misses novel object classes. Our method (bottom) leverages
both visual and textual modalities by aligning semantics of cap-
tion words with visual features of object masks to correctly label
objects and generalize to novel classes without mask annotations.

focus on high-quality mask segmentation by increasing the
prediction resolutions using dynamic networks [10, 11] or
boundary refinement [12–14]. Despite their success, these
works all require costly mask annotations of every class. As
a result, it is difficult to scale such systems to hundreds or
thousands of classes due to their high mask annotation costs
for training. In this work, we aim to significantly reduce the
amount of mask supervision by segmenting novel classes
using low-cost captioned images.

One of the most popular ways to increase the number
of segmentation classes is partially-supervised learning. It
utilizes weak image-level [15–17] or box-level [18–23] su-
pervision to segment objects that have no mask annotations,
thus lowering the annotation costs. Despite the successes
of partially-supervised methods, they can only segment the
classes covered by the image/box-level annotation and not
a wide general range of novel classes.

Different from previous approaches that are limited to
classes with mask annotations, zero-shot instance/semantic
segmentation aims to segment novel classes without train-
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ing samples via high-level semantic descriptions such as
word embeddings. However, current zero-shot approaches
on both object detection [24–26] and instance segmentation
[27] suffer from low novel-class performances as high-level
word embeddings cannot effectively encode fine-grained
shape information. To overcome this, the recent OVR [28]
work pretrains a visual backbone on captioned images to
learn rich visual features. As the backbone of OVR encodes
the visual appearances of many novel classes in captions,
finetuning it on the detection task significantly improves the
performance of novel classes. Despite its effectiveness for
detection, we argue that backbone pretraining has limited
effects on instance segmentation since mask predictions are
ignored and not learned during caption pretraining.

In this paper, we address instance segmentation of novel
classes unknown during training by directly self-training
our model to segment objects in captioned images with-
out any mask annotations. We introduce a robust cross-
modal pseudo-labeling framework that aligns textual and
visual modalities in captioned images to create caption-
driven pseudo masks and generalize to novel classes be-
yond base classes. Specifically, we train a teacher model
on base classes and use this model to select object regions
whose visual features are most compatible with the seman-
tics of words in captions. The regions are further segmented
into pseudo masks for object words in captions. We then
distill pseudo masks into a robust student, which jointly
learns segmentation and estimates pseudo-mask noise lev-
els to downweight incorrect teacher predictions. Finally, we
evaluate our segmentation performances on MS-COCO and
Open Images & Conceptual Captions datasets. We qualita-
tively demonstrate our generalization ability on truly novel
classes, which never appear in most segmentation datasets.

The contributions of this paper are as follows:

• We propose a novel cross-modal pseudo-labeling frame-
work to generate caption-driven pseudo masks and fully uti-
lize captioned images for segmentation training without re-
quiring instance mask annotations.

• Our method is designed to work with novel classes by
selecting regions whose visual features are most compatible
with the semantics of novel classes and segmenting these
regions into pseudo masks to self-train a student model.

• We explicitly capture the reliability of pseudo masks via
our robust student model. For pseudo masks with high mask
noises, we downweight the loss to avoid error propagation
when objects cannot be grounded in images.

• To show the effectiveness of our method, we conduct ex-
tensive experiments on MS-COCO and the large-scale Open
Images & Conceptual Captions datasets.

2. Related Works

Partially Supervised Learning. Due to the high cost of
mask annotations [29], learning segmentation with weak
supervision has attracted strong interest recently. Given
bounding box annotations, [15, 20, 21, 30, 31] exploit pixel-
wise similarity to infer object masks while [18, 19, 32, 33]
learn to share mask knowledge between mask and box su-
pervision to enhance performances. Whereas, [16, 17, 34–
38] leverage image-level labels by analyzing classification
scores in image regions to estimate object masks. Re-
cently, [39–41] have explored point-wise supervision and
learn from only a few background/foreground pixel annota-
tions. Unlabeled images can also be used to improve perfor-
mances by considering confident predictions as annotations
of these images for training [42–48]. However, these works
assume certain forms of weak annotations are available for
all classes, thus cannot generalize to a wide range of novel
classes that may have no annotations at all.

Zero-Shot Learning. To generalize toward novel classes
without any training annotations, most zero-shot works
[49–58] focus on image recognition. Recent works have ex-
plored zero-shot object detection by learning to distinguish
between background and novel object regions [24,25], syn-
thesizing unseen class features [26] or using richer textual
descriptions [59]. For pixel-level mask prediction, [60–67]
perform zero-shot semantic segmentation while [27] tack-
les the challenging zero-shot instance segmentation task.
Since these zero-shot methods only have access to base
class annotations, they perform poorly on novel classes. Al-
though [68–70] apply self-training on unlabeled data from
novel classes to improve performances, they only address
semantic segmentation and cannot distinguish different ob-
ject instances in an image. Moreover, they make a strong
assumption that unlabeled samples always belong to a re-
stricted set of classes known during training.

Vision-Language Pretraining, on the other hand, aims to
learn from captioned images containing a wide range of
classes. Most works focus on learning visual backbones that
encode rich visual information from caption-image pairs
and finetuning them on downstream tasks. Specifically,
[71–75] employ pretrained language models and object de-
tectors to learn visual features well aligned with the em-
beddings of caption words. Recent works [76, 77] improve
training efficiency by removing the need for object detectors
and scale to hundreds of millions of samples for substantial
performance gains [78]. Moreover, [28] proposes a novel
open-vocabulary learning task and shows that pretrained vi-
sual features improve not only the detection performance
on base classes but also novel classes. However, backbone
pretraining alone cannot exploit captioned images for seg-
mentation, as the model is not trained explicitly to segment
the objects in captioned images.
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Learning with Noisy Annotations. Although learning
with noisy training samples collected from the web or anno-
tated by machine can also significantly reduce the annota-
tion cost, [79] shows that deep neural networks can easily fit
random label noises. Thus, most works address this by reg-
ulating the loss function [80–88], denoising training sam-
ples [89–91], or utilize additional unlabeled data for reg-
ularization [92, 93]. As these methods are not applicable
to the segmentation task, [62, 94] propose to capture uncer-
tainty in mask predictions to regulate pixel-wise segmenta-
tion loss, thus reducing the impacts of noisy annotations.
However, they can only estimate noise from the mask an-
notations belonging to base classes thus are ineffective for
novel classes without mask annotations.

3. Robust Cross-Modal Pseudo-Labeling
on Captioned Images

This section describes our robust cross-modal pseudo-
labeling framework, which utilizes caption-image pairs to
produce pseudo masks and self-trains a student model. We
first describe the problem setting and then present different
components in our framework.

3.1. Problem Setting

Let DB = {(Im,Ym)}NB
m=1 be the set of training im-

ages and instance annotations for a limited set of base
classes VB . Each image Im is associated with a set of
ground-truth (GT) annotations Ym, which comprises in-
stance masks and their corresponding object classes. In or-
der to segment novel classes, we leverage additional images
DC = {(Ic,Yc)}NC

c=1 with only image-level captions. Each
image Ic is annotated with a caption from which we can ex-
tract a set of object nouns Oc ⊂ Yc in each caption. Since
caption annotations are relatively inexpensive to source, the
set of caption classes, |VC |, is significantly larger than base
classes, |VC | � |VB |, which is the key ingredient to im-
prove the segmentation of novel classes.

We follow [28] to construct a set of target classes, VT ,
without any mask annotations and unknown to the model
during training. These classes are merely used as a proxy
to evaluate the segmentation performance of novel classes
during test time. Our model can recognize a much larger
number of novel classes, by using the high-level semantic
embeddings {vo}, for all object classes o ∈ VB ∪ VC ∪
VT , from a pretrained BERT model [95]. Given the BERT
embeddings, we transfer the knowledge from base/caption
to target classes via class semantic similarity.

3.2. Proposed Method

In this section, we present our proposed cross-modal
pseudo-labeling framework for open-vocabulary instance
segmentation. For each caption-image pair, we generate

pseudo masks by selecting the mask predictions whose vi-
sual features are most compatible with semantic embed-
dings of object words in captions. We first construct a
teacher model with an embedding head for classification
and a class-agnostic mask head for segmentation. Then,
we distill the mask knowledge from teacher predictions and
captions into a robust student model which jointly learns
from pseudo masks and estimates mask noise levels to
downweight unreliable pseudo masks.

3.2.1 Designing Teacher Model

To effectively extract mask supervision from captioned im-
ages, we first introduce a teacher model, h, capable of seg-
menting novel classes based on the word embeddings of
these classes. Following [28], we build upon a two-stage
detection framework, Mask R-CNN [6]. To be specific, we
train a class-agnostic region proposal network, p, to select a
set of region proposals in each image: {ri}NR

i=1 = p(I).
Given the region proposals, our goal is to classify them

to any classes mentioned in the captions extending beyond
base classes. Therefore, we replace the conventional fully-
connected layer in the classification head of Mask R-CNN
with an embedding head hEmb. Here, hEmb maps the region
features into the semantic space of word embeddings. With
the embedding head, the score of class o for each region is
computed as inner-product between the word embedding of
the class and the region’s visual feature:

v>o hEmb(f
I
r) ∀r ∈ p(I), (1)

where vo is the word embedding for class o, fI
r is the vi-

sual feature of region r extracted from the visual backbone
using RoIAlign [6] and hEmb(f

I
r) is the visual embed-

ding of the region. To simplify the notation, we drop the
super-script I in fI

r which can be inferred from the con-
text. By learning a joint embedding space between visual
features and the word embeddings, the teacher can gener-
alize to novel classes without training samples by measur-
ing the compatibility between visual and textual features.
We also define the background embedding to be a fixed
zero vector, which has been shown to outperform other vari-
ants [28]. Thus, a region proposal is considered background
if its class scores are lower than the background score. In
addition, we also learn a class-agnostic Mask R-CNN-based
head to segment object in each region as, hMask(fr), where
hMask(·) is a mask head predicting mask logit scores. To
train both embedding and mask heads of the teacher, we
adopt the ground-truth loss, LGT , consisting of standard de-
tection and segmentation losses as in [6].

Although the teacher can segment novel classes, it can-
not effectively perform this and often miss-classifies novel
classes due to their lack of training annotations. To pro-
vide additional supervision for novel classes without in-
curring high annotation costs, we propose a cross-modal
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Figure 2. Given an image Ic and the set of objects in captions Oc, we first generate region proposals. We then find the regions that maximize the
scores of the teacher embedding head (hEmb) for each object in the caption. We further segment objects within these regions into pseudo masks using the
teacher’s mask head (hMask). Finally, the student embedding (gEmb) and mask (gMask) heads are trained via cross-modal and mask losses, respectively. The
cross-modal loss is also reweighted based on the pseudo-mask noise levels learned from our pseudo-mask loss.

pseudo-learning method that uses the semantic information
of caption words to guide teacher predictions and generates
pseudo masks for self-training a student model.

3.2.2 Cross-Modal Pseudo-Labeling

To boost the teacher’s performance in novel classes, we
combine the teacher model with caption guidance and ex-
plicitly constrain teacher predictions on what objects and
where to construct the pseudo masks for training a student
model, g. We first leverage captions to identify objects in
images. For simplicity, we extract object nouns in each cap-
tion, Oc ⊂ Yc, as words that are descendants of ‘Object’
node in the WordNet hierarchy, which is inspired by [3]. To
localize these object words in images, we propose a cross-
modal alignment step that selects the regions whose features
are most compatible with the word embeddings of object
nouns in captions as following:

bo = argmax
r∈p(Ic)

(
v>o hEmb(fr)

)
∀o ∈ Oc, (2)

where the bo is the aligned object region for object o w.r.t.
its word embedding vo and visual embedding from the
teacher, hEmb(fr). As our pseudo labeling procedure is
guided by the word semantics in captions, we specifically
search for objects in captions and generalize to novel classes
based on their word embeddings. Following recent works
on weakly-supervised learning [96, 97], we select the high-
est confident bounding box for each object to minimize
false-positive predictions.

Given the set of aligned object regions, we introduce a
cross-modal loss, LX , which trains the student to identify
these regions as their positively-matched caption words:

LX(Yc|Ic; g) = −
∑
o∈Oc

log
ev

>
o gEmb(fbo

)∑
w∈VC

ev
>
wgEmb(fbo

)
, (3)

where gEmb is the student embedding head. For each aligned
object region bo, the student maximizes its scores of object

words in captions and minimizes the scores of other irrele-
vant words w via Softmax normalization. The information
from both word embeddings {vo}o∈Oc

(textual modality)
and aligned object regions {fbo

}o∈Oc
(visual modality) is

distilled into the student embedding head to expand the stu-
dent’s knowledge about the novel classes in captions.

Cross-modal loss works by acting on the student embed-
ding head, but it disregards the mask head that is critical
for segmentation. Next, we propose to obtain the pseudo
masks from the teacher and estimate the noise levels of such
masks. Our method provides supervision for the student
mask head, in addition to regulating the cross-modal loss.

3.2.3 Estimating Pseudo-Mask Noises

Given aligned object regions, we turn them into pseudo
masks by applying the teacher mask head on these regions:

Mo = 1≥0[hMask(fbo
)] ∀o ∈ Oc, (4)

where 1≥0[·] is an indicator function which outputs 1 if
a pixel prediction is positive and 0 otherwise to binarize
mask predictions. Naively, we can train the student model
to mimic the exact pseudo masks at each pixel as:∑

o∈Oc

∑
x,y

LBCE
(
Mxy

o |g
xy
Mask(fbo

)
)
, (5)

where BCE is the binary cross-entropy loss for pixel logit
predictions, Mxy

o is the pseudo masks at pixel (x, y) and
gxyMask is the student mask predictions at the pixel. However,
not all objects in captions can be correctly detected /seg-
mented due to the errors in teacher predictions, as shown
in Figure 3. Thus, minimizing this pixel-wise loss prop-
agates the errors from pseudo masks to the student mask
head and degrades its performance. To account for errors
in pseudo labels, we propose to estimate the noise level in
pseudo masks. Specifically, the student predicts an addi-
tional noise value for each pixel in pseudo masks follow-
ing [62,94]. We assume that each pixel in a pseudo mask is
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corrupted by a Gaussian noise whose variances can be es-
timated via the visual features of the aligned object region.
Thus, we can learn to estimate the pixel-wise noise as:

LM (Yc|Ic, g) =
∑
o∈Oc

∑
x,y

LBCE
(
Mxy

o |g
xy
Mask(fbo

) + εxyo
)

εxyo ∼ N
(
0, gxyNoise(fbo

)
)
,

(6)
where gNoise is a neural network predicting the noise levels
from the visual features of aligned object regions fbo

, and
εxyo is the noise value for the pixel (x, y) of object o sampled
from the Gaussian distribution, N , parameterized by gNoise.
Pseudo masks with segmentation errors, which are difficult
to learn by the student, would drive gnoise to estimate high
noise levels to fit these errors. As such, our framework not
only trains the student mask head on pseudo masks but also
estimates pseudo-mask noise to regulate the training loss
and account for possible segmentation errors of the teacher.

With the ability to estimate pseudo-mask noises, we uti-
lize this to improve cross-modal loss in the next section.

3.2.4 Training Robust Student Model

Since both the student and teacher models are unaware of
the correct novel object masks due to the lack of annota-
tions, we propose to consider mask noises as a proxy on
how reliable the pseudo masks are. We compute the noise
level of each pseudo mask as the average of pixel noise:∑
x,y g

xy
Noise(fbo

)/|bo| where |bo| is the number of pixels in
region bo. Then we assign a reliability score, α(o|Ic), for
each object in captions as the inverse of its average noise
level, to indicate the mask reliability:

α(o|Ic) =
η∑

x,y g
xy
Noise(fbo

)/|bo|
∀o ∈ Oc, (7)

where η is a constant value set to the smallest average noise
level across all captioned images2. With η as the reference,
we assign low weights to high-noise predictions while up-
weighting the clean pseudo masks with low noise levels.

Objective Function. Finally, we train a robust student
model on datasets of caption and base classes as:

min
g={gEmb,gMask,gNoise}

∑
c∈DC

[
LM (Yc|Ic; g) + LαX(Yc|Ic; g)

]
+
∑
m∈DB

LGT (Ym|Im; g),

(8)
where LαX is the cross-modal loss in Eq. (3) modified to

reweight its term as: α(o|Ic) × log e
v>
o gEmb(fbo

)∑
w∈VC

e
v>
wgEmb(fbo

)
for

each object, o ∈ Oc . Thus, we effectively downweight
2We determine η by training our method on a subset of images and set

the smallest average noise level during training to be η.

Figure 3. Visualization of pseudo mask noise levels and their reliability
scores for the objects mentioned in captions.

the cross-modal loss on noisy predictions to avoid the error
propagation from teacher to student.

Remark 1 As the student is trained with cross-modal
pseudo-labeling that leverages novel-class information
from captioned images, it is able to surpass the teacher’s
performance. This is different from conventional knowl-
edge distillation works, where the student is bounded by the
teacher’s performance.

4. Experiments
We evaluate our proposed method, which is referred to as

XPM for Cross(X)-modal Pseudo Mask, for object detection
and instance segmentation on MS-COCO and Open Images
& Conceptual Captions datasets. Below, we discuss dataset
statistics, evaluation metrics, baselines, and implementation
details. We then present and analyze our performances on
both base and target classes under various settings. Finally,
we demonstrate the importance of each proposed compo-
nent via ablation study and show how our noise estimation
approach compares with other variants.

4.1. Experimental Setup

Datasets. Following the setup of [28], we perform experi-
ments on MS-COCO [98], which contains 48 base classes
with mask annotations and 17 target classes for evaluation.
The dataset is partitioned into 107,761 training images with
665,387 mask annotations from base classes and 4,836 test-
ing images consisting of 28,538 and 4,614 mask instances
for base and target classes, respectively. For captioned im-
ages, we use the entire MS-COCO training set with 118,287
images. Each image is annotated with five captions describ-
ing the visually-grounded objects in the image.

To show the effectiveness of our method on large num-
bers of images and classes, we use large-scale datasets:
Open Images [2] with 2.1M instance masks for 300 classes,
and Conceptual Captions [99] with 3M captioned images.
We propose to split Open Images classes into 200 most
common classes as base classes with mask annotations
while leaving the remaining 100 rarest classes as target
classes unknown to the model during training. Thus, we
simulate the real-world setting where the rare classes might
be unknown during training.
Evaluation Metrics. For both detection and segmentation
experiments, we report the mean Average Precision (mAP)
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Table 1. Object Detection (mAP) performances trained with bounding-box or mask supervision on base classes in MS-COCO under constrained setting,
which outputs either base or target classes, and generalized setting, which must predict all classes. Improvements w.r.t. to other baselines are highlighted in
blue. * indicates performances reported in [28] while we implement others.

Method
Bounding Box Supervision Instance Mask Supervision

Constrained Generalized Constrained Generalized
Base Target Base Target All Base Target Base Target All

Zero-Shot Training
SB∗ [24] 29.7 0.7 29.2 0.3 24.9 - - - - -

BA-RPN∗ [27] - 11.4 46.5 4.8 35.6 - - - - -
Caption Pretraining with [28]

OVR [28] 46.8 27.5 46.0 22.8 39.9 47.2 25.9 46.7 20.7 39.9
SB [24] 46.9 26.9 46.3 21.2 39.7 45.9 25.7 45.3 19.6 38.6

BA-RPN [27] 46.8 26.0 46.2 20.7 39.5 46.0 25.0 45.5 19.3 38.7
OVR+OMP [19] - - - - - 34.1 16.9 33.2 10.0 27.1

Pseudo-Labeling
Soft-Teacher [47] 47.4 18.8 47.1 12.4 38.0 46.6 16.0 46.2 10.4 36.8

Unbiased-Teacher [48] 47.5 20.5 47.2 13.8 38.4 46.6 16.8 46.1 10.8 36.9
Cap2Det∗ [97] - - 20.1 20.3 20.1 - - - - -
XPM (Ours) 46.8 29.9+2.4 46.3 27.0+4.2 41.2 47.3 33.2+7.3 46.3 29.9+9.2 42.0

Table 2. Instance Segmentation (mAP) performances in MS-COCO and Open Images & Conceptual Captions datasets.

Method
MS-COCO Open Images & Conceptual Captions

Constrained Generalized Constrained Generalized
Base Target Base Target All Base Target Base Target All

Caption Pretraining with [28]
OVR [28] 42.0 20.9 41.6 17.1 35.2 52.6 23.8 45.6 17.5 36.2
SB [24] 41.6 20.8 41.0 16.0 34.5 52.8 24.8 46.4 17.3 36.6

BA-RPN [27] 41.8 20.1 41.3 15.4 34.5 52.9 25.3 47.3 16.9 37.1
OVR+OMP [19] 31.3 14.1 30.5 8.3 24.7 52.5 24.9 47.1 16.8 36.9

Pseudo-Labeling
Soft-Teacher [47] 41.8 14.8 41.5 9.6 33.2 52.0 25.9 46.6 17.6 36.8

Unbiased-Teacher [48] 41.8 15.1 41.4 9.8 33.1 51.7 22.2 45.3 14.5 34.9
XPM (Ours) 42.4 24.0+3.1 41.5 21.6+4.5 36.3 55.1 31.6+5.7 49.8 22.7+5.1 40.7

at intersection-over-union (IoU) of 0.5 following conven-
tional zero-shot settings [24, 27, 28]. To analyze the perfor-
mances on base and target classes, we measure the mAP
scores in two settings: i) constrained setting where the
model is only evaluated on test images belonging to ei-
ther base classes or target classes; ii) generalized setting in
which a model is tested jointly on both base and target class
images. The latter setting is more challenging as it requires
the model to segment target classes and avoid the base-class
bias where the model detects target classes as base classes
with high confidence.

Baselines. We compare with SB [24], which assigns a
non-zero background embedding with norm one to pre-
dict different background score per bounding box, and
open vocabulary object detection OVR [28], which pre-
trains its embedding space on caption-image pairs. To
compare with conventional pseudo-labeling baselines, we
adapt Soft-Teacher [47] and Unbiased-Teacher
[48], which only use visual modality to construct pseudo
labels, by using embedding heads for novel class recogni-
tion. In addition, we include the state-of-the-art BA-RPN
[27] for zero-shot instance segmentation, which proposes

to synchronize background classifier between region pro-
posal network and detection heads to reduce background
confusion. We also combine OMP [19] with OVR, which
augment the class-agnostic mask head with spatial atten-
tion features from embedding head. Finally, to learn from
captions images, we compare with Cap2Det [97], which
produces pseudo labels for only target and base classes.

Implementation Details. To be comparable with [28], we
use Mask R-CNN architecture with ResNet50 backbone
from maskrcnn-benchmark code base. For training
the teacher model, we pretrain the backbone following [28]
for 150k iterations on MS-COCO and 200k on Conceptual
Captions using 8 V-100 GPUs with the batch size of 32
and the initial learning rate of 0.01. Then we finetune the
backbone on segmentation/detection tasks with the batch
size of 8 for 90k iterations and the learning rate of 0.001
on both MS-COCO and Open Images datasets to obtain
the teacher model. The student is initialized with teacher
weights and trained on pseudo and ground-truth labels for
an additional 70k iterations. We also downweight the de-
tection loss for background class to 0.2 to improve the re-
call of target classes, similar to [28]. For the robust student
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model, we set η = 0.01, which is the smallest average noise
level estimated offline on 10k captioned images. We use
the word embeddings from BERT trained on BookCorpus,
and English Wikipedia [95]. For training the noise estima-
tion module, gNoise, we use reparametrization trick [100] to
backpropagate gradients through the sampled noise value,
ε. Moreover, we do not optimize gnoise with respect to LαX ,
which would result in the trivial solution where the student
always predicts low-reliability scores to minimize the loss.

4.2. Experimental Results

Object Detection. We evaluate our method for the ob-
ject detection task under bounding box or mask supervi-
sion of base classes in Table 1 on MS-COCO. Based on
the base/target class results in the constrained setting and
the generalized setting, we make the following conclusions:
• Although using caption pretraining improves the perfor-
mance on target classes (under bounding box supervision)
over zero-shot training, this strategy does not work as well
for mask-level supervision. Since caption-based backbone
pretraining [28] can only learn high-level spatially-coarse
features of objects but not fine-grained object masks, fine-
tuning on mask annotations corrupts the learned backbone
and degrades its performances on target classes. This shows
the incompatibility between the mask prediction task and
the information encoded in the pretrained backbone.
• Soft-Teacher and Unbiased Teacher improve
the performance on base classes (under box-level super-
vision) over using caption pretraining alone. However, as
these baselines do not constrain their predictions based on
captions, they miss-label novel classes, which propagates
teacher error and degrades target-class performances. Al-
though Cap2Det conditions its pseudo labels on captions,
these labels come from a limited set of base and target
classes. Thus, Cap2Det cannot exploit the useful infor-
mation from other novel objects in the captions.
•With bounding box supervision, our method (without esti-
mating mask noises) significantly improves target class per-
formances by 2.4% and 4.2% in constrained and general-
ized settings, respectively. This shows the importance of
leveraging captions to improve the pseudo labeling of tar-
get classes without annotations. Moreover, with additional
mask annotations, we further gain 9.2% in performance on
target classes compared to state-of-the-art, which shows the
effectiveness of self-training on pseudo masks.

Instance Segmentation. To show the effectiveness of XPM,
we conduct instances segmentation experiments on both
MS-COCO and Open Images datasets. We report the re-
sults in Table 2 and conclude that:
• On MS-COCO, different background modeling tech-
niques in SB, BA-RPN have minimal impact on target-
class performances when combined with embedding-based

caption pretraining. On the other hand, explicitly trans-
ferring this knowledge from embedding to mask heads via
OMP significantly degrades the performances on base and
target classes. This is due to the insufficient amount of
base classes and training samples to learn meaningful Ob-
ject Mask Prior from the small-scale MS-COCO dataset.
• On the large-scale Conceptual Captions and Open Im-
ages datasets, both SB and BA-RPN improve target-class
segmentation in the constrained setting, as more accurate
background models can be learned from the larger number
of base classes in Open Images compared to MS-COCO.
We observe that conventional pseudo-labeling methods
Soft-Teacher, Unbiased Teacher have no sig-
nificant improvements over caption-pretraining baselines
since they cannot utilize textual modality in captioned im-
ages to spot novel classes correctly.
• Overall, our method achieves significant performance im-
provements of at least 4.5% and 5.1% mAP score com-
pared to other baselines in MS-COCO and Open Images
datasets, respectively. Moreover, in the Conceptual Cap-
tions and Open Images setting, we observe a compound ef-
fect – as a result of using a larger number of base classes
for training, our teacher model generalizes significantly bet-
ter on target classes. When labeling Conceptual Captions
with the teacher, we benefit from the significant increase in
pseudo labels’ quantity and quality. Thus, the student ob-
tains strong results on both base and target classes, with a
significant gain of 3.6% on all classes.
Ablation Study. Figure 6 shows our segmentation improve-
ments compared to the teacher model when introducing dif-
ferent components in our method, on both MS-COCO and
Open Images & Conceptual Captions. Adding the cross-
modal loss, LX , significantly improves the segmentation
performance over the teacher model, as the student can dis-
till rich knowledge from captioned images. Although the
mask loss, LM , improves target-class performance on MS-
COCO, it fails to improve with Conceptual Captions due to
noisy web captions. By regulating the cross-modal loss with
noise estimation, LαX , we gain further improvement on both
caption datasets by mitigating the error propagation from
teacher to student model.
Effectiveness of Robust Student. In Table 3, we experi-
ment with other methods on pseudo-mask noise estimation
and loss reweighting. We evaluate Stochastic BCE
[62] which learns pixel-wise noise to regulate mask loss,
LM . This method is unable to improve performances as it
cannot use mask noise to regulate the cross-modal loss for
classification. For the methods that regulate cross-modal
loss LαX , we consider Class Score which uses class
prediction confidences, Pixel Score [101] which esti-
mates mask quality by aggregating pixel-wise prediction
confidence, and DropOut Entropy [102] which com-
putes prediction entropy via multiple dropout passes. These
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Figure 4. Visualization of our mask predictions for base classes (in back box) and target classes (in red box) in the generalized setting.

Figure 5. Visualization of our mask predictions for novel classes in the wild with large-scale cross-modal pseudo-labeling.

Figure 6. Segmentation improvements w.r.t. the teacher model from
adding different proposed components to the student.

Table 3. Segmentation performances of different strategies for noise esti-
mation and loss weighting on Open Images.

Method Used on Base Target All

No Noise Estimation - 53.3 30.2 39.1
Stochastic BCE [62] LM 53.8 29.8 39.2
Class Score

LαX
54.0 28.4 38.8

Pixel Score [101] 53.2 30.1 38.5
DropOut Entropy [102] 53.6 29.7 38.5
Robust Student (Ours) LαX + LM 55.1 31.6 40.7

methods provide no significant improvements, as they are
trained on clean annotations of base classes and not adapted
to noisy pseudo masks. By learning to estimate the noise
levels of pseudo masks and regulating both LX ,LαM , we
achieve superior performances compared to No Noise
Estimation.

Qualitative Results. Figure 4 shows the mask predictions
of our methods for both base and target classes on MS-
COCO. Our method can correctly detect and segment mul-
tiple instances of target classes without any ground-truth
mask annotations during training. Moreover, our frame-
work maintains strong performances on base classes such
that it can correctly segment the base class “bus driver” (the
last example) within the target class “bus”.

We also visualize the pixel-wise noises for each object
in captions in Figure 3. We observe that a good pseudo

mask (e.g., ‘bear’) only has a few noisy pixels along its ob-
ject boundaries. Whereas, an incorrect pseudo mask (e.g.,
‘skateboard’) contains a large number of noisy pixels that
spread over large areas within the bounding boxes.
Large-Scale Cross-Modal Pseudo-Labeling. To demon-
strate the scalability of our method, we apply cross-modal
pseudo-labeling with multiple segmentation datasets (Open
Images [2], LVIS [3]), object detection dataset (Objects365
[103]), and caption dataset (Conceptual Captions [99]), to
create a high-performance student model. As shown in Fig-
ure 5, this strong student, trained with our method, suc-
cessfully generalized to novel classes such as “astronaut”
and “dinosaur”, which never appear in most segmentation
datasets. Moreover, we can segment the fine details of such
truly novel classes without any mask annotations.

5. Conclusions
We tackle the problem of open-vocabulary instance

segmentation by proposing a robust cross-modal pseudo-
labeling framework to provide mask supervision of novel
classes in captioned images for training segmentation mod-
els. We show the effectiveness of our method on both MS-
COCO and Open Images & Conceptual Captions datasets.
However, our method might not be suitable for learning
with limited base classes as we assume the base classes are
sufficiently diverse to enable novel-class generalization.
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