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Abstract

Transfer learning is a classic paradigm by which mod-
els pretrained on large “upstream” datasets are adapted to
yield good results on “downstream” specialized datasets.
Generally, more accurate models on the “upstream”
dataset tend to provide better transfer accuracy “down-
stream”. In this work, we perform an in-depth investi-
gation of this phenomenon in the context of convolutional
neural networks (CNNs) trained on the ImageNet dataset,
which have been pruned—that is, compressed by sparsifiy-
ing their connections. We consider transfer using unstruc-
tured pruned models obtained by applying several state-
of-the-art pruning methods, including magnitude-based,
second-order, re-growth, lottery-ticket, and regularization
approaches, in the context of twelve standard transfer tasks.
In a nutshell, our study shows that sparse models can match
or even outperform the transfer performance of dense mod-
els, even at high sparsities, and, while doing so, can lead
to significant inference and even training speedups. At
the same time, we observe and analyze significant differ-
ences in the behaviour of different pruning methods. The
code is available at: https://github.com/IST-
DASLab/sparse-imagenet-transfer.

1. Introduction
The large computational costs of deep learning have

led to significant academic and industrial interest in model
compression, defined roughly as obtaining smaller-footprint
models matching the accuracy of larger models. Model
compression is a rapidly-developing area, and several gen-
eral approaches have been investigated, of which pruning
and quantization are among the most popular [18, 28].

We focus our present study on weight pruning, whose
objective is to remove, by setting to zero, as many weights
as possible without losing model accuracy. Weight pruning
is, arguably, the compression method with the richest his-
tory [42] and is currently a very active research topic [28].
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Thanks to this trend, a set of fairly consistent accuracy
benchmarks has emerged for pruning, along with increas-
ingly efficient computational support [11, 20, 40, 52].

One major goal of model compression is to enable de-
ployment on edge devices. Such devices may naturally en-
counter different data distributions, so it is tempting to ask
how compressed models would perform for transfer learn-
ing, broadly defined as leveraging information from some
baseline “upstream” (“pretrained”) task in order to per-
form better on a “downstream” (“finetuning”) task. Specif-
ically, we mainly focus on a prototypical transfer learning
setup [36]: starting from models trained and compressed on
the ImageNet-1K dataset [60], we refine the resulting mod-
els onto several different target tasks. In this context, we ex-
amine the question of how well the resulting sparse models
transfer. Our motivation is both practical—sparse transfer
can provide speedups for both inference and training on the
downstream model—and analytical, as we aim to shed light
on the impact of sparsity on the resulting features.

Our study will consider two common transfer learning
variants: full finetuning, where all unpruned weights can be
optimized during transfer, and linear finetuning, where only
the final linear layer of the model is finetuned downstream.
While both are popular, we will see that they can lead to
different results. We additionally explore inference-time
speedups using a sparsity-aware inference engine [9], and
for the first time examine training-time speed-up achievable
for linear finetuning via sparse models. Furthermore, we
analyze the impact of different pruning methods and task
characteristics on transfer performance.

We consider the top-performing pruning methods in
terms of ImageNet accuracy, roughly split into three cat-
egories. The first is given by progressive sparsification
methods, which start from an accurate dense baseline and
proceed to gradually remove weights, followed by finetun-
ing. The prototypical example is gradual magnitude prun-
ing (GMP) [17,22,23,69], which uses absolute weight mag-
nitude as the pruning criterion. In addition, we examine
WoodFisher pruning [63], which leverages second-order in-
formation for highly-accurate pruning.

The second rough category is given by sparse regu-
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larized training methods, which perform network com-
pression, and possibly network re-growth, during the
training process itself. The top-performing methods
we consider here are Soft Threshold Reparametrization
(STR) [41], Alternating Compressed/DeCompressed Train-
ing (AC/DC) [57] and “The Rigged Lottery” (RigL) [12].

The final category comprises Lottery Ticket Hypothesis
(LTH)-style methods [5, 6, 14, 15]. These methods empha-
size the discovery of sparse sub-networks, which can yield
good accuracy when re-trained from scratch. Specifically,
we consider LTH for transfer (LTH-T) [5], which provides
state-of-the-art results among such methods.

We measure the transfer accuracy of sparse ImageNet
models obtained via these pruning methods. Our main tar-
get application is given by twelve classic transfer datasets,
described in Table 2, ranging from general datasets, to
more specialized ones. We mainly focus on the clas-
sic ResNet50 [26] model, but we extend our analysis to
ResNet18, ResNet34 and MobileNet-V1 [31], and we also
examine transfer performance for object detection tasks.
Contribution. We present the first systematic study of how
different pruning and transfer approaches impact transfer
performance. Our main finding is that sparse models can
consistently match the accuracy of the corresponding dense
models on transfer tasks. However, this behaviour is im-
pacted by the following factors: pruning method (e.g. regu-
larization vs. progressive pruning), transfer approach (full
vs. linear), model sparsity (e.g. moderate 80% vs. high
98% sparsity), and task type (e.g. degree of specialization).

We briefly outline our main conclusions, summarized in
Figure 1 and Table 1. For linear finetuning, sparse models
usually match and can slightly outperform dense models.
Yet, this is not true for all pruning methods: regularization-
based methods perform particularly well, even at high
sparsities (e.g. 95%). For full finetuning, which gen-
erally provides higher accuracies [36], sparse models are
also competitive with dense ones, but transfer accuracy is
more tightly correlated with accuracy on the ImageNet pre-
training task: consequently, less sparse models (e.g. 80%-
90% sparsity) tend to be more accurate than sparser ones.
Moreover, in this setting we find that progressive sparsi-
fication methods consistently produce models with higher
transfer accuracy, relative to regularization methods. We
provide a first analysis of this effect, linking it to structural
properties of the pruned models. In addition, we observe the
markedly lower accuracy of lottery-ticket approaches, espe-
cially at the higher levels of sparsity, e.g. � 90%, required
for computational speedups.

Given the difference in behaviour between linear and
full finetuning, we find that there is currently no single
“best” pruning method for transfer. However, using existing
methods, one can consistently achieve order-of-magnitude
(⇠ 90%) compression without loss of accuracy. In turn,

Transfer learning task

   Hardware or training   
    time constraints

   No hardware or training
          time constraints

  Specialized task
  (fine-grained)

Sparse 
regularization 

AC/DC, STR, RigL

Progressive 
sparsification

GMP, WoodFisher

Linear finetuning Full finetuning

General task
     (coarse-grained)

Any pruning 
strategy

Figure 1. Overview of a suggested decision process when selecting
the finetuning and pruning methods to maximize performance and
accuracy when doing transfer learning on pruned models.

these compression levels can lead to speedups of more than
3⇥ on sparsity-enabled runtimes. This suggests that sparse
transfer may have significant practical potential.

2. Background and Related Work
2.1. Sparsification Techniques

Recently, there has been significant research interest in
pruning techniques, and hundreds of different sparsification
approaches have been proposed; please see the recent sur-
veys of [17] and [28] for a comprehensive exposition. We
roughly categorize existing pruning methods as follows.

Progressive Sparsification Methods start from an accu-
rate dense baseline model, and remove weights progres-
sively in several steps, separated by finetuning periods,
which are designed to recover accuracy. A classic instance
is gradual magnitude pruning (GMP) [17,22,23,69], which
progressively removes weights by their absolute magnitude,
measured either globally or per layer. Second-order pruning
methods, e.g. [16, 24, 42, 63, 65] augment this basic metric
with second-order information, which can lead to higher ac-
curacy of the resulting pruned models, relative to GMP.

Regularization Methods are usually applied during
model training, via sparsity-promoting mechanisms. These
mechanisms are very diverse, from surrogates of `0 and `1-
regularization [41,67], to variational methods [53], to meth-
ods inspired by compressive sensing mechanisms such as
Iterative Hard Thresholding (IHT) [32, 33, 45, 57]. We also
consider the “The Rigged Lottery” (RigL) method [12],
which achieves close to state-of-the-art ImageNet results by
allowing for dynamic weight pruning and re-introduction
with long finetuning periods, to be a regularization method.

Lottery Ticket Hypothesis (LTH) Methods [14] start from
a fully-trained model, and often apply pruning in a single or
in multiple incremental steps to obtain a sparse mask over
the weights. They then restart training, but restricted to the
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Finetuning Sparsity Aircraft Birds Caltech-101 Caltech-256 Cars CIFAR-10 CIFAR-100 DTD Flowers Food-101 Pets SUN397
Linear 0% 49.2 ± 0.1 57.7± 0.1 91.9± 0.1 84.8± 0.1 53.4± 0.1 91.2± 0. 74.6± 0.1 73.5± 0.2 91.6± 0.1 73.2± 0. 92.6± 0.1 60.1± 0.

80% 55.2± 0.2 58.4± 0. 92.4± 0.2 84.6± 0.1 58.6± 0.1 91.4± 0. 74.7± 0.1 74.4± 0.1 93.0± 0. 73.9± 0. 92.5 ± 0.1 60.4± 0.
90% 56.6± 0.1 58.7 ± 0. 92.5± 0.1 84.5± 0.1 60.5 ± 0.1 91.0 ± 0. 74.3± 0. 73.8± 0.1 93.0 ± 0.1 73.8 ± 0. 92.0 ± 0.1 59.8 ± 0.1

Full 0% 83.6 ± 0.4 72.4 ± 0.3 93.5 ± 0.1 86.1 ± 0.1 90.3 ± 0.2 97.4 ± 0. 85.6 ± 0.2 76.2 ± 0.3 95.0 ± 0.1 87.3 ± 0.1 93.4 ± 0.1 64.8 ± 0.
80% 84.8 ± 0.2 73.4 ± 0.1 93.7 ± 0.1 85.4 ± 0.2 90.5 ± 0.2 97.2 ± 0.1 85.1 ± 0.1 75.7 ± 0.5 96.1 ± 0.1 87.4 ± 0.1 93.4 ± 0.1 64.0 ± 0.
90% 84.9 ± 0.3 72.9 ± 0.2 93.9 ± 0.3 84.8 ± 0.1 90.0 ± 0.2 97.1 ± 0. 84.4 ± 0.2 75.5 ± 0.4 96.1 ± 0.1 87.3 ± 0.2 92.7 ± 0.3 63.0 ± 0.

Table 1. Best transfer accuracies at 80% and 90% sparsity for linear and full finetuning, relative to dense transfer. For each downstream
task, we present the maximum test accuracy across all sparse methods, highlighting the top accuracy. (We highlight multiple methods when
confidence intervals overlap. Results are averaged across five and three trials for linear and full finetuning, respectively.) Note that in all
but three cases (all full finetuning), there is at least one sparse model that is competitive with or better than the dense baseline.

given mask. Training restarts either from intialization [14],
or by “rewinding” to an earlier point during training of the
dense model [6, 7, 15]. (The random mask–initialization
combination is thought of as the “lottery ticket”.) Rewind-
ing appears to be required for stable results on large datasets
such as ImageNet [5, 6, 15].

The above categorization is clearly approximate: for in-
stance, LTH methods could be viewed as a special case
of progressive sparsification, where a specific finetuning
approach is applied. Moreover, it is not uncommon to
combine approaches, such as regularization and progressive
sparsification [28]. We provide a comparison of the efficacy
of these different approaches in the context of transfer learn-
ing, by considering multiple methods from each category.
To our knowledge, this is the first such detailed study.

Top-1 test accuracy is the standard metric for comparing
pruning methods. We also adopt this metric for examining
accuracy in the context of transfer, as no such study exists.
Yet, we wish to highlight recent work [29, 30, 44] which
examines the robustness of pruned models to input pertur-
bations, as well as the impact of pruning on accuracy of
specific segments of the data.

2.2. Transfer Learning and Sparsity

Dense Transfer Learning. A large body of literature
has established that, in general, deep learning architectures
transfer well to smaller “downstream” tasks, and that full
finetuning typically achieves higher accuracy than linear
finetuning [36, 61]. (A very recent study [39] suggests that
this may be inverted on out-of-distribution tasks.) These
findings extend to related tasks, such as object detection and
segmentation [51]. Kolesnikov et al. [35] have focused on
factors determining the success of transfer learning, and on
developing reliable fine-tuning recipes. This has been fur-
ther extended by Djolonga et al. [10], who concluded that
increasing the scale of the original model and dataset sig-
nificantly improves out-of-distribution and transfer perfor-
mance, despite having marginal impact on the original ac-
curacy. Salman et al. [61] considered whether adversarially
robust ImageNet classifiers can outperform standard ones
for transfer learning, and find that this can indeed be the

case. We complement these studies by examining sparse
models and pruning methods.
Sparse Transfer Learning. One of the earliest works to
consider transfer performance for pruned models was [54],
whose goal was to design algorithms which allow the prun-
ing of a (dense) convolutional model when transferring on a
target task. (A similar study was performed by [62] for lan-
guage models.) By contrast, we focus on the different set-
ting where models have already been sparsified on the up-
stream dataset, and observe higher sparsities that the early
study of [54].

Recent work on sparse transfer learning has focused
specifically on models obtained via the “Lottery Ticket
Hypothesis” (LTH) approach [14], which roughly states
that there exist sparsity masks and initializations which al-
low accurate sparse networks to be trained from scratch.
There are several works investigating the “transferrability”
of models obtained via this procedure for different tasks: for
instance, [50] shows that lottery tickets obtained on the CI-
FAR dataset can transfer well on smaller downstream tasks,
while [6, 19] investigate the applicability of lottery tickets
for pre-trained language models (BERT), and object recog-
nition tasks, respectively. Mallya et al. [49] considered the
related but different problem of adapting a fixed network to
multiple downstream tasks, by learning task-specific masks.

The recent work of [5] considers the transfer perfor-
mance of LTH for transfer, proposing LTH-T, and finding
that this method ensures good downstream accuracy at mod-
erate sparsities (e.g., up to 80%). We consider a similar
setting, but investigate a wider array of pruning methods
(including LTH-T) and additional transfer datasets. Specif-
ically, we are the first to compare LTH-T to competitive up-
stream pruning methods. We observe that, on full finetun-
ing, most pruning methods consistently outperform LTH-T
in terms of downstream accuracy across sparsity levels, by
large margins at high sparsities.

3. Sparse Transfer on ImageNet
3.1. Experimental Choices

Transfer Learning Variants. We consider both full fine-
tuning, where the entire set of features is optimized over the
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Dataset Number of Classes Train/Test Examples Accuracy Metric

SUN397 [66] 397 19 850 / 19 850 Top-1
FGVC Aircraft [48] 100 6 667 / 3 333 Mean Per-Class

Birdsnap [1] 500 32 677 / 8 171 Top-1
Caltech-101 [43] 102 3 060 / 6 084 Mean Per-Class
Caltech-256 [21] 257 15 420 / 15 187 Mean Per-Class

Stanford Cars [37] 196 8 144 / 8 041 Top-1
CIFAR-10 [38] 10 50 000 / 10 000 Top-1

CIFAR-100 [38] 100 50 000 / 10 000 Top-1
Describable Textures (DTD) [8] 47 3 760 / 1 880 Top-1

Oxford 102 Flowers [55] 102 2 040 / 6 149 Mean Per-Class
Food-101 [4] 101 75 750 / 25 250 Top-1

Oxford-IIIT Pets [56] 37 3 680 / 3 669 Mean Per-Class

Table 2. Datasets used as downstream tasks for transfer learning.

downstream dataset, and linear finetuning, where only the
last layer classifier is finetuned, over sparse models. In the
former case, with the exception of the final classification
layer, only the nonzero weights of the original model are
optimized, and the mask is kept fixed, as well as the batch
normalization (BN) parameters.

We do not consider from-scratch training and pruning on
the downstream task, for two reasons. First, from-scratch
training is often less accurate than (dense) transfer learn-
ing in the same setting [36, 51]. As our experiments will
show, transfer from sparse models can often match or even
slightly outperform transfer from dense models. Second,
since training from scratch is typically less accurate than
transfer [36], it seems unlikely that training and pruning
from scratch will outperform sparse transfer. We give ev-
idence for this claim in Appendix A. One practical advan-
tage of this approach is not needing hyper-parameter tuning
with respect to compression on the downstream dataset.
Network Architectures. Our study is based on an in-
depth analysis of sparse transfer using the ResNet50 ar-
chitecture [26]. This architecture has widespread practical
adoption, and has been extensively studied in the context
of transfer learning [36, 61]. Importantly, its compressibil-
ity has also emerged as a consistent benchmark for CNN
pruning methods [28]. We further validate some of our
findings on ResNet18, ResNet34 and MobileNet [31] archi-
tectures. In addition, we investigate transfer between two
classical object detection tasks, MS COCO [46] and Pascal
VOC [13], using variants of the YOLOv3 architecture [59].
Sparsification Methods. For our study, we chose the
pruning methods providing top validation accuracy for each
method type in Section 2.1. For progressive sparsification
methods, we use the leading WoodFisher [63] and Gradual
Magnitude Pruning (GMP) [17,22,23,69] methods. For reg-
ularization methods, we consider the leading Soft Thresh-
old Weight Reparametrization (STR) [41], and Alternat-
ing Compression/Decompression (AC/DC) [57] methods.
Additionally, we include the “The Rigged Lottery” (RigL)
method [12] with Erdős-Rényi-Kernel (ERK) weight den-
sity. Compared to STR and AC/DC, RigL extends the train-
ing schedules on ImageNet by up to 5x, and does sparse

Sparsity Method Original
Validation

Reassessed
Labels

ImageNetV2
(Average)

0% Dense 76.8% 83.1% 72%

80% AC/DC 76.2% 82.9% 71.8%
STR 75.5% 81.9% 70.3%

WoodFisher 76.7% 83.2% 72.3%
GMP 76.4% 82.9% 71.6%

RigL ERK 1x 74.8% 81.3% 70.2%
RigL ERK 5x 75.8% 81.6% 70.6%

90% AC/DC 75.2% 82.2% 70.6%
STR 74.0% 80.9% 69.1%

WoodFisher 75.1% 82.4% 71.1%
GMP 74.7% 81.6% 70.1%

RigL ERK 1x 73.2% 80.0% 67.9%
RigL ERK 5x 75.7% 81.9% 70.6%

95% AC/DC 73.1% 80.4% 68.6%
STR 70.4% 77.9% 66.0%

WoodFisher 72.0% 79.8% 67.6%
RigL ERK 1x 70.1% 77.5% 65.5%
RigL ERK 5x 74.0% 80.8% 69.0%

Table 3. Accuracy of the pruning methods we use, at different
sparsity levels, evaluated on different ImageNet validation sets.

training for most of the optimization steps. We consider
both the standard version or RigL (RigL ERK 1x), and the
variant with 5x training iterations (RigL ERK 5x). Finally,
for LTH Methods, we consider the LTH-for-Transfer (LTH-
T) method of [5], which precisely matches our setting. In
this version, the authors apply the masks obtained through
progressive sparsification methods directly to the original
trained ImageNet dense model, and evaluate the transfer
accuracy of this masked model through full finetuning on
different downstream tasks.

We focus on unstructured pruning, as these methods are
the most studied in the pruning literature, have well es-
tablished benchmarks, and achieve the best trade-off be-
tween accuracy and compression. We include results for
full finetuning from models with structured sparsity in
Appendix J, showing that, given a fixed accuracy level
upstream, structured-sparse models tend to underperform
unstructured-sparse models for transfer.

When available, we use original sparse PyTorch check-
points, and the exact architectures used by the upstream
models. However, since the STR and RigL models were
trained using label smoothing, which has been shown in
[36] to decrease transfer accuracy, we used retrained ver-
sions of these models on ImageNet, without label smooth-
ing. The results we discuss in the following sections are
for these versions, which indeed perform better, particularly
on linear finetuning (see Appendix I). We manually ported
RigL checkpoints from TensorFlow to PyTorch (see Table
3 for all ImageNet results).

Downstream tasks and training. We follow [61] in using
the twelve standard transfer benchmark datasets described
in Table 2, which span several domains and sizes. We trans-
fer all parameters of the upstream model except for the last
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(fully connected) layer, which is adjusted to the number of
classes in the downstream task, using Kaiming uniform ini-
tialization [25], and kept dense. This may slightly change
the sparsity of the model, as in some cases the final layer
was sparse. As a convention, when discussing sparsity lev-
els, we refer to the upstream checkpoint sparsity. We pro-
vide full training hyperparameters in Appendix B.
Performance metrics. The main quantity of interest is
the top-1 validation accuracy on each transfer task, mea-
sured for all the pruned models, as well as for the dense
baselines. In some cases, we use the mean per-class val-
idation accuracy following the convention for that dataset
(see Table 2). To determine the overall “transfer potential”
for each pruning method, we further present the results ag-
gregated over the downstream tasks. Since datasets we use
for transfer learning have varying levels of difficulty, as re-
flected by the wide range of transfer accuracies, we compute
for each downstream task and model the relative increase in
error over the dense baseline. Specifically, if B is the base-
line dense model, then for every downstream task D and
sparse model S we define the relative increase in error as
↵D,S = errD,S�errD,B

errD,B
, where errD,S is the error corre-

sponding to the top validation accuracy for model S trained
on dataset D. For each pruning method and sparsity level,
we report the mean and standard error of ↵D,S , computed
over all downstream tasks.

We also examine the computational speedup potential
of each method, along with its accuracy. For inference-
time speedups, our findings are in line with previous work,
e.g. [11,57,63]. We will therefore focus on the training-time
speedup potential in the case of linear finetuning, which are
usually close to inference-time speedups, as the only differ-
ence is the training time of the classifier layer.

3.2. Validation Accuracy on ImageNet Variants
To set a baseline, we first examine accuracies on the

original ImageNet validation set, and on different versions
of this validation set. Namely, we use the ImageNet “re-
assessed labels” [2], where the original ImageNet valida-
tion images are re-assessed by human annotators. We also
use three different ImageNetV2 validation sets [58], where
the new images with a similar data distribution are gath-
ered based on different criteria. We report the average Ima-
geNetV2 accuracy across these three variants in Table 3.
Discussion. We observe that RigL ERK 5x outperforms all
methods on the original validation set at 90% and 95% spar-
sity, followed by AC/DC, GMP and WoodFisher. At 80%
sparsity, WoodFisher has the best original validation accu-
racy, followed closely by GMP and AC/DC. However, de-
spite the gap in original validation accuracy between RigL
ERK 5x and other methods, the results on new variants of
the validation set still reveal some interesting patterns. For
example, WoodFisher outperforms all methods at 80% and

90% sparsity on the reassessed labels, followed closely by
AC/DC. This is true also for ImageNetV2, where Wood-
Fisher outperforms all methods at 80% and 90% sparsity.
At 95% sparsity, however, RigL ERK 5x outperforms all
methods considered, including on the reassessed labels and
ImageNetV2, and is followed by AC/DC. Generally, the ac-
curacies on the reassessed labels and ImageNetV2 correlate
well with those on the original images, which suggests that
top performing methods can “extrapolate” well.

3.3. Linear Finetuning
Next, we study the transfer performance of different

types of pruning methods in the scenario where only the
linear classifier “on top” of a fixed representation is trained
on the downstream task. Specifically, we study the sim-
ple setup where the features prior to the final classification
layer of the pre-trained model are extracted for all samples
in the transfer dataset and stored into memory for use when
training the downstream linear classifier. Although this ap-
proach typically results in lower accuracy relative to full
finetuning [36, 61], it has significant practical advantages.
Specifically, the features can be precomputed, which elimi-
nates the forward passes through the pretrained network. In
this setup, we do not apply any data augmentation on the
transfer samples and we use the Batch Normalization statis-
tics of the pretrained network on ImageNet.

We optimize the linear classifier using SGD with mo-
mentum, weight decay and learning rate annealing, follow-
ing [61]. (The results are typically well-correlated with
those obtained when using data augmentation during train-
ing, or using different optimizers [36]). In Section 3.6,
we show that training speed-ups can also be obtained in
an online learning setup, where new samples are executed
through the backbone network, by taking advantage of the
backbone sparsity.

The results for linear finetuning are shown in Figure 2,
and Appendix Table C.1. We exclude the LTH-T method
from this analysis, as it is designed for full finetuning, and
its transfer accuracy in the linear scenario is indeed very low
(see Appendix Table C.1).

Overall, the results clearly show that the choice of prun-
ing strategy on the upstream task can result in significant
differences in performance on downstream tasks. These
differences are more apparent for specialized downstream
tasks, with fine-grained classes. For example, consider Air-
craft, where for 80% sparse models we see a 15% gap
in top-1 test accuracy between the best-performing sparse
models (AC/DC and RigL, 55%) and the worst-performing
one (WoodFisher, 40%).

Following this observation, we study the correlation be-
tween the downstream task difficulty and relative increase
in error for different pruning strategies. For this purpose,
we use the difference in top-1 validation accuracy between
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Figure 2. (top row) Validation accuracy for selected pruning strategies at 80% sparsity. (bottom row) Average increase in validation error
relative to the dense baseline; lower values are better. Best viewed in color.

full and linear finetuning on the dense backbone as a proxy
for the difficulty of a downstream task. Intuitively, a small
gap between full and linear finetuning would suggest that
the upstream features are directly transferable, and thus the
downstream task can be considered “easy”. Conversely, a
large gap would indicate that the pre-trained features are
not enough to capture the internal representation of the data,
making the downstream task more “difficult”. Additionally,
we categorize the downstream tasks into general (Caltech-
101/256, CIFAR-10/100, DTD, SUN397) vs. specialized
(Aircraft, Birds, Cars, Flowers, Food-101, Pets); this is sim-
ilar to previous work [36]. Figure 3 suggests that special-
ized datasets tend to have higher difficulty scores.

Following this definition and categorization, we mea-
sure, for each pruning strategy, the relative error increase
over the dense model against the task difficulty. Figure 3
shows the behavior for all pruning methods considered at
80% and 90% sparsity. Interestingly, we observe a trend
for regularization methods (AC/DC, STR, RigL) to improve
over the dense baseline with increased task difficulty, which
is more apparent at higher sparsity (90%). In contrast,
progressive sparsification methods (GMP, WoodFisher) do
not show a similar behavior. This suggests that regulariza-
tion pruning methods are a better choice for linear transfer
(sometimes even surpassing the dense performance) when
the downstream task is more specialized or more difficult.

Another particularity of linear finetuning from sparse

models is that the sparsity level is not highly correlated with
the performance on the downstream tasks. This is apparent,
for example, for AC/DC and RigL, where, despite the 1-2%
gap in ImageNet accuracy between the 80% and 90% sparse
models, the relative error with respect to the dense baseline
stays quite flat. A similar trend can be observed for other
pruning methods as well. However, extremely sparse mod-
els (98%) tend to perform worse, probably due to feature
removal and degradation.

In summary, we observe that 1) some sparsification
methods can consistently match or even sometimes out-
perform dense models; 2) there is a correlation between
transfer performance for regularization-based methods and
downstream task difficulty; and 3) higher sparsity is not
necessarily a disadvantage for transfer performance.

3.4. Full Finetuning

We now consider the full finetuning scenario. Here, we
re-initialize the final classification layer and fix it as dense,
then finetune the unpruned weights so that the network is
sparse throughout training. The results are summarized in
Figure 2, and detailed in Appendix Table C.2.

Similar to linear finetuning, we see substantial perfor-
mance variations among pruning strategies when trans-
ferred to the downstream tasks. Typically, progressive spar-
sification methods (WoodFisher, GMP) tend to transfer bet-
ter than regularization and lottery ticket methods. The dif-
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Figure 3. Effect of task difficulty on various pruning strategies for
transfer with linear finetuning. Best viewed in color.

ferences in test accuracy, measured at the same sparsity
level, are typically small, on the order of 1–3%; the excep-
tion is LTH-T, which is competitive at low sparsity (80%)
but incurs severe accuracy drops at sparsities � 90%.

In contrast to linear finetuning, we see a consistent trend
of decreasing quality with increased sparsity. This is not
surprising, since full finetuning can take advantage of the
additional parameters available in denser models to better fit
the downstream data. Nevertheless, progressive sparsifica-
tion methods (GMP and WoodFisher) result in downstream
performance nearly on par with dense models at 80% and
90% sparsity. These methods show better performance than
regularization-based methods (AC/DC, STR, and RigL), a
direct reversal of the results of linear finetuning.

For specific downstream tasks, however, there is consid-
erable variability—while WoodFisher and GMP are con-
sistently the top or near-top performing models across all
tasks, other methods show considerable task dependence.
For instance, while AC/DC is the top performing method
across different sparsities for three of the twelve tasks
(SUN397, Caltech-256, and DTD), it shows a consider-
able gap compared to the best-performing methods on Air-
craft, Cars, and CIFAR-10. Generally, STR performs worse
on full finetuning, compared to other regularization meth-
ods. Finally, RigL ERK 1x performs roughly on par with
AC/DC despite having a lower validation accuracy on Im-
ageNet; however, the extended training of RigL ERK 5x
gives the tansfer accuracies a considerable boost, putting
RigL ERK 5x almost on par with WoodFisher, especially
at higher sparsities. This finding opens the intriguing pos-
sibility that extended training may be beneficial for prun-
ing methods in the full finetuning regime. Finally, LTH-
T shows fairly competitive performance at 80% sparsity,
but its transfer accuracy declines dramatically on six of the
twelve datasets (SUN397, Caltech-101, Caltech-256, DTD,
Flowers, and Pets) as sparsity increases. Since the LTH-T
model relies mainly on transferring the sparsity mask across

tasks, this suggests that the additional information present
in the weights, leveraged by other methods, may be benefi-
cial.

In sum, if the goal is to perform full finetuning on down-
stream tasks, then progressive sparsification methods are a
good choice. They consistently outperform regularization
methods across a wide range of tasks, and offer comparable
performance to the dense backbone at 80% and 90% spar-
sity.

3.5. Discussion
The results of the last two sections show an intriguing

performance gap between pruning methods, depending on
the transfer approach. Investigating further, we examine
the sparse structure of the resulting pruned models by mea-
suring the percentage of convolutional filters that are com-
pletely pruned away during the training phase of the sparse
ResNet50 backbones on the original ImageNet dataset. We
observe that AC/DC has a large number of channels that are
fully removed during ImageNet training and pruning, on av-
erage 2-4 more at 80% and 90% sparsity, compared to other
models; this results in fewer features that can be trained dur-
ing full finetuning. By contrast, the sparsity in GMP and
WoodFisher is less structured and thus can express addi-
tional features, which can be leveraged during finetuning.
We present the exact numbers for all methods in the Ap-
pendix E and further illustrate this in Appendix J, where we
fully finetune from models with structured sparsity.

In the case of linear finetuning, we hypothesize that the
accuracy reversal in favor of AC/DC can be attributed to
a regularizing effect, which produces more “robust” fea-
tures. The same effect appears to be present in RigL ERK
5x at 95% sparsity, which also has significantly many fully-
pruned filters.

3.6. Training Speed-Up using Linear Finetuning
One of the main benefits of sparse models is that they

can provide inference speed-ups when executed on sparsity-
aware runtimes [11, 40, 57, 63]. For linear finetuning, this
can also imply training time speed-ups, since the sparse
backbone is fixed, and only used for inference. We illustrate
this in an “online learning” setting, where training samples
arrive dynamically at the device. We first compute the cor-
responding features using the sparse backbone. Then, we
use these features to train the linear classifier. Thus, the
forward pass can benefit from speed-ups due to sparsity.

To measure these effects, we integrated the freely-
available sparsity-aware DeepSparse CPU inference en-
gine [9, 40] into our PyTorch pipeline. Specifically, we use
sparse inference for online feature extraction. We report
overall training speedup, in terms of average training time
per epoch on the downstream task, divided by the average
training time using the dense baseline. We use batch size
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Figure 4. Average epoch time vs. gap in validation accuracy, com-
pared to the dense baseline. Results are shown for four differ-
ent downstream tasks, using linear finetuning from ResNet50 90%
sparse models. Lower is better; best viewed in color.

64 and data augmentation; otherwise, hyperparameters are
identical to the linear finetuning experiment in Section 3.3.
We execute on an Intel E5-1650 CPU with 12 cores, which
would be similar in performance to a recent laptop CPU.
The speed-ups we report are proportional to the inference
speed-ups of the respective sparse backbone models. The
only difference is the cost of optimizing the last layer, which
varies in size with the number of classes.

Figure 4 shows results on four downstream tasks,
Pets, Flowers, DTD and Caltech-101, where the backbone
ResNet50 models have 90% sparsity. We report the training
speed-up vs. the difference in validation accuracy, com-
pared to the dense baseline. Results show that using sparse
backbones can reduce training time by 2-3x for linear trans-
fer, without negative impact on validation accuracy. Addi-
tional numbers are provided in Appendix D.4.

4. Extensions

ResNet18/34 and MobileNet Experiments. We have
also executed a subset of the experiments for ResNet18,
ResNet34 and MobileNetV1 [31] models trained on Ima-
geNet. These results largely validate our analysis above,
and are therefore deferred to the Appendix. Specifically,
regularization-based methods also match or slightly out-
perform dense ones on linear transfer. However, for Mo-
bileNetV1, we observe that sparse models can match the
dense baseline transfer performance only at lower sparsities
(up to 75%), probably due to the lower parameter count.
Structured Sparsity Experiments. We also performed
full finetuning using models with structured sparsity, for
both ResNet50 and MobileNet. Our findings, presented
in Appendix J, show that structured-sparse models tend to
transfer worse compared to unstructured methods.
Sparse Transfer using YOLO. We also examined transfer
performance between YOLO V3 [59] and YOLO “V5” [64]

Architecture YOLOv3 YOLOv5S YOLOv5L
Pruning 90% Sparsity 75% Sparsity 85% Sparsity

COCO Dense 64.2 55.6 65.4
COCO Pruned 62.4 53.4 64.3

VOC Dense Transfer 86.0 83.73 90.0
VOC Pruned Transfer 84.0 81.72 89.35

Table 4. Accuracies for Sparse Transfer from COCO to VOC.

models for object detection, trained and pruned on the
COCO dataset [46], which are then transferred to the VOC
dataset [13] using full finetuning. Table 4 presents results
in terms of mean Average Precision (mAP@0.5). Results
show a strong correlation between accuracy on the original
COCO dataset and that on VOC, confirming our claims. We
observed similar trends in a segmentation setup, which we
cover in Appendix K.

5. Conclusions and Future Work
We performed an in-depth study of the transfer perfor-

mance of sparse models, and showed that pruning meth-
ods with similar accuracy on ImageNet can have surpris-
ingly disparate Top-1 accuracy when used for transfer learn-
ing. In particular, regularization-based methods perform
best for linear finetuning; conversely, progressive sparsifi-
cation methods such as GMP and WoodFisher tend to work
best when full finetuning is used. One limitation of our
study is that it only investigated accuracy as a measure of
performance for transfer learning tasks. Additional research
is needed towards designing pruning strategies with good
performance across both linear and full finetuning, and to-
wards considering metrics past Top-1 accuracy, such as bias
and robustness. Another limitation is that we considered a
(standard) fixed set of transfer datasets; our study should be
extended to other, more complex transfer learning scenar-
ios, such as distributional shift [34]. Further investigation
could also systematically examine other types of compres-
sion, such as quantization and structured pruning, poten-
tially in conjunction with unstructured pruning, which was
the focus of our current study. Other interesting areas for
future work would be understanding the performance gap
between full finetuning and linear finetuning, and realizing
training speedups for sparse full finetuning, by taking ad-
vantage of the fixed sparsity in the trained model.
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