
Coarse-to-Fine Q-attention: Efficient Learning for
Visual Robotic Manipulation via Discretisation

Stephen James, Kentaro Wada, Tristan Laidlow, Andrew J. Davison
Dyson Robotics Lab

Imperial College London
{slj12, k.wada18, t.laidlow15, a.davison}@imperial.ac.uk

Abstract

We present a coarse-to-fine discretisation method that en-
ables the use of discrete reinforcement learning approaches
in place of unstable and data-inefficient actor-critic meth-
ods in continuous robotics domains. This approach builds
on the recently released ARM algorithm, which replaces
the continuous next-best pose agent with a discrete one,
with coarse-to-fine Q-attention. Given a voxelised scene,
coarse-to-fine Q-attention learns what part of the scene to

‘zoom’ into. When this ‘zooming’ behaviour is applied it-
eratively, it results in a near-lossless discretisation of the
translation space, and allows the use of a discrete action,
deep Q-learning method. We show that our new coarse-
to-fine algorithm achieves state-of-the-art performance on
several difficult sparsely rewarded RLBench vision-based
robotics tasks, and can train real-world policies, tabula rasa,
in a matter of minutes, with as little as 3 demonstrations.

1. Introduction

In this paper, we are interested in a general real-world ma-
nipulation algorithm that can use a small number of demon-
strations, along with a small amount of sparsely-rewarded
exploration data, to accomplish a diverse set of tasks, both in
simulation and the real world. To develop such an approach,
two paradigms come to mind: imitation learning (IL) and re-
inforcement learning (RL). Imitation learning methods, such
as behaviour cloning, suffer from compounding error due
to covariate shift, while reinforcement learning suffers from
long training times that often require millions of environment
interactions. Recently however, Q-attention and the ARM
system [14] has been shown to bypass many flaws that come
with reinforcement learning, most notably the large training
burden and exploration difficulty with sparsely-rewarded and
long-horizon tasks.

Unfortunately, like many modern continuous control RL
algorithms, ARM’s next-best pose agent follows an actor-
critic paradigm, which can be particularly unstable when

Figure 1. C2F-ARM learns sparsely-rewarded tasks with only
3 demonstrations. Real-world tasks include: turning on a light,
pulling cloth from shelf, pulling a toy car, taking a lid off a saucepan,
and folding a towel.

learning from sparsely-rewarded and image-based tasks [14]:
two properties that are particularly important for robot ma-
nipulation tasks. In this paper, we re-examine how best to
represent the continuous control actions needed for robot ma-
nipulation, abandoning the standard actor-critic approach, in
favour of a more stable discrete action Q-learning approach.
The challenge therefore becomes how to effectively discre-
tise 6D poses. Discretisation of rotation and gripper action
is trivial given its bounded nature, but translation remains
challenging given that is usually a much larger space. We
solve this problem via a coarse-to-fine Q-attention, where we
start with a coarse voxelisation of the translation space, use
3D Q-attention to identify the next most interesting point,
and gradually make the resolution higher at each point.

With this new coarse-to-fine Q-attention, we present our
Coarse-to-Fine Attention-driven Robotic Manipulation (C2F-
ARM) system. We benchmark the system in simulation
against other robot learning algorithms from both the re-

13739

Figure 2. Summary of coarse-to-fine Q-attention. Observation data (RGB and point cloud) from M cameras are given to each depth of the
Q-attention. Each depth of the Q-attention gives the locations of the most interesting point in space (at the current resolution), which is then
used as the voxel centroid for the Q-attention at the next depth. Intuitively, this can be thought of as ‘zooming’ into a specific part of the
scene to gain more accurate 3D information. The highlighted red voxel corresponds to the highest value.

inforcement learning and imitation learning literature, and
show that C2F-ARM is more sample-efficient and stable
to train than other methods. We also show that C2F-ARM
is capable of learning 5 diverse sets of sparsely-rewarded
real-world tasks from only 3 demonstrations.

To summarise, the paper presents the following three
contributions: (1) A novel way to discretise the transla-
tion space via coarse-to-fine Q-attention, allowing us to
discard the often unstable actor-critic framework for a sim-
pler deep Q-learning approach. (2) Our manipulation sys-
tem, C2F-ARM, which uses the coarse-to-fine Q-attention
along with a control agent to achieve sample-efficient learn-
ing of sparsely-rewarded tasks in both simulation and real-
world. (3) The first use of a voxel representation for
vision-based reinforcement learning for 6D robot manipula-
tion. Code in supplementary material, and videos found at:
sites.google.com/view/c2f-q-attention.

2. Related Work
Learning for manipulation. Recent trends in learning

for manipulation have seen continuous-control reinforce-
ment learning algorithms, such as PPO [34], DDPG [22],
TD3 [4], and SAC [8], trained on a variety of tasks, including
cloth manipulation [23], lego stacking [7], pushing [28], and
in-hand manipulation [29]. These approaches rely on the
actor-critic formulation, which is often sample-inefficient
and unstable to train. One effort to decrease instability in-
volves using alternative policy parameterisations over Gaus-
sian ones, e.g., the Bignham distribution for a next-best pose
action [12]. Alternatively, discretisation results in a signif-

icant reduction to the action space, as well as the use of
simpler approaches, such as Q-learning. Our work is not the
first use of discrete actions for visual manipulation; James
et al. [15] discretised the joint space, where in each step the
agent could choose to move one of the 6 joints by 1 degree.
An alternative to discretising the joint space, is to discretise
the planar workspace, where pixels from a top-down camera
act as high-level actions, such as grasping [26], pushing [43],
and pick-and-place [42]. However, it is unclear how these
can extend beyond top-down pick-and-place tasks, such as
some of the ones featured in this paper, e.g. stacking wine
and taking an object from a shelve. Our paper presents a
full 6D manipulation system that can extend to a range of
tasks, not just top-down ones. The term ‘coarse-to-fine’ has
recently been used in the context of grasp detection [40], but
with a different meaning, where the coarse part is a grasp
confidence grid, and the fine part refers to a refinement stage
of the coarse prediction. Our work on the other hand uses
coarse-to-fine to refer to the idea that our Q-attention ‘zooms’
into a specific part of the scene to gain more accurate 3D
information. Related to our coarse-to-fine mechanism is the
work of Gualtieri et al. [5,6], which takes in a point-cloud (in
heightmap form) and gradually zooms into a local region to
generate a grasp and place location; however, this work is re-
stricted ‘pick-and-place’ tasks, while our method is a general
6D manipulation algorithm where the arm has full autonomy
to move anywhere in the scene, with no pre-programmed
‘grasp’ and ‘place’ motions. This results in a system that
can be applied to a range of tasks without modification, as is
evident by our RLBench and real-world experiments.

13740

Voxel representation for manipulation. Modelling
3D environments via voxels dates back as far as the
1980s [25,32]. Since a voxel grid can store arbitrary values in
each voxel, prior work has used it for various representations
(geometry, semantics, learned features) for navigation and
manipulation. Most works that explore voxel representations
use them for navigation [3, 10, 11]; however, there are some
notable exceptions from the manipulation domain. Wada et
al. [38] used a voxel grid to store occupancy and semantics
of objects in a cluttered scene to select the next target object
and grasp point. MoreFusion [39] is a system that uses vox-
els to perform multi-object reasoning to improve 6D pose
estimation; the system gives accurate object poses and can
perform precise pick-and-place in cluttered scenes. Recently,
it has become common to use a voxel representation with a
learning-based model. Song et al. [35] and Breyer et al. [2]
fed a voxel grid representation to a neural network to gener-
ate 6DoF grasp actions; these works differ to ours in that they
consider grasping in a supervised learning domain, where as
our system falls within the realm of reinforcement learning
with a full 6D action space, where grasping is but only one
component. Moreover, reinforcement learning brings with it
many challenges that are not present in supervised learning,
e.g. exploration, sparse rewards, and long-horizon planning.
The only work we are aware of that uses voxels with RL
is in a task to find a red cube in clutter [27]; however the
task assumes access to both and object detector and planar
workspace, and the voxel grid is not processed directly by
the RL agent, but instead is cropped and flattened to a small
68 dimensional vector. Our coarse-to-fine voxelisation al-
lows us to directly process the 3D voxel grid of the whole
scene, and does not assume access to a planar workspace or
an object detector.

3. Background

3.1. Reinforcement Learning

The reinforcement learning paradigm assumes an agent
interacting with an environment consisting of states s ∈ S,
actions a ∈ A, and a reward function R(st,at), where st
and at are the state and action at time step t respectively.
The goal of the agent is then to discover a policy π that
results in maximising the expectation of the sum of dis-
counted rewards: Eπ[

∑
t γ

tR(st,at)], where future rewards
are weighted with respect to the discount factor γ ∈ [0, 1).
Each policy π has a corresponding value function Q(s, a),
which represents the expected return when following the
policy after taking action a in state s.

The Q-attention module [14] (discussed in Section 3.2)
builds from Deep Q-learning [24]; a method that approx-
imates the value function Qψ, with a deep convolutional
network, whose parameters ψ are optimised by sampling
mini-batches from a replay buffer D and using stochastic

gradient descent to minimise the loss: E(st,at,st+1)∼D[(r+
γmaxa′ Qψ′(st+1,a

′)−Qψ(st,at))2], where Qψ′ is a tar-
get network; a periodic copy of the online networkQψ which
is not directly optimised.

3.2. Attention-driven Robot Manipulation (ARM)

ARM [14] introduced several core concepts that facilitate
the learning of vision-based robot manipulation tasks. These
included Q-attention, keypoint detection, demo augmenta-
tion, and a high-level next-best pose action space. Most
notable of these is the Q-attention, which is used in this work
to discretise the large translation space. We briefly outline
Q-attention below.

Given an observation, o (consisting of an RGB image,
b, an organised point cloud, p, and proprioceptive data,
z), the Q-attention module, Qθ, outputs 2D pixel loca-
tions of the next area of interest. This is done by ex-
tracting the coordinates of pixels with the highest value:
(x, y) = argmax 2Da′ Qθ(o,a

′), where argmax 2D is an
argmax taken across two dimensions. These pixel loca-
tions are used to crop the RGB image and organised point
cloud inputs and thus drastically reduce the input size to the
next stage of the pipeline; this next stage is an actor-critic
next-best pose agent. The parameters of the Q-attention are
optimised by using stochastic gradient descent to minimise
the loss:

JQ(θ) = E(ot,at,ot+1)∼D[(r+ γmax 2D
a′

Qθ′(ot+1,a
′)

−Qθ(ot,at))2 + ∥Q∥], (1)

where Qθ′ is the target Q-function, and ∥Q∥ is the Q reg-
ularisation — an L2 loss on the per-pixel output of the Q
function.

Keyframe discovery and demo augmentation were an-
other two important techniques introduced in ARM [14].
Rather than simply inserting demonstrations directly into
the replay buffer, the keyframe discovery strategy chooses
interesting keyframes along demonstration trajectories that
are fundamental to training the Q-attention module. Demo
augmentation stores the transition from intermediate points
along a trajectory to the keyframe states, rather than storing
the transition from an initial state to a keyframe state. This
greatly increases the amount of initial demo transitions in the
replay buffer. This is not specific to Q-attention, and is ap-
plied to all methods (including baselines) in this work. Note
that keyframe discovery is crucial for training our coarse-
to-fine Q-attention agent, as the keyframes act as explicit
supervision to help guide the Q-attention to choose relevant
areas to ‘zoom’ into during the initial phase of training.

4. Method
Our system, C2F-ARM (Algorithm 1), can be split into

2 core phases. Phase 1 (Section 4.1) consists of the coarse-

13741

Algorithm 1 Coarse-to-Fine Attention-driven Robot Manipulation (C2F-ARM)

Initialise the N Q-attention networks Qθ1 , . . . , QθN with random parameters θ1, . . . , θN .
Initialise the rotation & gripper Q network Qϕ with random parameters ϕ ⊂ θN .
Initialise target networks θ′1 ← θ1, . . . , θ

′
N ← θN .

Initialise replay buffer D with demos and apply keyframe selection and demo augmentation
for each iteration do

for each environment step t do
ot ← (bt,pt, zt)
c0 ← Scene centroid
coords← [] ▷ List to keep coords of each Q-attention depth
for each (n of N) Q-attention depths do

vn ← V(ot, e
n, cn) ▷ Voxelise with given resolution & centroid

(xn, yn, zn)← argmax 3Da′ Qθn(v
n,a′) ▷ Use Q-attention to get voxel coords

coords.append((xn, yn, zn))
if n == N then

α, β, γ, ω ← argmaxah Qhϕ(ṽ
N ,ah) for h ∈ {0, 1, 2, 3} ▷ Rotation & gripper from bottleneck features ṽN

cn+1 ← (xn, yn, zn) ▷ Voxel coords give centroid of next Q-attention depth
at ← (cN , α, β, γ, ω) ▷ The next-best pose
ot+1, r← env.step(at) ▷ Use motion planning to bring us to the next-best pose.
D ← D ∪ {(ot,at, r,ot+1, coords)} ▷ Store the transition in the replay buffer

for each gradient step do
θn ← θn − λQ∇̂θnJQ(θn) for n ∈ {0, . . . , N} ▷ Update parameters
θ′n ← τθn + (1− τ)θ′n for n ∈ {0, . . . , N} ▷ Update target network weights

to-fine 3D Q-attention agent, which starts by voxelising the
entire scene in a coarse manner, and then recursively makes
the resolution finer until we are able to extract a continuous
6D next-best pose. Phase 2 (Section 4.2) is a low-level
control agent that accepts the predicted next-best pose and
executes a series of actions to reach the given goal pose.
Before training, we fill the replay buffer with demonstrations
using keyframe discovery and demo augmentation [14].

The system assumes we are operating in a partially ob-
servable Markov decision process (POMDP), where an ob-
servation o consists of an RGB image, b, an organised point
cloud, p, and proprioceptive data, z. Actions consist of a 6D
(next-best) pose and gripper action, and the reward function
is sparse, giving 100 on task completion, and 0 for all other
transitions.

4.1. Coarse-to-fine Q-attention

The key contribution of this paper is the discretisation
of the translation state space via the Q-attention, thereby
allowing discrete-action reinforcement learning algorithms
to be used for recovering continuous actions. Our method
formulates the translation prediction as a series of coarse-to-
fine deep Q-networks which accepts voxelised point cloud
features, and outputs per-voxel Q-values. The highest-valued
voxel represents the next-best voxel, whose location is used
as the centre of a higher-resolution voxelisation in the next
step. Note that ‘higher-resolution’ could be interpreted in

one of 3 ways: (1) keeping the volume the same but increas-
ing the number of voxels, (2) keeping the number of voxels
the same but reducing the volume, or (3) a combination of
both. We opt for (2), as this gives us the higher resolution,
while keeping the memory footprint low. Intuitively, this
coarse-to-fine Q-attention can be thought of as ‘zooming’
into a specific part of the scene to gain more accurate 3D
information, whereas formally, each Q-attention agent op-
erates at different resolutions to view the same underlying
POMDP. The coarse-to-fine prediction is applied several
times, which gives near-lossless prediction of the continu-
ous translation. Rotation and gripper action prediction is
simpler due to its bounded nature; these are predicted in the
final depth of the Q-attention as an additional branch. The
coarse-to-fine Q-attention is summarised in Figure 2.

Formally, we define a voxelisation function vn =
V(o, en, cn), which takes the observation o, a voxel res-
olution en, and a voxel grid centre cn, and returns a
voxel grid vn ∈ Rxyz(3+M+1) at depth n, where n is the
depth/iteration of the Q-attention, and where each voxel
contains the 3D coordinates, M features (e.g. RGB values,
features, etc), and an occupancy flag.

Given our Q-attention functionQθn at depth n, we extract
the indicies of the voxel with the highest value:

vnijk = argmax 3D
a′

Qθn(v
n,a′), (2)

where vijk is the extracted voxel index located at (i, j, k),

13742

and argmax 3D is an argmax taken across three dimensions
(depth, height, and width).

By offsetting the centre of the current voxelisation
with the extracted indicies, we can trivially extract the
(xn, yn, zn) location of that voxel. For ease of read-
ability, we henceforth assume that argmax 3D also per-
forms the conversion to world coordinates, to directly give
(xn, yn, zn). As the extracted coordinates represent the next-
best coordinate to voxelise at a higher resolution, we set
these coordinates to be the voxel grid centre c for the next
depth: cn+1 = (xn, yn, zn). However, if this is the last
depth of the Q-attention, then cN = cn+1 represents the
continuous representation of the translation (i.e. the transla-
tion component of the next-best pose agent).

Due to the fact that the rotation space and gripper space
is much smaller than the translation, we can resort to a much
simpler Q-value prediction. The rotation of each axis is
discretised in increments of 5 degrees, while the gripper is
discretised to be either open or closed. These components
are recovered from an MLP branch (with parameters ϕ) of
the final Q-attention depth:

α, β, γ, ω ← argmax
ah

Qhϕ(ṽ
N ,ah) for h ∈ {0, 1, 2, 3},

(3)
where α, β, γ represent the individual rotation axis, ω is the
gripper action, and ṽN are the bottleneck features from the
final Q-attention depth. We empirically found the discretisa-
tion of the rotation axis to be robust to a range of values from
1 to 10. The final action then becomes at = (cN , α, β, γ, ω).

The coarse-to-fine Q-attention shares the same motivation
that was was laid out in ARM [14], i.e. that our gaze focuses
sequentially on objects being manipulated [20], however, its
role in the manipulation system is different. ARM [14] uses
Q-attention to reduce the image resolution to a next-best
pose phase (by cropping 128×128 observations to 16×16),
while the role of coarse-to-fine Q-attention is to discretise
the otherwise large translation space. This highlights the
versatility of Q-attention.

4.2. Control Agent

The control agent remains largely unchanged from
ARM [14]. Given the next-best pose output from the previ-
ous stage, we give this to a goal-conditioned control function
f(st,gt), which given state st and goal gt, outputs motor
velocities that moves the end-effector towards the goal. This
function can take on many forms, but two noteworthy solu-
tions would be either motion planning in combination with
a feedback-control or a learnable policy trained with imita-
tion/reinforcement learning. Given that the environmental
dynamics are limited in the benchmark, we opted for the
motion planning solution.

Given the target pose, we perform path planning using
the SBL [33] planner within OMPL [36], and use ‘Reflexxes

Motion Library’ for on-line trajectory generation. If the tar-
get pose is out of reach, we terminate the episode and supply
a reward of −1. For the simulated experiments, the path
planning and trajectory generation is conveniently encapsu-
lated by the ‘EndEffectorPoseViaPlanning’ action mode in
RLBench [16], while for the real-world experiments, we use
ROS to handle the planning and trajectory generation.

Once the agent reaches the end of the trajectory, the
new observation is given ot+1, and is stored in the re-
play buffer as experience for the coarse-to-fine Q-attention:
D ← D ∪ {(ot,at, r,ot+1, coords)}, where D is the re-
play buffer, and coords is the list of extracted coordinates
(xn, yn, zn) for n ∈ {0, . . . , N}.

4.3. Network Architecture

Each Q-attention layer follows a light-weight U-Net
style architecture [31], but uses 3D convolutions rather than
2D ones. Our U-Net encoder features 3 Inception-style
blocks [37], with 64 input-output channels, and a 3× 3 max-
pool after each block, while our U-Net decoder features 3
Inception-Upsample-Inception blocks. Note that the final
Q-attention layer is also used for the rotation and gripper
prediction; this is achieved by concatenating the maxpooled
and soft-argmax values after each of the Inception blocks
in the decoder, and sending them through 2 fully connected
layers each with 256 nodes. Finally, these features are passed
through a final fully-connected layer which gives the rotation
and gripper discretisation. The initial voxel centroid was set
to be the centre of the scene. Voxelisation code has been
adapted from Ivy [21].

5. Results
The results can be broken into three core sections: (1)

simulation results using RLBench [16] to benchmark our
algorithm against other popular robot learning algorithms
using only the front-facing camera. (2) additional simulation
results in RLBench where we evaluate our method on addi-
tional tasks and perform an ablation study into the robustness
of the coarse-to-fine approach. (3) Real-world results where
we show that the sample-efficiency in simulation is also
present when training from scratch in the real world.

5.1. Simulation

For our simulation experiments, we use RLBench [16].
RLBench was chosen due to its emphasis on vision-based
manipulation benchmarking and because it gives access to
a wide variety of tasks with demonstrations. Each task has
a completely sparse reward of 100 which is given only on
task completion, and 0 otherwise. In the following set of
experiments, unless otherwise stated, our method uses a
coarse-to-fine depth of 2, each with a voxel grid size of
163. All methods get the same observations (RGB and point
clouds), and have the same action space (next-best pose).

13743

Figure 3. Learning curves for 8 RLBench tasks. In addition to our method (C2F-ARM), we include the same baselines as in previous work:
ARM [14], BC, SAC+AE [41], DAC [18] (an improved, off-policy version of GAIL [9]), SQIL [30], and DrQ [19]. To further show the
sample efficiency of C2F-ARM, our method only receive 10 demos, while all other baselines receiving 100 demos, giving baseline methods
a big advantage. Demos are stored in the replay buffer prior to training; giving baseline methods a big advantage. Solid lines represent the
average evaluation over 5 seeds, where the shaded regions represent the standard deviation across those trials. Evaluation starts at step 100.

5.1.1 Comparison to other Robot Learning Methods

To compare to other robot learning methods, we select the
same 8 tasks as in James et al. [14]; these are task that are
achievable from using only the front-facing camera. Figure 3
shows the results of this comparison. We selected a range of
common baselines from the imitation learning and reinforce-
ment learning literature; these include: include ARM [14],
behavioural cloning (BC), SAC+AE [41], DAC [18] (an im-
proved, off-policy version of GAIL [9]), SQIL [30], and
DrQ [19]. Each of these baselines outputs a 7D action; 6D
for the pose, and 1D for the gripper state. The control agent
(as described in Section 4.2) is then used to take the arm to
the outputted pose. This means that all baselines act as an
alternative to the coarse-to-fine Q-attention. Baselines use
the same architectures as presented in James et al. [14].

All methods (C2F-ARM, ARM, BC, SAC+AE, DAC,
SQIL, and DrQ) feature keyframe discovery and demo aug-
mentation [14], and receive the same demonstration se-
quences, which are loaded into the replay buffer prior to
training. Note that C2F-ARM does not require as many
demonstrations as the other methods (as is evident in Section
5.2), and so is given only 10 demos, while baselines receive
100 (giving only 10 demos to baselines made performance
significantly worse).

The results in Figure 3 show that our method outperforms

ARM [14] by a large margin; either by attaining an overall
higher performance, or attaining the same performance but
in substantially fewer environment steps. The particularly
poor performance of conventional actor-critic methods high-
lights their instability in challenging vision-based, sparsely-
rewarded tasks. We wish to stress that perhaps given enough
training time some of these baseline methods may eventually
start to succeed, however we found no evidence of this. To
get the reinforcement learning baselines to successfully train
on these tasks, it would most likely need access to privileged
simulation-only abilities (e.g. reset to demonstrations, asym-
metric actor-critic, auxiliary tasks, or reward shaping); this
would then render the approach impractical for real-world
training. Real-world reward shaping in particular is very
cumbersome; for example, shaping the reward for our real
world ‘lifting saucepan lid’ task would first require us to
build a lid tracking system, before reward design can even
begin. Moreover, reward shaping is notoriously difficult to
get right as the complexity of the task increases [29].

In terms of wall-clock time, the inference time is in-
creased by a factor of 2 due to the use of 3D convolutions
over the baselines use of 2D convolutions; however the in-
ference time is negligible compared to the time it takes for
the arm to navigate to the next-best pose. We also note as
a purely qualitative observation, that C2F-ARM required

13744

Figure 4. Learning curves for 4 additional RLBench tasks that are difficult or impossible to achieve with only the front-facing camera. The 3
cameras used are the wrist, left shoulder, and right shoulder. Solid lines represent the average evaluation over 5 seeds, where the shaded
regions represent the standard deviation across those trials.

Figure 5. Investigation of the Q-attention depth and voxel volume
across the ‘take_lid_off_saucepan’ and ‘put_rubbish_in_bin’ tasks.
The numbers in the brackets indicate the coarse-to-fine depth along
with the voxel grid size; e.g. (8, 8) represents a coarse-to-fine depth
of 2, each with voxel grid size of 83.

little to no hyperparameter tuning, while baselines required
a substantial amount.

5.1.2 Multi-camera and Ablations

The second set of simulation experiments evaluates C2F-
ARM with multiple cameras. One of the weaknesses of
ARM [14] was its inability to trivially handle multi-camera
environments; for this reason, tasks were chosen that could
be done with only the front-facing camera. However, for
real-world robotics, it is unreasonable to expect that a sin-
gle camera will always contain the information required to
accomplish a task; in reality, robotic systems are required
to fuse information from multiple cameras into a single rep-
resentation. For this reason, Figure 4 shows an additional
4 tasks from RLBench which we believe to be difficult to
accomplish by only using the front-facing camera. For each
of these tasks, we run our method using 3 cameras (wrist,

left shoulder, and right shoulder), and compare this to using
only the front-facing camera. Because all cameras are fused
into a single voxel grid, no part of the system needs to be
modified when using additional cameras. The results in Fig-
ure 4 clearly show that these tasks cannot be done with only
a single camera, and that C2F-ARM can perform well when
given the appropriate camera information.

For the final set of simulation experiments, we evaluate
how robust C2F-ARM is when altering the number of coarse-
to-fine depth and the volume of the voxels. Figure 5 shows
that our method is robust to a range of coarse-to-fine depths
and voxel grid sizes, though note that as the voxel grid
size and coarse-to-fine depth jointly decrease, performance
begins to deteriorate. Note that the coarsest setup (8, 8)
understandably performs the worst, as there are only two
layers of a very coarse 83 voxel grid, making the scene
understanding phase difficult, particularly at the finest phase,
where each voxel will contain many points. We hypothesise
that voxelising image features (rather than raw RGB values)
would perform better at these coarser setups; we leave this
for future work. Figure 5 also suggests that increasing the
voxel grid size leads to better performance, though note that
this will lead to a larger memory footprint. Note, that if
memory is a limiting factor, then performance gains can be
had by simply increasing the coarse-to-fine depth, with only
a small increase to the memory footprint; i.e. the memory
footprint of an additional depth (e.g. (8, 8) → (8, 8, 8)) is
significantly less than the footprint of moving to a larger
voxel grid size (e.g. (8, 8)→ (16, 16)).

5.2. Real World

To further show the sample efficiency of our method,
we train on 5 real-world tasks from scratch, which can be
seen in Figure 6. At the beginning of each episode, the
objects in the tasks are moved randomly within the robot

13745

Figure 6. Two examples of successful trials performed with C2F-ARM on the tasks: turn on light, pull cloth from shelf, pull toy car, take lid
off saucepan, and fold towel. The agent only received 3 demonstrations. Each column for each tasks shows the RGB-D observations at
t = 0, t = T/2, and t = T .

workspace. We train each of the tasks until the agent achieves
4 consecutive successes. The approximate time to train each
task are: pulling cloth from shelf (∼ 26 minutes), pulling
a toy car (∼ 18 minutes), taking a lid off a saucepan (∼ 6
minutes), folding a towel (∼ 24 minutes), and turning on
a light (∼ 42 minutes). We use the Franka Emika Panda,
and a single RGB-D RealSense camera. All tasks receive 3
demonstrations which are given through the HTC Vive VR
system. These qualitative results are best seen via the full,
uncut training video of each of the 5 tasks, located on the
project website.

6. Discussion and Conclusion

We have presented Coarse-to-Fine Attention-driven
Robot Manipulation (C2F-ARM), which is an algorithm that
utilises a coarse-to-fine Q-attention and allows discretisation
of the translation space. With this discretisation, we are able
to diverge from unstable actor-critic methods and instead
use a more stable deep Q-learning method. The result is a
sample-efficient robot learning algorithm that outperforms
others and can rapidly learn real-world tasks.

C2F-ARM can be considered as an improved, discrete-
action version of ARM [14]. There are 3 key differences
to the original ARM system: (1) the role and architecture
of Q-attention has changed; in ARM, the role of the 2D
Q-attention was to act as a hard-attention that would give
crops to the actor-critic next-best-pose agent, whereas in
C2F-ARM the role of the 3D Q-attention is to be recursively
applied in a coarse-to-fine manner in order to discretise the
large translation space. (2) The number of stages in the
system has decreased; ARM was a 3-stage system, consisting
of Q-attention, next-best-pose agent, and the control agent,
whereas C2F-ARM removes the need for the actor-critic
next-best-pose agent, and so consists only of the coarse-to-
fine Q-attention and control agent. (3) C2F-ARM seamlessly
supports multiple cameras or a single moving camera; ARM
was not suited for multiple cameras, due to the undefined

behaviour when a camera observation did not feature any
interesting pixels, and was not suited for a moving camera
due to the potential that the crop size may be too small or
big to correctly crop when the camera was near or far to
an interesting object. C2F-ARM does not suffer this, as all
cameras are voxelised to a canonical world frame.

There are a number of areas for improvement. Currently,
only raw RGB and point-cloud data are stored in the vox-
els, but we hypothesise that instead voxelising pixel features
from a small 2D convolutional network could allow for more
expressive voxel values, especially when dealing with small
resolutions or a small number of coarse-to-fine Q-attention
layers. Another weakness is that we are restricted to keep-
ing the initial voxel resolution (at Q-attention depth 0) to
be reasonably small. This is not an issue when considering
manipulation on a fixed table, but becomes an issue when
considering mobile manipulation, where the resolution at
depth 0 may have to become very large to accommodate
voxelising an entire room or house; we look to investigat-
ing solutions to this in future work. Much like ARM [14],
the control agent uses path planning and on-line trajectory
generation, but will undoubtedly require improvement for
achieving tasks that have dynamic environments (e.g. mov-
ing target objects, moving obstacles, etc) or complex contact
dynamics (e.g. peg-in-hole). We are also keen to see if addi-
tional performance can be had by learning a fully-continuous
residual function on top of the output of the coarse-to-fine
network to further refine the output pose; however, we hy-
pothesise that tasks that require grater fine-grained control
will be needed for evaluation. The work that we are most
excited about is exploring the use of this system in multi-
task [17] and few-shot [1, 13] learning scenarios.

7. Acknowledgements

This work was supported by Dyson Technology Ltd.

13746

References
[1] Alessandro Bonardi, Stephen James, and Andrew J Davi-

son. Learning one-shot imitation from humans without hu-
mans. IEEE Robotics and Automation Letters, 5(2):3533–
3539, 2020. 8

[2] Michel Breyer, Jen Jen Chung, Lionel Ott, Roland Siegwart,
and Juan Nieto. Volumetric grasping network: Real-time 6
dof grasp detection in clutter. Conference on Robot Learning,
2020. 3

[3] Ivan Dryanovski, William Morris, and Jizhong Xiao. Multi-
volume occupancy grids: An efficient probabilistic 3D map-
ping model for micro aerial vehicles. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 1553–1559. IEEE, 2010. 3

[4] Scott Fujimoto, Herke Van Hoof, and David Meger. Address-
ing function approximation error in actor-critic methods. Intl.
Conference on Machine Learning, 2018. 2

[5] Marcus Gualtieri and Robert Platt. Learning 6-dof grasping
and pick-place using attention focus. In Conference on Robot
Learning, pages 477–486. PMLR, 2018. 2

[6] Marcus Gualtieri and Robert Platt. Learning manipulation
skills via hierarchical spatial attention. IEEE Transactions on
Robotics, 36(4):1067–1078, 2020. 2

[7] Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal,
Pieter Abbeel, and Sergey Levine. Composable deep rein-
forcement learning for robotic manipulation. In 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 6244–6251. IEEE, 2018. 2

[8] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George
Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Ab-
hishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018. 2

[9] Jonathan Ho and Stefano Ermon. Generative adversarial imi-
tation learning. Advances in Neural Information Processing
Systems, 2016. 6

[10] Armin Hornung, Mike Phillips, E Gil Jones, Maren Ben-
newitz, Maxim Likhachev, and Sachin Chitta. Navigation in
three-dimensional cluttered environments for mobile manipu-
lation. In 2012 IEEE International Conference on Robotics
and Automation, pages 423–429. IEEE, 2012. 3

[11] Armin Hornung, Kai M Wurm, and Maren Bennewitz. Hu-
manoid robot localization in complex indoor environments.
In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1690–1695. IEEE, 2010. 3

[12] Stephen James and Pieter Abbeel. Bingham policy parame-
terization for 3d rotations in reinforcement learning. arXiv
preprint arXiv:2202.03957, 2022. 2

[13] Stephen James, Michael Bloesch, and Andrew J Davison.
Task-embedded control networks for few-shot imitation learn-
ing. In Conference on Robot Learning, pages 783–795.
PMLR, 2018. 8

[14] Stephen James and Andrew J Davison. Q-attention: Enabling
efficient learning for vision-based robotic manipulation. IEEE
Robotics and Automation Letters, 2022. 1, 3, 4, 5, 6, 7, 8

[15] Stephen James and Edward Johns. 3D simulation for robot
arm control with deep Q-learning. Conference on Neural

Information Processing Systems Workshop (Deep Learning
for Action and Interaction), 2016. 2

[16] Stephen James, Zicong Ma, David Rovick Arrojo, and An-
drew J. Davison. RLBench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters,
2020. 5

[17] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Ben-
jamin Swanson, Rico Jonschkowski, Chelsea Finn, Sergey
Levine, and Karol Hausman. MT-Opt: Continuous multi-
task robotic reinforcement learning at scale. arXiv preprint
arXiv:2104.08212, 2021. 8

[18] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi,
Sergey Levine, and Jonathan Tompson. Discriminator-actor-
critic: Addressing sample inefficiency and reward bias in
adversarial imitation learning. Intl. Conference on Learning
Representations, 2019. 6

[19] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image aug-
mentation is all you need: Regularizing deep reinforcement
learning from pixels. arXiv preprint arXiv:2004.13649, 2020.
6

[20] Michael Land, Neil Mennie, and Jennifer Rusted. The roles
of vision and eye movements in the control of activities of
daily living. Perception, 28(11):1311–1328, 1999. 5

[21] Daniel Lenton, Fabio Pardo, Fabian Falck, Stephen James,
and Ronald Clark. Ivy: Templated deep learning for inter-
framework portability. arXiv preprint arXiv:2102.02886,
2021. 5

[22] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nico-
las Heess, Tom Erez, Yuval Tassa, David Silver, and Daan
Wierstra. Continuous control with deep reinforcement learn-
ing. Intl. Conference on Learning Representations, 2015.
2

[23] Jan Matas, Stephen James, and Andrew J Davison. Sim-to-
real reinforcement learning for deformable object manipula-
tion. Conference on Robot Learning, 2018. 2

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement learn-
ing. nature, 518(7540):529–533, 2015. 3

[25] H Moravec. Robot spatial perception by stereoscopic vision
and 3D evidence grids. Perception, 1996. 3

[26] Douglas Morrison, Peter Corke, and Jürgen Leitner. Closing
the loop for robotic grasping: A real-time, generative grasp
synthesis approach. Robotics: Science and Systems, 2018. 2

[27] Tonci Novkovic, Remi Pautrat, Fadri Furrer, Michel Breyer,
Roland Siegwart, and Juan Nieto. Object finding in cluttered
scenes using interactive perception. In IEEE Intl. Conference
on Robotics and Automation, pages 8338–8344. IEEE, 2020.
3

[28] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Woj-
ciech Zaremba, and Pieter Abbeel. Asymmetric actor critic
for image-based robot learning. Robotics: Science and Sys-
tems, 2018. 2

[29] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giu-
lia Vezzani, John Schulman, Emanuel Todorov, and Sergey
Levine. Learning complex dexterous manipulation with deep

13747

reinforcement learning and demonstrations. Robotics: Sci-
ence and Systems, 2018. 2, 6

[30] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil:
Imitation learning via reinforcement learning with sparse
rewards. arXiv preprint arXiv:1905.11108, 2019. 6

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer,
2015. 5

[32] Yuval Roth-Tabak and Ramesh Jain. Building an environment
model using depth information. Computer, 22(6):85–90, 1989.
3

[33] Gildardo Sánchez and Jean-Claude Latombe. A single-query
bi-directional probabilistic roadmap planner with lazy colli-
sion checking. In Robotics research, pages 403–417. Springer,
2003. 5

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 2

[35] Shuran Song, Andy Zeng, Johnny Lee, and Thomas
Funkhouser. Grasping in the wild: Learning 6dof closed-
loop grasping from low-cost demonstrations. IEEE Robotics
and Automation Letters, 5(3):4978–4985, 2020. 3

[36] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The
Open Motion Planning Library. IEEE Robotics & Automa-
tion Magazine, 19(4):72–82, December 2012. https:
//ompl.kavrakilab.org. 5

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015. 5

[38] Kentaro Wada, Kei Okada, and Masayuki Inaba. Probabilistic
3D multilabel real-time mapping for multi-object manipula-
tion. In 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 5092–5099. IEEE,
2017. 3

[39] Kentaro Wada, Edgar Sucar, Stephen James, Daniel Lenton,
and Andrew J Davison. MoreFusion: Multi-object reasoning
for 6D pose estimation from volumetric fusion. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 14540–14549, 2020. 3

[40] Bohan Wu, Iretiayo Akinola, and Peter K Allen. Pixel-
attentive policy gradient for multi-fingered grasping in clut-
tered scenes. In 2019 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 1789–1796.
IEEE, 2019. 2

[41] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos,
Joelle Pineau, and Rob Fergus. Improving sample efficiency
in model-free reinforcement learning from images. arXiv
preprint arXiv:1910.01741, 2019. 6

[42] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker,
Jonathan Chien, Maria Attarian, Travis Armstrong, Ivan
Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter
networks: Rearranging the visual world for robotic manipula-
tion. Conference on Robot Learning, 2020. 2

[43] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Al-
berto Rodriguez, and Thomas Funkhouser. Learning syner-
gies between pushing and grasping with self-supervised deep
reinforcement learning. In IEEE Intl. Conference on Intel-
ligent Robots and Systems, pages 4238–4245. IEEE, 2018.
2

13748

