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Abstract

The size and shape of the receptive field determine how
the network aggregates local features, and affect the over-
all performance of a model considerably. Many compo-
nents in a neural network, such as depth, kernel sizes, and
strides for convolution and pooling, influence the recep-
tive field. However, they still rely on hyperparameters, and
the receptive fields of existing models result in suboptimal
shapes and sizes. Hence, we propose a simple yet effective
Dynamically Optimized Pooling operation, referred to as
DynOPool, which learns the optimized scale factors of fea-
ture maps end-to-end. Moreover, DynOPool determines the
proper resolution of a feature map by learning the desirable
size and shape of its receptive field, which allows an oper-
ator in a deeper layer to observe an input image in the op-
timal scale. Any kind of resizing modules in a deep neural
network can be replaced by DynOPool with minimal cost.
Also, DynOPool controls the complexity of the model by in-
troducing an additional loss term that constrains computa-
tional cost. Our experiments show that the models equipped
with the proposed learnable resizing module outperform the
baseline algorithms on multiple datasets in image classifi-
cation and semantic segmentation.

1. Introduction
Despite the unprecedented success of deep neural net-

works in various applications including computer vi-

sion [12, 24, 39, 40], natural language processing [6, 33],

robotics [21], and bioinformatics [16], the design of the op-

timal network architecture is still a challenging problem.

While several handcrafted models exhibit impressive per-

formance in various domains, there have been substantial

efforts to identify the optimal neural network architecture

with associated operations automatically [17, 18, 22, 41].

However, hand-engineered architectures are prone to be

suboptimal and suffer from weak generalizability while the

approaches based on neural architecture search either incur

a huge amount of training cost or achieve minor improve-

ment due to limited search space.

Researchers have been investigating powerful and effi-

cient operations applicable to deep neural networks, which

include convolutions, normalizations, and activation func-

tions. However, they have not paid much attention to pool-

ing operations despite their simplicity and effectiveness in

aggregating local features. The size and shape of a re-

ceptive field are critical; too small or large a receptive

field may not be able to effectively recognize large or

small objects, respectively. The receptive field is deter-

mined by several factors in deep neural networks such as

the depth of a model, strides of operations, types of con-

volutions, etc. To design an efficient receptive field of an

operation, variants of convolution operations [5, 29, 43] or

special architectures with multi-resolution branches [11,

44] are widely adopted. However, these approaches rely

on delicately human-engineered hyperparameters or time-

consuming neural architecture search [46, 47].

To alleviate the suboptimality of human-engineered ar-

chitectures and operations, we propose Dynamically Opti-

mized Pooling operation (DynOPool), which is a learnable

resizing module that replaces standard resizing operations.

The proposed module finds the optimal scale factor of the

receptive field for the operations learned on a dataset, and,

consequently, resizes the intermediate feature maps in a net-

work to proper sizes and shapes. This relieves us from the

delicate design of hyperparameters such as stride of convo-

lution filters and pooling operators.

Our contributions are summarized as follows:

• Our work tackles the limitations of existing scaling op-

erators in deep neural networks that depend on pre-

determined hyperparameters. We point out the impor-

tance of finding the optimal spatial resolutions and re-

ceptive fields in intermediate feature maps, which are

still under-explored in designing neural architectures.

• We propose DynOPool, a learnable resizing module

that finds the optimal scale factors and receptive fields

of intermediate feature maps. DynOPool identifies the

best resolution and receptive field of a certain layer us-

ing a learned scaling factor and propagates the infor-

mation to the subsequent ones leading to scale opti-
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mization across the entire network.

• We demonstrate that the model with DynOPool outper-

forms the baseline algorithms on multiple datasets and

network architectures in the image classification and

semantic segmentation tasks. It also exhibits desirable

trade-offs between accuracy and computational cost.

Our paper is organized as follows. Section 2 presents ex-

isting related works and Section 3 introduces our motivation

for optimizing the size and shape of the receptive field and

feature map. We describe the technical details of DynOPool

in Section 4 and experimental results in Section 5. Last, we

conclude this work and discuss future works in Section 6.

2. Related Works
Neural architecture search Neural Architecture Search

(NAS) [22, 25, 31, 46, 47] is an AutoML method that opti-

mizes the structure of a deep neural network architecture by

formulating a hyperparameter setting with human inductive

bias as a learnable procedure. Previous approaches based on

reinforcement learning [31, 46, 47] require huge amount of

GPU time. Although several methods have been proposed

to accelerate the search process by sharing weights [31] or

gradient-based optimization [22, 25], they are still subopti-

mal due to search space constraints. There exist a couple of

prior works to search for input resolutions [13,41], but find-

ing the optimal feature size and shape for each layer is still

a challenging problem.

Dynamic kernel shape Recent approaches [8, 15, 30, 32,

37] adopt variants of convolutions that learn the sizes of

receptive fields dynamically. N-Jet [32] employs Gaussian

derivative filters to adapt kernel size using the scale-space

theory. CKConv [37] uses a continuous kernel parameter-

ization trick to implement kernels of diverse sizes without

additional cost. Similarly, FlexConv [8] utilizes the implicit

neural representation to generate large-bandwidth filters of

varying sizes. These methods identify the optimized recep-

tive fields by learning filter sizes while our approach does it

via learning the size of the feature map.

Learnable resizing modules Shape Adaptor [23] con-

trols the receptive field by direct learning of the feature map

size. It proposes a differentiable resizing module applicable

to a linear combination of a pooled feature map with a ratio

(e.g. 0.5 or 1.5) and a non-pooled map. However, the re-

sizing module is limited to selecting one of the pre-defined

ratios for upsampling or downsampling, and processing the

symmetric resizing only. Recently, DiffStride [34] presents

a spectral pooling method to determine the optimal stride of

the pooling layer. They find an appropriate feature map size

and shape by replacing downsampling in the spatial domain

with cropping in the frequency domain, where the cropping

window size is optimized.

3. Motivation

The information in an image is spread over various lev-

els of locality, and the CNN learns patterns with diverse

scales using a series of kernels to learn strong representa-

tions. Since the sizes and shapes of semantically meaningful

patterns differ greatly for each image, it is important to iden-

tify proper receptive fields and extract useful information

using the receptive fields from an image. However, the ex-

ploration of the optimal receptive field has not been studied

actively and the use of adaptive feature map size has hardly

been discussed so far although several previous works indi-

rectly learn the receptive field size via other methods such

as neural architecture search or design learnable receptive

fields with excessive constraints. This section presents why

a conventional receptive field with a fixed size and shape

is suboptimal and discusses how DynOPool tackles this is-

sue through toy experiments with VGG-16 [40] on CIFAR-

100 [19].

3.1. Asymmetrically Distributed Information

Datasets inherently have information asymmetry due to

domain characteristics. For example, the barcode image

does not have any information along the vertical direction

because the same value is repeated in the direction. There-

fore, it is desirable to concentrate on the horizontal direction

for representing the barcode images. The problem is that,

except for the images with the prior information like bar-

codes, the inherent asymmetry is not measurable in most

cases. Also, input resizing, which is often used as pre-

processing, sometimes leads to information asymmetry. In

human-designed networks, the aspect ratio of an image is

typically adjusted to satisfy the input specifications of mod-

els. However, the receptive fields in such networks are not

designed to handle the operations.

To demonstrate the potential of the proposed approach,

DynOPool, we perform experiments on CIFAR-stretch, a

toy dataset in which images of CIFAR-100 are vertically

stretched twice in the vertical direction and cropped ran-

domly to a size 32x32. As shown in Figure 1(a), DynOPool

adopts a wide feature map and extracts valuable informa-

tion more in the horizontal direction to achieve improved

performance compared to the human-designed model.

3.2. Densely or Sparsely Distributed Information

The level of locality is another interesting component for

designing optimal models. CNNs learn the complex repre-

sentations from an image by aggregating local information

in a cascaded manner. However, the value of the local infor-

mation depends heavily on the properties of each example.

For example, when an image is blurred, all micro patterns,

such as the texture of an object, are wiped out. In this case,

it would be better to extend the receptive field in early layers
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0.30G / 71.18% (0.31G / 69.49%)

(a) CIFAR-stretch

1.24G / 60.06% (1.26G / 56.70%)

(b) CIFAR-tile

1.18G / 67.82% (1.26G / 65.49%)

(c) CIFAR-large

Figure 1. We conduct toy experiments on CIFAR-100 with three different synthetic datasets; (a) random crop of a vertically stretched

image (b) tile a halved image in a 4×4 grid (c) quadruple a halved image. Although the contents are almost the same, the optimal size and

shape of each feature map is greatly different depending on the characteristics of input images. Unlike the human-designed model, which

has fixed feature map sizes, our models adjust the feature map sizes to maintain the optimal amount of information in each feature map,

leading to improved performance. The numbers in bold face fonts are GMACs and the accuracy given by DynOPool while the numbers in

parentheses are from human-designed models.

and concentrate on global information. On the other hand, if

an image contains plenty of class-specific information, e.g.,
texture, local patterns would be more important.

To verify the hypothesis, we construct two variants of the

CIFAR-100 dataset, CIFAR-tile and CIFAR-large, as shown

in Figure 1. To this end, we first downsample the original

images in CIFAR in half and construct 16 × 16 images.

Then, we tile the downsampled image in a 4×4 for CIFAR-

tile, and upsample the downsampled images to size 64× 64
for CIFAR-Large.

As expected, our models illustrated in Figure 1(b) and

(c) outperform the human-designed model by large mar-

gins. Although both datasets are constructed with the same

set of base images of size 16 × 16, the learned networks

by DynOPool have different shapes; our model trained on

CIFAR-tile has larger feature maps than the model trained

on CIFAR-large in the early layers. Note that DynOPool for

the CIFAR-tile prefers to employ small receptive fields at

the beginning of the network because the tiled objects are

very small. On the other hand, our model for the CIFAR-

large is encouraged to have large receptive fields in the low

level because the input image is magnified from a small one

and it makes sense to observe large areas in the early layers.

4. Proposed Method

We discuss the proposed learnable resizing module, re-

ferred to as DynOPool, in detail, which includes its concept,

optimization, and practical benefits.

4.1. Dynamically Optimized Pooling (DynOPool)

The resizing module in DynOPool, which accepts an in-

put feature map, xin ∈ R
Hin×Win , and returns a resized out-

put, xout ∈ R
Hout×Wout , is defined and optimized as follows.

Input 
feature grid

Output 
feature grid

Bilinear 
interpolation

Aggregation 
function

Figure 2. Overview of the proposed resizing module, DynOPool

(best viewed in color). We optimize the scale factor r = (rh, rw)
between a pair of input and output feature maps, denoted by xin

and xout, respectively. The brown dot p represents the center of a

grid cell in xout while the green crosses indicate four query points

q in the same cell. The representation of qi is given by bilinear

interpolation of the features corresponding to the four nearest pix-

els in xin. An output feature of a grid cell in xout is derived by the

feature aggregation of the four query points, where a simple ag-

gregation function such as max-pooling is typically employed.

4.1.1 Design of DynOPool

Figure 2 illustrates how DynOPool works. DynOPool first

divides the feature map xin into an Hout ×Wout grid as

Hout = �Hin · rh�
Wout = �Win · rw�,

(1)

where r = (rh, rw) indicates the scale factor for height and

width of a feature map and �·� is a round operation. Assum-

ing that (−1,−1) and (1, 1) are the normalized coordinates

of the top-left and bottom-right corners of xin, the size of a

grid cell in the output feature map becomes 2
Hout

× 2
Wout

.

Then, given a grid cell centered at p = (ph, pw), the
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positions of the four query points are defined as

q = (ph ± δh, pw ± δw)

=

(
ph ± 1

4
· 2

Hout

, pw ± 1

4
· 2

Wout

)
,

(2)

where δ = (δh, δw) denotes the displacement from p. The

representation of each query point is given by bilinear inter-

polation of four nearest grid cells in xin. Then, DynOPool

aggregates the four feature vectors and returns the output

representation of each grid cell in xout. We choose max-

pooling as an aggregation function, but any other function

can replace max-pooling as long as it is effective to compute

abstract representations from multiple local features.

The primary benefits of DynOPool with the optimized

scale factor r are twofold. First, the location of four query

points q are also optimized because δ is a function of r.

Second, by obtaining the best resolution of an intermedi-

ate feature map through the optimization of r, DynOPool

adaptively controls the size and shape of receptive fields in

deeper layers with other operators intact.

4.1.2 Optimization

The rescaling module is defined by a combination of (1)

and (2), which are based on simple operations. However,

the rounding operations are not differentiable and hinder

the optimization procedure of DynOPool. To remedy this is-

sue, we leverage a differentiable quantization trick, which is

a well-known continuous relaxation technique for discrete

random variables [14, 26]. Then the rescaling modules are

given by reformulating the round functions as follows:

Hout = �Hin · rh�+Hin · rh − sg(Hin · rh), (3)

Wout = �Win · rw�+Win · rw − sg(Win · rw), (4)

where sg(·) indicates a stop gradient operator [1]. Note that

(3) and (4) allow us to feedforward the original discrete val-

ues �Hin ·rh� and �Win ·rw� while backpropagating through

their continuous surrogate functions Hin · rh and Win · rw.

Although the optimization is now feasible, there remains

an additional challenge in learning the scale factor r. As ex-

pressed in (2), the rescaling module involves the displace-

ment function, δ, which depends on r. However, the gra-

dient with respect to r is unstable when either rh or rw is

small because the gradient is inversely proportional to r2h or

r2w as
dδh
drh

∝ − 1

r2h
and

dδw
drw

∝ − 1

r2w
(5)

Since this gradient explosion results in significant changes

in the resolution of xout during training, we reparameterize

r using α = [αh, αw] as follows:

[αh, αw] = [r−1
h , r−1

w ]. (6)

Forward
Backward gradient
Stop gradient

Figure 3. Computational flows inside DynOPool. Although the

forward pass employs the discretized value, �Hin · rh�, its con-

tinuous counterpart (Hin · rh) is adopted in the backward pass to

backpropagate the gradients into α. The same optimization pro-

cess is applied with respect to width.

By defining α as a learnable scale parameter and optimizing

it instead of r, the training procedure is greatly stabilized in

practice. Figure 3 illustrates the overall optimization pro-

cess.

4.2. Constraints for Model Complexity

To maximize the accuracy of models, DynOPool some-

times has a large scale factor and increases the resolution

of intermediate feature maps. Therefore, to constrain com-

putational cost and reduce model size, we introduce an

additional loss term LGMACs, which is given by a simple

weighted sum of layerwise GMACs counts at each training

iteration t as follows:

LGMACs =

N∑
�=1

wt
� · GMACs[�]

=
N∑
�=1

H
t (�)
out ·W t (�)

out

H
0 (�)
out ·W 0 (�)

out

· GMACs[�],

(7)

where N is the total number of layers in the model,

GMACs[�] represents the GMACs counts in the �th layer

at the initial state, and wt
� is the ratio between the feature

map sizes in the �th layer at the initial stage (H
0 (�)
out , W

0 (�)
out )

and the current training iteration t (H
t (�)
out , W

t (�)
out ). By defi-

nition, LGMACs reflects the degree of the computational cost

increase as the scale factor r changes during training, com-

pared to the initial state of the model.

4.3. Loss

We train the model with DynOPool by a linear combina-

tion of the task-specific objectives (Ltask) and the proposed

GMACs loss (LGMACs) as follows:

Ltotal = Ltask + λ · LGMACs, (8)

where λ is a hyperparameter that controls the computational

complexity of a model and maintains the balance with the
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task-specific loss. The model is trained to maximize its per-

formance by jointly learning the optimal spatial resolutions

of intermediate feature maps.

4.4. Versatility of DynOPool

Due to its model-agnostic property, DynOPool can re-

place all kinds of resizing operators in any given network.

To analyze the superiority of the optimized scale factor r
to the predetermined methods relying on hyperparameters,

we replace all types of resizing operators in the baseline

network with DynOPool except for the last global average

pooling layer; pooling operations (e.g. max-pooling) are re-

placed by DynOPool and strided convolutions are replaced

by the combinations of a vanilla convolution (with stride 1)

and DynOPool. For a detailed description of each model,

please refer to the supplementary document.

Unlike other methods that require to select either down-

sampling or upsampling in advance and depend on the

pre-defined pooling ratios, DynOPool learns to resize fea-

ture maps without the constraint for the scale factor and

the pooling ratio. In practice, the upsampling process of

DynOPool is the same as the downsampling. A tricky thing

in upsampling is that it can use the features of the same set

of pixels to calculate the features of different query points.

However, it does not incur any issue because the distances

to the pixels from each query point are different and the fea-

tures for each query point are different.

5. Experiments
This section summarizes the experimental results with

DynOPool on various types of networks and datasets. For

the classification task, we use three datasets and three types

of networks for evaluation. We compare our model with

human-designed models and Shape Adaptor [23] in terms

of accuracy and GMACs, and present that dynamic resizing

layers boost performance with almost no extra cost. Fur-

thermore, we apply our module to EfficientNet [41] to show

compatibility to the NAS algorithms, and conduct an addi-

tional experiment on PascalVOC [7] to prove applicability

to the semantic segmentation task.

5.1. Experiment Setup

Models We mainly apply DynOPool to three baselines:

VGG-16 [40], ResNet-50 [12], and MobileNetV2 [39]. We

also use EfficientNet-B0 [41] to check compatibility with

NAS. DynOPool is adopted to the downscaling module of

each model and keeps the rest of the structure the same

as the human-designed architecture. It is worth noting that

there is no increase in the number of parameters of the mod-

els with DynOPools except for the scale parameter α.

Datasets We conduct the experiment on three datasets

including FGVC-Aircraft [27], CIFAR-100 [19] and Ima-

geNet [38]. Unlike CIFAR-100 and ImageNet that contain

diverse general objects, Aircraft is a fine-grained dataset for

aircraft classification. CIFAR-100 is a dataset with small

(32 × 32) images while the size of the images in Aircraft

and ImageNet are large (224 × 224). The experiment set-

ting is to verify that DynOPool performs well regardless of

image sizes or data characteristics.

Implementation details For optimization, we employ the

same hyperparameters as Shape Adaptor except for the

number of epochs. According to our experience, DynOPool

requires more epochs than Shape Adaptor for training to

allow both the scale factor and weights to converge suffi-

ciently in response to the dynamic model structure changes.

Especially, CIFAR-100 and Aircraft, which have relatively

small datasets, are greatly affected by the epoch. Accord-

ingly, we increase the epoch from 200 to 250 for models

with DynOPool on both datasets.

The learning rate for the scale parameter α is lower than

that of the model parameter similar to other dynamic net-

works [5, 23] since the scale parameter affects the entire

model even with its slight changes. To prevent the feature

map size from reducing to 1 during training, we bound the

output feature map size by Hout = �max(Hin · rh, 1.5)�,

which ensures that the size of a feature map is at least 2

in each dimension while allowing a model to backpropa-

gate gradients through the feature map in any dimension

smaller than 2. For other hyperparameters and experimental

settings, we list details in the supplementary document.

5.2. Comparison with Human-Designed Model

We discuss the performance and the characteristics of

the proposed approaches in comparison with the human-

designed models.

5.2.1 Main results

Table 1 presents the performance of DynOPool in terms

of GMACs and accuracy. We compare the human-designed

model with two variants of our model with DynOPool: 1)

a model with a small computational cost similar to that of

the human-designed model (DynOPool-S) and 2) a model

learned mainly for accuracy (DynOPool-B).

DynOPool-S improves accuracy significantly with al-

most the same or fewer GMACs as the human-designed

model in most cases, and DynOPool-B outperforms the

human-designed model in all settings. Note that we greatly

improve the performance by changing the size and shape of

feature maps with little increase in the number of parame-

ters. To achieve this goal with NAS, it would take at least a

few dozen GPU days since the search space is huge due to

a large number of resizing layers and the consideration of

information asymmetry. On the contrary, DynOPool solves
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Table 1. Top-1 accuracy (%) and GMACs comparisons between human-designed models and models with DynOPool. The sizes and shapes

of the feature maps for each block in the network architecture are also reported. DynOPool-S outperforms human-designed models with

comparable GMACs in almost all cases. Notably, DynOPool-S compresses the model up to 33% lighter than the human-designed VGG-

16 for the ImageNet dataset while maintaining the accuracy of the model. DynOPool-B outperforms the human-designed models with

significant margins in all cases.

Dataset FGVC-Aircraft CIFAR-100 ImageNet
Acc. GMACs Feature map sizes Acc. GMACs Feature map sizes Acc. GMACs Feature map sizes

V
G

G
-1

6 Human 85.3 15.40 [224,224] [112,112] [56,56] [28,28] [14,14] 75.4 0.31 [32,32] [16,16] [8,8] [4,4] [2,2] 73.9 15.39 [224,224] [112,112] [56,56] [28,28] [14,14]

DynOPool-S 87.0 13.90 [224,224] [114,142] [52,53] [30,19] [17,7] 75.5 0.36 [32,32] [21,14] [10,7] [5,4] [2,2] 73.8 10.16 [224,224] [88,87] [40,37] [24,23] [12,12]

DynOPool-B 87.4 32.39 [224,224] [127,256] [76,102] [46,37] [20,11] 79.8 1.71 [32,32] [37,32] [21,18] [12,9] [7,4] 74.1 20.92 [224,224] [151,152] [67,68] [32,30] [15,13]

R
es

N
et

-5
0 Human 81.6 4.12 [224,224] [56,56] [28,28] [14,14] [7,7] 78.5 1.31 [32,32] [16,16] [8,8] [4,4] 77.2 4.11 [224,224] [56,56] [28,28] [14,14] [7,7]

DynOPool-S 82.3 3.57 [224,224] [58,63] [18,17] [9,4] [4,2] 80.3 1.01 [32,32] [10,9] [5,4] [2,2] 77.6 6.20 [224,224] [71,71] [27,26] [12,11] [4,2]

DynOPool-B 87.2 38.53 [224,224] [225,210] [68,66] [16,17] [4,4] 80.6 1.73 [32,32] [18,17] [7,6] [2,3] 78.1 12.80 [224,224] [102,99] [43,41] [16,17] [4,4]

M
B

N
-V

2 Human 77.6 0.33 [224,224] [112,112] [56,56] [28,28] [14,14] [7,7] 73.8 0.09 [32,32] [16,16] [8,8] [4,4] 71.7 0.31 [224,224] [112,112] [56,56] [28,28] [14,14] [7,7]

DynOPool-S 78.7 0.34 [224,224] [98,119] [39,42] [36,18] [21,9] [12,4] 74.0 0.08 [32,32] [13,13] [6,6] [4,4] 72.1 0.49 [224,224] [111, 111] [55,50] [32,27] [20,16] [9,7]

DynOPool-B 82.6 2.35 [224,224] [181,150] [132,174] [87,80] [51,36] [22,13] 76.2 0.21 [32,32] [22,21],[12,12] [7,7] 73.8 1.16 [224,224] [181,171] [95,93] [53,53] [31,29] [10,10]

0.31G, 75.4%

(a) Human-designed

0.36G, 75.5%

(b) DynOPool-S

1.71G, 79.8%

(c) DynOPool-B

5.21G, 79.2%

(d) Shape Adaptor

Figure 4. Visualization of trained models with DynOPool and Shape Adaptor from the human designed VGG-16 on the CIFAR-100 dataset.

We visualize the sizes and shapes of intermediate feature maps in each model with GMACs and accuracy. By learning the optimal scale

parameter α for the dataset, DynOPool illustrates competitive performance compared to the human-designed model and Shape Adaptor.

the above problem successfully and identifies an optimized

network without an exhaustive search process.

On FGVC-Aircraft, as presented in Table 1, trained net-

works have many non-square feature maps with the recep-

tive fields of the reciprocal shapes and achieve the largest

performance improvements among all the tested datasets.

Since the images in the fine-grained dataset share relatively

many patterns in common than in general images, it may

be critical to find the optimal shape of the receptive field to

achieve better accuracy. It is interesting that DynOPool-S

models have wide feature maps in the early layers but end

up with tall feature maps in the deeper layers. This fact im-

plies that the proposed dynamic resizing modules concen-

trate on the information in the horizontal direction in an-

alyzing local patterns, which forces the information in the

vertical direction to become more important in identifying

semantic structures in images. As a result, it turns out to

achieve superior performance with less computation than

the human-designed models relying on the feature maps

with the standard sizes and shapes.

Table 1 illustrates another interesting results about the

feature map shapes of the networks trained on CIFAR-100

and ImageNet, which contain more general object cate-

gories in images than FGVC-Aircraft. The feature maps are

optimized for vertical shapes, i.e., H > W , in almost all

settings, which also aligns with the result from the previous

work [34]. This implies that the amount of information in

the ImageNet and CIFAR-100 datasets have is asymmetric

in the spatial dimensions and we can extract more informa-

tion by observing the details in the vertical direction than in

the horizontal direction.

Furthermore, we visualize the feature map sizes of the

human-designed model, DynOPool-S/B, and Shape Adap-

tor in Figure 4. As shown in Figure 4(b) and (c), DynOPool-

S/B learn to utilize non-square feature maps and exhibit

the data-driven model selection capability. In particular,
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Figure 5. GMACs-Accuracy tradeoffs between human-designed

VGG-16 and VGG-16 with DynOPool on CIFAR-100. The mod-

els with DynOPool are trained with different values of λ while

human-designed models are trained by varying input resolutions.

DynOPool-B even increases the feature map size after the

first pooling layer, which leads to substantial accuracy gain

by 4.4%p compared to the human-designed model.. The re-

sult of DynOPool-B shows that the full use of local informa-

tion in the front layers is sometimes helpful while enlarging

the receptive field size later to reduce the sizes of the corre-

sponding feature maps.

5.2.2 Trade-off between accuracy and GMACs

Figure 5 illustrates the GMACs-accuracy tradeoffs between

our model with DynOPool and human-designed model with

VGG-16 on CIFAR-100. We adjust the input image size to

obtain the accuracies of the human-designed model, VGG-

16 with respect to different computational cost in terms

of GMACs. This is motivated by the strategy of several

NAS algorithms that include the input size in the search

space [22,41]. For DynOPool, we control GMACs by vary-

ing the coefficient for the GMACs loss λ in (8).

DynOPool shows superior trade-off between accuracy

and GMACs compared to the human-designed model in al-

most all cases, especially when the models are compressed

significantly. This is because, by using our approach, the

model structure is optimized dynamically and effectively

for the target GMACs. In the case of the human-designed

model, the performance is optimized with a good trade-off

when the input image size is exactly 32×32 (0.31 GMACs).

We believe that this is because the CIFAR-100 dataset has

been tested extensively for years using its original image

size and most of the human-designed models are optimized

best for the input size. Also, the human-designed models

may not be effective to handle non-conventional input im-

Table 2. Comparison between DynOPool and Shape Adaptor

on the CIFAR-100 dataset. DynOPool consistently outperforms

Shape Adaptor with lower computational costs.

Backbone Model Acc. GMACs

VGG-16
Shape Adaptor 79.2 5.21

DynOPool (ours) 79.8 1.71

ResNet-50
Shape Adaptor 80.3 4.93

DynOPool (ours) 80.6 1.73

MobileNetV2
Shape Adaptor 75.7 0.92

DynOPool (ours) 76.2 0.21

Table 3. Performance of DynOPool with EfficientNet-B0 on the

ImageNet dataset.

Backbone Model Acc. GMACs

EfficientNet-B0
Human

71.8 0.42

EfficientNet-B1 72.8 0.75

EfficientNet-B0 DynOPool (ours) 72.3 0.58

age sizes other than numbers to the power of 2 due to the

potential errors given by extra paddings.

5.3. Comparison with Shape Adaptor

Table 2 compares the accuracy and the GMACs between

DynOPool and Shape Adaptor [23]. Although both algo-

rithms aim to find the optimal feature map sizes by intro-

ducing learnable resizing modules, DynOPool outperforms

Shape Adaptor in terms of both accuracy and efficiency. We

demonstrate the feature map sizes of Shape Adaptor in Fig-

ure 4(d) together with the accuracy and the computational

complexity.

We believe that the following trait of our method drives

the difference. Shape Adaptor determines the output feature

map size by a linear interpolation of two pre-defined candi-

date size scales. This strategy results in large approximation

errors by forcibly considering potentially irrelevant features

for aggregations under the predicted scale factor. On the

contrary, DynOPool adjusts the feature map size naturally

using a single scale factor r, which is reparametrized by α
for stable optimization. More detailed comparisons between

the two approaches are discussed in the supplementary doc-

ument.

5.4. Compatibility with NAS algorithms

While NAS is a more general concept than DynOPool,

the feature map size is not typically considered in the search

space in NAS and the architecture can be optimized by NAS

jointly with DynOPool. We adopt DynOPool for the op-

timization of EfficientNet [41], which is one of the state-

of-art architectures identified by NAS. As seen in Table 3,
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Table 4. Semantic segmentation results of HRNet-W48 on Pas-

calVOC. DynOPool compresses the human-designed model up to

16% with slight improvement of mIoU.

Model mIoU GMACs Feature map sizes

Human 76.2 82.55 [240,240] [120,120] [60,60] [30,30] [15,15]

DynOPool (ours) 76.4 69.39 [367,349] [134,130] [52,50] [22,21] [10,9]

EfficientNet-B0 with DynOPool shows competitive perfor-

mance in terms of accuracy and GMACs compared to both

EfficientNet-B0 and EfficientNet-B1.

Although the benefit of DynOPool is not impressive in

this result, the combination of NAS and DynOPool are for-

mulated as a differentiable optimization task even in the fea-

ture map scale dimension; it has potential to lead to higher

accuracy with less computational cost. Note that, while the

architecture of EfficientNet-B1 is identified from a combi-

natorial search space in 1) width, 2) depth, and 3) resolution

dimensions, we can find competitive models with the opti-

mized feature map sizes at a substantially reduced search

time using DynOPool.

5.5. Semantic Segmentation Results

To further verify the effectiveness of DynOPool, we con-

duct additional experiments on semantic segmentation. The

semantic segmentation task involves various objects and

stuff in a scene with various scales, identifying the opti-

mal receptive field corresponding to each object is critical

to improve the final accuracy. To get semantically richer

and spatially more precise representations, multi-scale rep-

resentation learning is is the prevalent approach in seman-

tic segmentation models [3, 4, 42, 45]. For example, HR-

Net [42] maintains high-resolution representations through-

out the whole process and connects the high-to-low resolu-

tion convolution streams in parallel.

To evaluate the performance of DynOPool in semantic

segmentation, we employ HRNet-W48, a variant of HR-

Net, as our backbone model, and replace the strided con-

volutions in the model by a combination of DynOPool and

a vanilla convolution (with stride 1). We train the models

on the PascalVOC [7] dataset to check if there exists fur-

ther room for improvement. As seen in Table 4, DynOPool

successfully compresses the human-designed model up to

16% with a slight improvement of the mIoU. Interestingly,

our model enlarges the resolution of the convolution stem

and the upper branch of the parallel convolution stream,

and consistently reduces the resolution of the remaining

three branches of parallel convolution streams. This high-

lights the importance of maintaining the feature maps with

data-driven feature map sizes to improve performance with

less computational burden. We present detailed experimen-

tal settings in the supplementary document.

6. Conclusion and Future Works
6.1. Conclusion

We presented a Dynamically Optimized Pooling, re-

ferred to as DynOPool, which facilitates finding an opti-

mized sizes and shapes of receptive fields and feature maps.

DynOPool identifies the optimal size and shape of fea-

ture maps without relying on human inductive bias or ex-

haustive architecture search. Our module achieved supe-

rior performance with various recognition models on multi-

ple datasets, and showed desirable trade-offs between ac-

curacy and computational cost, compared to the human-

designed model and the previous work. We also showed that

DynoPool is compatible with the recent NAS algorithms

and naturally applicable to semantic segmentation model.

We hope that our module allows the vision community to

optimize deep neural networks more effectively.

6.2. Future Works

Although we focus on the two-dimensional tasks in this

work, our module could be extended to higher dimensional

scaling modules. For example, in an action recognition task,

we can also employ DynOPool to capture temporal relation

from a dataset by adjusting the number of frames required

for temporal pooling.

Furthermore, similar to our findings, in cognitive sci-

ence, it has been well-known for decades that the human

visual system perceives vertical lines to be slightly longer

than horizontal ones [9, 20, 35] and judge the symmetry

based more on the horizontal symmetry than the vertical

counterpart [10, 36]. In other words, our visual system has

been adapted to be more sensitive to vertical information

changes. Despite the long history, the exact cause has not

yet been identified and is still under discussion [2, 28]. It

would be worthwhile to investigate the connection between

the findings from our work and the observations in cognitive

science, which makes a synergy to understand the asymmet-

ric behavior of computer vision and human vision systems

and bridges a missing link between two research fields.
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