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Abstract

Although convolutional neural networks (CNNs) achieve
state-of-the-art in image classification, recent works ad-
dress their unreliable predictions due to their excessive de-
pendence on biased training data. Existing unbiased mod-
eling postulates that the bias in the dataset is obvious to
know, but it is actually unsuited for image datasets includ-
ing countless sensory attributes. To mitigate this issue, we
present a new scenario that does not necessitate a pre-
defined bias. Under the observation that CNNs do have
multi-variant and unbiased representations in the model,
we propose a conservative framework that employs this in-
ternal information for unbiased learning. Specifically, this
mechanism is implemented via hierarchical features cap-
tured along the multiple layers and orthogonal regulariza-
tion. Extensive evaluations on public benchmarks demon-
strate our method is effective for unbiased learning.1

1. Introduction

Recently, machine learning models (e.g., convolutional
neural networks) achieve state-of-the-art performance on
image classification. However, the model could be often
biased, as it is trained overly dependent on the distribu-
tion of the training dataset [17, 20, 21]. The biased model
is vulnerable to unreliable generalization to unseen data.
For instance, suppose we classify the gender of a person
in an image. A naturally collected image dataset often con-
tains significantly more examples with (female, long hair)
and (male, short hair) than the other combinations, as seen
in Fig. 1. Although the hair length is not biologically corre-
lated to gender, the model is subject to be confused as if it
is, due to the high correlation observed in the data. In this
case, we call that this gender classification dataset is highly
biased in hair length.

For better generalization, it would be important to train
the classifier unbiased, and a line of recent works is ded-
icated to this problem. The easiest problem setting is the
labeled bias, where we know what the bias is and each

1Source code: https://github.com/aandyjeon/UBNet

Figure 1. Categorization of Data Bias Problems with an exam-
ple of gender prediction biased in hair length. The most limited
case, unknown bias, is what we address in this paper.

training example is annotated not only with the actual la-
bel but also with the bias. For example, we know the gen-
der classification dataset is biased in hair length and each
image is annotated with the hair length as well as the gen-
der, corresponding to the row Labeled Bias in Fig. 1. As
the bias can be easily quantified, several supervised learn-
ing approaches [1, 2, 6, 8, 12] were proposed to unlearn the
bias.

However, not all classification datasets provide annota-
tions for the bias variable even if we know what it is. For
instance, it is more common that we know the gender clas-
sification dataset may be biased in hair length, but each in-
dividual is annotated only with the gender, not with the hair
length. We call this known bias as in Fig. 1. It is more chal-
lenging than labeled bias, since it is hard to unlearn the bias
by training a supervised model directly taking advantage
of the annotations. A style-transferred image dataset [7]
and an adversarial training against structurally limited net-
work [3] were proposed to address known bias in texture.
A traditional image processing algorithm was employed as
bias-robust filtering in the deep neural network [22].
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Although the listed methods above are robust on the tar-
get (known) biases, they are limited in unlearning other un-
expected biases. In fact, a collection of images is subject
to dozens of biases, whether strongly or not, and thus the
known bias may not be the only one to take into account.
For example, the gender classification with hair length as
its known bias can be also biased in age, skin tone, lighting
condition, and more. The last setting in Fig. 1, namely un-
known bias, formulates such a condition, where we do not
know even what is a notable bias in the dataset. As this set-
ting gives no information about the bias, the aforementioned
existing methods are not applicable.

To tackle this unknown bias condition, we aim to design
a conservative learning framework. As its first step, we con-
duct a motivating experiment to understand how biased rep-
resentations are obtained. From a previous study [7], CNN
models were observed to be over-confident in a certain fea-
ture. We hypothesize that this tendency induces the classi-
fier less robust on the biased conditions. That is, the model
uses the biased feature as a strong candidate for learning,
and thus its dependence on the bias gets higher than that
of the other features. Utilizing the feature maps captured
inside the CNN, we estimate the degree of bias of feature
maps in the model, using a tool called norm activation [18]
(Sec. 3). From this experiment, we find out that the features
immediately before the prediction layers are significantly
more biased than lower-level features.

Based on these observations, we design a novel frame-
work, namely unbiasing network (UBNet), that exploits hi-
erarchical features and orthogonal regularization. Instead
of classifying based only on the top-most layer of the net-
work, our framework conservatively employs hierarchical
features (Sec. 4.1) from multiple levels of the network,
widening referred feature space as well as utilizing less bi-
ased representations. Also, orthogonal regularization [23]
(Sec. 4.2) is applied in the encoding phase to encourage in-
dependence between hierarchical features. Extensive eval-
uation on multiple biased datasets exhibits our proposed
framework is effective in unbiased learning. Our main con-
tributions are summarized as follows:

• We present a new framework that addresses unknown
bias, where no specific information about the bias is
provided.

• We propose a novel unbiased learning method with hi-
erarchical features and orthogonal regularization, de-
signed to conservatively employ the features already
captured by the base model with only a few additional
parameters.

• Extensive experiments exhibit that UBNet contributes
to the model’s robustness. Especially, it is remarkable
to note that our UBNet generalizes even better than the
competing models in the known bias setting (texture),
significantly disadvantageous for our model.

2. Problem Statement
Unbiased modeling. Consider a binary classification

problem from a multivariate instance (e.g., image) x to a
label {0, 1}. For a collection X = {xi : i = 1, ..., N}
with N instances, consider a label space Y , a set of all pos-
sible assignments of 0 or 1 to each instance in X . A label
y ∈ {0, 1}N is a particular way of assigning either 0 or 1
to each instance. Some y ∈ Y may convey physical mean-
ing, potentially ranging from fine details (e.g., the pixel at
(0, 0) is black) to high-level semantics of the image (e.g.,
there is a horse). Binary classification is a task to learn the
mapping from X to a particular ytarget ∈ Y , maximizing
generalizability to unseen examples sampled from the same
distribution with X .

Now, consider another y′ ∈ Y which is y′ ̸= ytarget.
Most y′ may be usually independent of the ytarget, but some
might have significant but spurious correlation with the
target. We call that the dataset X is biased in the vari-
able y′, as y′ potentially can mislead the model at infer-
ence. In a face dataset, for instance, the label ygender =
{female(0),male(1)} or yhair = {long(0), short(1)} may be
highly correlated unless the dataset is specially designed.
Thus, when one of them is the target label, the dataset can
be easily biased in the other.

If we train a classifier f on a biased dataset, f may per-
ceive the biased labels as important information for target
prediction. As a consequence, f has a tendency to lean to-
wards the biased labels; for example, it may bet the long
hair on female and short hair on male. Therefore, the goal
of the unbiased modeling is to learn unbiased representa-
tions or reduce model’s feature dependence on biased la-
bels, while maintaining the target label prediction perfor-
mance.

One might argue that unbiased modeling and domain
adaptation tackle the same problem, as both of them aim
at better generalizing to unseen test examples from a differ-
ent distribution. However, they are indeed different prob-
lems [3]. Specifically, domain adaptation is a task to gener-
alize from a training set with skewed distribution on some
variable y′ (but still it is independent of ytarget) to its oppo-
site. For instance, a gender classification model is trained on
a dataset with seniors only and evaluated for young people.
The unbiased learning problem, on the other hand, tackles a
circumstance that one or more variables have a strong corre-
lation to the target variable ytarget. For example, the gender
classification model is trained mostly on female + long hair
and male + short hair combinations, then is expected to cor-
rectly classify the gender of females with short hair or males
with long hair.

Our problem setting. We address the unknown bias in
Fig. 1, where all about bias is opaque. That is, we do not
know which y′ ∈ Y is highly correlated to ytarget ∈ Y in the
dataset.
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One might claim it is impossible to completely debias the
model from all unknown biases, since we do not know what
they are, unlike a known bias which we can explicitly model
not to rely on it. What we intend with the proposed ap-
proach is making the model more robust and conservative,
leading it to rely on more variety of cues, preventing it from
over-committing to a specific cue. This is particularly de-
sirable in practice, where a model is deployed for years and
the query distribution changes. In this sense, under the def-
inition of “bias” as a misleading feature, we mean by “un-
biasing” regularizing the model from being over-dependent
on any particular feature, instead of making it independent
of any cue. In other words, we mean the opposite: making
the model rely on more cues to be less biased.

3. Motivation

In this section, we first investigate how a standard CNN
model learns biased representations. We detail our observa-
tion that CNN models tend to learn a few specific aspects
from the training set, as opposed to learning a variety of
features (in Sec. 3.1), and that their higher level features
close to the classification head tend to be biased more (in
Sec. 3.2). Combining with the fact that a standard CNN
solely relies on the very last layer to classify, we are going
to motivate to use multi-variant features learned from the
entire hierarchy of the CNN model in the next section.

3.1. Feature Dependence in CNN

Geirhos et al. [7] investigated the contributions of vari-
ous attributes on the predictions by a standard CNN model
pretrained on ImageNet. They distorted original test im-
ages to intentionally rely on a specific attribute (correspond-
ing to a y′ ∈ Y), as seen in Fig. 2. Then, they estimated
the model’s performance on each distorted sample. Despite
never being directly trained on any of these deformed im-
ages, the model was able to classify texture images as ac-
curately as the original images, while it failed to classify
images with other types of distortion.

We interpret this as over-credence towards a specific fea-
ture. In other words, relying rarely on other features makes
the model more vulnerable to biased learning. That is, if the
correlation between the texture (bias) and target label ytarget
is subtle at testing, the biased model loses the rationale for
the discrimination. This observation hints us to mitigate im-
balanced reference on certain dominating features in order
to make the model more robust to bias.

3.2. Measuring Bias in CNN

We further investigate how a multilayered convolutional
network learns biased representations in detail. Specifically,
we analyze the degree of bias in each layer using Norm ac-
tivation [18] as a tool.

Figure 2. Feature dependence of the CNNs. The accuracy on
original, grey-scaled, silhouette, edges, and texture are estimated
for ImageNet-pretrained CNN models. (from the Fig. 2 in [7])

Norm activation. Norm activation [18] estimates the ro-
bustness of a layer in a deep network on the dataset. Hence,
the difference between activation norms on two reversely
biased datasets in a specific feature represents how much
the certain layer in the model is dependent on that bias. For
an activation map A[l]

c of the channel c at layer l, its spa-
tially averaged activation map is denoted as A[l]

c ∈ R. We
denote its maximum across all channels as λ[l] ∈ R:

λ[l] = max
c

(A[l]

c ), (1)

intuitively indicating the degree of maximal activation at
layer l. We compute λ[l] at all layers in the network, and
normalize across them:

λ′[l] =
λ[l]

maxl λ[l]
. (2)

Now, suppose we train the exactly same model k times un-
der the same condition except for weight initialization. The
norm activation r

[l]
d for a biased test data d is defined as

r
[l]
d =

mini λ
′[l](f

(i)
d )

maxi λ′[l](f
(i)
d )

, (3)

where f (i) denotes the ith model, wth i = 1, ..., k. Intu-
itively, the r

[l]
d indicates how much the model’s decision

changes for d across k learned models. r[l]d ≈ 1 if the model
is robust, while r

[l]
d gets smaller towards 0 otherwise.

How much each layer is biased. We investigate two
standard CNN models, VGG11 [19] and ResNet18 [9]. We
sample l whenever the size of the feature maps are halved,
and set k = 5. For gender prediction, we design two
test sets: d1 = {(female, long hair), (male, short hair)} and
d2 = {(female, short hair), (male, long hair)}. The models
are trained on training data close to d1.

Figure 3 illustrates ∆r[l] ≡ r
[l]
d1

− r
[l]
d2

, the difference of
norm activations on the two test sets. The larger the gap
is, the less the model is robust on the biased test set d2, in-
dicating the layer’s activation is more biased in hair length.
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Figure 3 shows the last layer is extensively biased compared
to the other layers. This experiment exhibits that the use of
features from lower layers potentially encourages the model
to exploit less biased representations.

Figure 3. Degree of Bias. The y-axis measures degree of bias by
∆r[l], the difference of norm activations on two test sets.

4. UBNet: The Proposed Method
In this section, we present the proposed model Unbias-

ing Network (UBNet), illustrated in Fig. 4. Particularly, the
hierarchical features and orthogonal regularization are the
operative ideas to assist our motivation in Sec. 3. These
two strategies are applied to a CNN-based model, which is
referred to as the ‘base model’ henceforth. Then, hierarchi-
cal features learned by the base model are concatenated and
fed into an orthogonally regularized classifier, called Ortho-
Block, for discrimination. This framework can be applied to
an arbitrary CNN with minimal overhead, as it adds only a
few parameters (e.g., in our experiment, 0.21% of parame-
ters are added over the base model).

4.1. Hierarchical Features

Most standard CNN models classify an image purely
based on the activation from the top-most layer. How-
ever, we illustrate in the previous section that 1) the CNN’s
over-credence on certain features causes a biased classifier
(Sec. 3.1) and 2) the last layer in the conventional CNN-
based image classifier is much biased than the lower-level
layers (Sec. 3.2). Thus, the standard CNN models relying
solely on their highest-level representation are particularly
vulnerable to being biased.

For unbiased inference, we exploit hierarchical features
captured inside the CNN. A CNN-based image classifier ex-
tracts hierarchical features from simple patterns (e.g., cor-
ners or edge/color conjunctions) in its lower layer to more
complex high-level features (e.g., significant variation and
class-specific features) in its higher layer because of the spa-
tially limited convolution operation [24]. As all these fea-
tures can be considered as more multifarious features than
only the high-level features, the hierarchical features repre-
sent multi-variant features. Hierarchical features also repre-
sent less biased features, since the lower-level layers contain
less skewed features as seen in the motivating experiment in
Sec. 3.2.

The set of hierarchical feature maps H of a CNN with
L layers can be expressed as H = {h1, . . . ,hL} , where
hl ∈ RWl×Hl×Cl denotes the feature maps at layer l of size
Wl×Hl with Cl channels, sequentially extracted from each
layer in the base model. To enable concatenation of hl of
different shapes for l = 1, ..., L, ftrans first converts the input
feature map size at each layer to W ×H ×C. Specifically,
it applies an average pooling to shrink the feature map to
W ×H and 1 × 1 convolution to adjust (either increase or
decrease) the number of channels to C. Here, W , H , and C
are hyperparameters, such that W ≦ Wl and H ≦ Hl for
all l = 1, ..., L. The resulting feature maps

gl = ftrans(hl) ∈ RW×H×C , ∀l = 1, . . . , L (4)

are then concatenated to G = [g1, . . . ,gL] ∈ RL×W×H×C ,
where [, ] denotes concatenation. We term each gl as a
group feature at layer l, capturing semantics at different
level (low to high) since they are originated from different
layers.

4.2. Orthogonal Regularization

Group Convolution. In spite of providing the hierar-
chical semantic information, the high-level features might
still dominate the others if the group features from multi-
ple levels are freely fused, either by fully-connected or con-
volutional layers, causing the encoded representations to be
biased again following the same way of the base model. For
this reason, the multivariate features need to be treated in-
dependently on each group before making final prediction.
Instead of fully-connected or regular convolution, we resort
to use group convolution [10], where all the feature maps in
the same group gl ∈ G are weight-connected but separated
from the other group features. In other words, the interre-
lation between hierarchical features is restricted, preserving
distinct features respectively. Group convolution fg(G) per-
forms convolution operations on each group gl ∈ G inde-
pendently, producing S = [s1, . . . , sL] ∈ RL×W×H×C .

Afterwards, we apply channel-wise spatial fusion, again
to avoid indiscreet fusion between group features. As in the
Ortho-Trans box in Fig. 4, each channel s ∈ RL×W×H in S
is mapped to a scalar by a linear layer fs with weight Ws.
The output from fs is denoted as O ∈ RL×1×1×C ; that is,
O = [o1, . . . , oL] = fs(S).

Orthogonality. In addition, we apply orthogonal reg-
ularization [23] to encourage the independence between
group features. We define the group convolution layer and
the spatial weighting layer in conjunction with orthogo-
nal regularization as Ortho-Conv and Ortho-Trans, respec-
tively, as shown in Fig. 4. We term the combination of these
two layers as Ortho-Block. The Ortho-Block fo takes G
as input and outputs activated values as where each ol ∈
R1×1×C is made from each gl. When the convolutional
filters and spatial weights of different group features are
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Figure 4. The architecture of the proposed model, UBNet. UBNet takes the hierarchical features captured by the base model as input.
The Trans-layers set all the hl be the same size. Then, all the concatenated gl activated through the Ortho-block in which Ortho-Conv and
Ortho-Trans layers encode multi-variant features. From the output of the Ortho-block, each classifier outputs confidence scores for each
low-to-high feature. They are averaged for the final prediction. In this figure, we use L = 5 for simplicity.

learned to be as orthogonal as possible, each hierarchical
feature becomes decorrelated. The decorrelation improves
the feature expressiveness, which contributes to distributing
the feature dependence of the model. To impose the or-
thogonality, we set the objective function with an additional
regularization term:

min
θf

Lc (ytarget, f(Xtrain; θf )) + λLo (θo) , (5)

where f denotes the UBNet (from ftrans to prediction)
parametrized by θf . Lo stands for the orthogonal regular-
ization loss, defined as

Lo(θo) =
1

2

∥∥θ⊤o θo − I
∥∥2
F
, (6)

where θo = [W1, · · · ,WL] is the collection of weights
in the Ortho-Block fo. Each Wl is the conv-parameters
corresponding to the l-th group features gl. Two orthog-
onal regularizations are applied here, one for Ortho-Conv
and the other for Ortho-Trans, where Wl indicates Wg

l ∈
RFg×Fg×C for fg and Ws

l ∈ RFs×Fs×C for fs, respec-
tively. Fg and Fs denote the size of conv-filters in fg and
fs, respectively. The (i, j)-component [θ⊤o θo]ij of θ⊤o θo ∈
RL×L is the inner product of Wi and Wj , and hence the
alternated loss term Lo measures the cosine similarity be-
tween the weights of each group features. By forcing θ⊤o θo
to be close to the identity matrix, this regularization explic-
itly forces the network so that the hierarchical features are
maintained until the prediction layer, spanning the wider
feature space of the image dataset.

Following the Ortho-Block, fully-connected layers (clas-
sifier fcls in Fig. 4) are attached to each activated feature
group ol in order to attain confidence scores c1, . . . , cL ∈
RK from each hierarchical features (corresponding to layer
l) across K classes. We get our confidence scores c by
taking average over cl, that is, c =

∑
l cl/L, where each

group feature equally contributes. All the trainable parame-
ters ftrans, fg , fs, and fcls are learned end-to-end.

5. Experiments

In this section, we present our extensive experiments on
multiple datasets, namely, CelebA-HQ [14], UTKFace [25],
and 9-Class ImageNet [11] to empirically verify the effec-
tiveness of the proposed method.

Dataset Protocol. For CelebA-HQ and UTKFace
datasets, we follow the ‘extreme bias’ setting, slightly mod-
ified from [2]. Basically, we divide each dataset into two
completely biased sets, referred to as ‘extreme bias (EB)’.
On these two datasets, all images with {(female, long hair),
(male, short hair)} belong to EB1, while the opposite im-
ages with {(female, short hair), (male, long hair)} are as-
signed to EB2. Then, we train on one and evaluate on the
other to estimate the model’s generalizability.

Under the unknown bias setting, however, this configu-
ration does not work as intended, since the target and bias
variables become exactly the same. In other words, from
the model’s perspective, classifying the gender and the hair
length becomes not distinguishable. Thus, we slightly mod-
ify the extreme bias design to mix a small number of the
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opposite samples; namely, ‘utmost bias (UB)’ sets. UB1,
for instance, consists of all the EB1 images and α× |EB1|
number of randomly sampled EB2 images where |.| denotes
the number of data. This scenario informs the model there
are some cases that ‘long hair’ does not necessarily mean
the target class 0 (female), for example. UB is closer to re-
ality than EB since it is rare to have two variables of which
distribution is completely identical in a dataset.

In addition to these utmost biased sets, we also evaluate
on an unbiased ‘test set’. The bias planting protocol [2] that
originally proposed to randomly sub-sample for the bias at-
tribute is not directly applicable to our unknown bias set-
ting, so we modify it to uniformly distribute the samples.

For ImageNet, we follow the evaluation protocol of [3].
Specifically, they modified the 9-Class ImageNet [11] (203
classes sub-sampled from ImageNet grouped to 9 super-
classes: dog, cat, frog, turtle, bird, primate, fish, crab, in-
sect) to balance the ratios of sub-class images in each super-
class. They adopted weighted unbiased accuracy, giving
higher weight on rarer pairs of object and texture (e.g., turtle
on highway).

Competing models. Unbiased modeling methods under
labeled bias setting are not comparable, since they require
exhaustive labeling on biased variables. In contrast, unbi-
ased models under known bias might be applied to unknown
bias. Therefore, for the CelebA-HQ and UTKFace dataset,
we compare the robustness of the proposed method to that
of unbiased models, HEX [22], Rebias [3], and LfF [16].

On ImageNet, we compare against StyleisedIN [7],
LearnedMixin [5], RUBi [4], Rebias [3], and LfF [16]. Al-
though LearnedMixin and RUBi are designed to unlearn
bias for visual question answering task, their object func-
tions were applied in Rebias [3]. We follow the setup in [3]
for our comparison.

We use VGG11 [19] as base model for CelebA-HQ and
ResNet18 [9] for UTKFace and 9-Class ImageNet. We
firstly train the base model then optimize UBNet with the
base model’s parameters frozen. The layer l is sampled
whenever the size of the feature maps is halved (L = 5 for
both base models). For each experiment, we use Adam op-
timizer [13] and grid search learning rate (initial value and
decay schedule), stopping criterion, and batch size. More
implementation details are provided in the supplementary
material. For hyperparameters in the competing models, we
follow the same setting as presented in the original paper
and only apply our data pre-processing for a fair compari-
son. We repeat each experiment three times and report the
average score, unless noted otherwise.

5.1. CelebA-HQ

Dataset and Experimental Settings. CelebA-HQ
dataset [14] is composed of 30K high-resolution face im-
ages, labeled with gender. In addition, we manually an-

notated another binary attribute ‘hair length’, {short, long}
for all samples. We excluded 4,518 images (15.06 %) if
the hair length is not seen or intermediate. To collect more
samples with rarer combinations (male + long hair, female +
short hair), we supplement samples from CelebA [15]. The
constructed biased dataset consists of 26,851 images in to-
tal, where 1,369 of them are from CelebA. Fig. 5 illustrates
the two extreme datasets created from CelebA-HQ.

We randomly split the EB1 to train-EB1 and val-EB1.
Then, we mix a small portion of images from EB2 (with
α = 0.005) to create UB1, and use the remainder of EB2 as
val-EB2. We train the model on UB1, then evaluate on val-
EB1 and val-EB2. More details about the biased CelebA-
HQ and concrete train-validation configuration are in the
supplementary material.

Figure 5. Extreme bias sets on CelebA-HQ. EB1 consists of
female + long hair and male + short hair, while EB2 consists of
male + long hair and female + short hair.

Results and Discussion. In Tab. 1, we report classifica-
tion accuracy on the val-EB1/2 as well as the test set. The
proposed method exhibits more robust results than other
models. Mitigating the model’s over-reliance on the bias,
UBNet shows slightly degraded accuracy on biased val-
EB1.

Method Base Model HEX Rebias LfF UBNet

Acc (EB1) 99.38(±0.31) 92.50(±0.67) 99.05(±0.13) 93.25(±4.61) 99.18(±0.18)
Acc (EB2) 51.22(±1.73) 50.85(±0.37) 55.57(±1.43) 56.70(±6.69) 58.22(±0.64)
Acc (test) 75.30(±0.93) 71.68(±0.50) 77.31(±0.71) 74.98(±4.16) 78.70(±0.24)

Table 1. Results on CelebA-HQ. Classification accuracy on val-
idation set of EB1 and EB2, and on Test set, respectively, for the
model trained on UB1 training set.

5.2. UTKFace

Dataset and Experimental Settings. UTKFace [26]
consists of 20K face images annotated with age, gender, and
skin tone. We evaluate 1) skin tone prediction with gender
bias and 2) gender prediction with skin tone bias. Age is
not used since the annotation pairs for age is imbalanced.
For the details of the overall data distribution of UTKFace,
consult with the supplementary material.

For skin tone prediction with gender bias, we split the
images into extremely biased sets, illustrated in Fig. 6.
Then, we add EB2 image samples (with up to α = 0.2)
to EB1, and name it UB1. UB2 is created in a similar
manner. We train either on UB1 or on UB2, and evalu-
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ate on the other. Also, we evaluate both models on an un-
biased test set, composed of 300 images for each pair of
{gender, skin tone}, thereby 1,200 images in total. The
gender prediction with skin tone bias scenario is performed
in the same way.

Figure 6. Extreme bias sets on UTKFace. EB1 consists of female
+ bright skin tone and male + dark skin tone and EB2 consists of
male + bright skin tone and female + dark skin tone.

Results and Discussion. Table 2 summarizes the exper-
imental results on UTKFace. On the evaluation for the skin
tone prediction with the gender bias, UBNet outperforms
all other competing models. The proposed method also ex-
hibits the most satisfactory accuracy compared to compet-
ing models for gender prediction with skin tone bias.

Trained on UB1 Trained on UB2
UB2 Test UB1 Test

Skin tone Prediction with Gender Bias

Base 77.46(±0.55) 82.97(±0.39) 80.58(±0.37) 85.44(±0.32)
HEX 79.35(±0.17) 85.07(±0.46) 80.82(±0.15) 85.88(±0.27)
Rebias 78.70(±0.62) 83.39(±1.22) 80.06(±1.46) 85.41(±1.23)
LfF 77.08(±0.71) 81.67(±0.14) 78.16(±0.97) 84.00(±1.00)

UBNet 83.67(±1.05) 87.25(±0.82) 84.29(±1.24) 87.94(±0.80)

Gender Prediction with Skin tone Bias

Base 80.97(±0.79) 86.67(±0.38) 81.43(±0.11) 85.94(±0.77)
HEX 80.69(±0.80) 86.51(±0.56) 81.01(±1.57) 86.75(±1.57)
Rebias 82.02(±0.84) 86.24(±0.31) 82.02(±0.90) 86.39(±0.51)
LfF 78.82(±0.31) 83.67(±0.73) 82.14(±1.37) 85.36(±0.99)

UBNet 82.07(±1.55) 87.75(±0.58) 82.69(±0.80) 87.36(±0.46)

Table 2. Results on UTKFace. Skin tone prediction with gender
bias and gender prediction with skin tone bias results.

5.3. ImageNet

One might argue that the experiments on CelebA-HQ
and UTKFace are designed unfavorably to HEX and Re-
bias, since they are specially designed for texture bias. For
this reason, we conduct experiments on texture bias, follow-
ing the same setting by Rebias [3].

Dataset. We evaluate the generalizability of our model
on the balanced 9-Class ImageNet, presented by Rebias [3].
Figure 7 illustrates a few examples, frequent cases (e.g., a
frog in a swamp) in the top row and less common images
(e.g., a frog on a hand) in the bottom row. Rebias [3] de-
signed this dataset, arguing this correlation between back-
ground and object makes texture bias in the train set.

Results and Discussion. Table 3 summarizes the biased
and unbiased classification accuracy for the same valida-
tion set. The unbiased accuracy [3] puts higher weights on

Figure 7. Textually biased and unbiased ImageNet. The exam-
ples are sampled from 9-Class ImageNet [11].

samples with unusual texture-class combinations. The bi-
ased accuracy is the regular accuracy, the number of correct
samples divided by the total number of samples.

Surprisingly, we observe that the proposed method
achieves the state-of-the-art. This is unexpectedly notable,
since it even outperforms Rebias, which was specially de-
signed to tackle texture bias, under the experimental setting
and on the dataset they designed. This verifies that UBNet
is capable of discovering unknown bias effectively enough
to compete with a model designed for known bias settings.

Metric Base model SI LM RUBi Rebias LfF UBNet

Biased 90.8 88.4 64.1 90.5 91.9 89.0 91.9
Unbiased 88.8 86.6 62.7 88.6 90.5 88.2 91.5

Table 3. Results on 9-class ImageNet. The results except for
UBNet are referenced from [3]. SI denotes StyleisedIN and LM
denotes LearnedMixin.

5.4. Ablation Study

We conduct 4 ablation studies to display the significance
of all the sub-components exploited in UBNet. Experimen-
tal settings are the same as Sec. 5.1 unless noted otherwise.

Ablation Study on Sub-components. We conduct ab-
lation studies to see the effects of hierarchical features,
group convolution, and orthogonal regularization presented
in Sec. 4. Table 4 exhibits the performance on an unbiased
test set, incrementally adding each component. The hierar-
chical features contribute the most, although other compo-
nents also improve the performance notably.

Hierarchical feature ✓ ✓ ✓
Group convolution ✓ ✓
Othogonal regularization ✓

Acc (EB1) 99.35 99.30 99.08 99.18
Acc (EB2) 52.87 56.13 56.78 58.22
Acc (test) 76.11 77.72 77.93 78.70

Table 4. Ablation Study on Sub-components. The sub-
components presented in Sec. 4 are applied step by step. The
model with none of them applied is the last phase in Fig. 4 from
hL to cL in the absence of orthogonal regularization.

Ablation Study on fg . We conduct an ablation study
with and without fg . Table 5 exhibits Ortho-Conv fg con-
tributes to performance improvement. Some lower-level
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features might function just as intermediate representations
needed for making high-level features and hence be less
useful to understand the image. fg gives more attention to
meaningful features for inferring the target label.

Method Acc (EB1) Acc (EB2) Acc (test)

UBNet (w/o fg) 99.32(±0.08) 51.80(±1.39) 75.56(±0.73)
UBNet (with fg) 99.18(±0.18) 58.22(±0.64) 78.70(±0.24)

Table 5. Ablation study on fg . UBNet (with fg) is UBNet in
Tab. 1 and UBNet (w/o fg) denotes the model is Ortho-Conv.

Ablation Study on Hierarchical Features. We com-
pare the results by excluding the lowest-level features one
by one from the five hierarchical features extracted from
VGG11. According to Fig. 8, it is obvious that the multi-
level features contribute to the performance on the unbiased
test set. The number of parameters slightly increases as
more hierarchical features are used, but it is difficult to see
that the parameters are the main factor for performance im-
provement because the difference is subtle.

Figure 8. Ablation Study on Hierarchical Features. The line
plot denotes the accuracy on the uniformly distributed test set, and
the bar plot denotes the ratio of the number of parameters relative
to the base model.

Degree of Bias (DoB) ∆r[l] after fg and fs. The lower-
level features could be biased after additional layers, al-
though originally unbiased. We evaluate every difference
between DoB of hn and that of on (n = 1, . . . , 5) of Fig. 3.
The subtle difference of each pair in Tab. 6 indicates that
the lower-level features still remain the DoB as expected.

Layer depth 1 2 3 4 5

∆DoB 0.024 0.012 0.027 0.021 -0.0005

Table 6. Degree of Bias. ∆DoB = DOB(hn) - DOB(on).

6. Related Work
Labeled bias. Alvi et al. [2] jointly trained a multi-

headed model, and minimized the confusion losses of the
tasks other than the primary classification for the shared fea-
ture representation to be invariant. Kim et al. [12] employed
an additional network to predict the bias distribution and
trained the main network adversarially against bias-oriented

network. They formulated regularization loss based on mu-
tual information. Motivated by lower face recognition er-
rors for certain cohorts in some demographic groups, Gong
et al. [8] proposed to learn a disentangled representation to
unbias face recognition and demographic attribute estima-
tion. Adeli et al. [1] defined a surrogate loss to predict the
bias while quantifying the statistical dependence with re-
spect to target bias based on Pearson correlation. Dhar et
al. [6] proposed a feature-based adversarial unbiasing, with
a discriminator training strategy that discourages a network
from encoding protected attribute information.

Known bias. Geirhos et al. [7] showed that CNNs
trained on ImageNet are strongly biased towards recogniz-
ing textures rather than shape variations. They constructed
Stylized-ImageNet dataset which makes the model be able
to learn shape-based representations. Rebias [3] encour-
aged de-biased representation to be different from a set of
textually biased representations through applying Hilbert-
Schmidt independence criterion. The intentionally biased
model towards texture is reproduced by reducing the recep-
tive fields. HEX [22] unlearned texture bias or subtle color
changes by utilizing the neural gray-level co-occurrence
matrix. The biased features were encouraged to be removed
through the projection in the learned representations.

Nam et al. [16] posed easily learned features as malig-
nant biases, addressing them by adjusting sample weights
at training. Although this definition of bias falls into neither
labeled nor known, it is different from our unknown bias.

7. Conclusion

Excessive dependence on the distribution of the train-
ing data causes a machine learning model to be unstable
on the unseen data. We specifically mitigate the case of
model biasing, when data is distributed severely biased to-
wards certain attributes. Contrary to the previous studies
that address the heuristically defined bias, we deal with the
unknown bias setting. As unknown biases cannot be quanti-
tatively measured, we tackle this issue by exploiting multi-
variant and unbiased representations via hierarchical fea-
tures and orthogonal regularization. The investigations on
the CNN’s representations support our motivation. Exten-
sive evaluations demonstrate our UBNet contributes to the
model’s robustness on generalization, and further ablation
studies show the potency of the proposed method on unbi-
ased learning.
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