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Abstract

We propose a novel approach to 3D scene painting us-

ing a configurable 3D scene layout. Our approach takes a

3D scene with semantic class labels as input and trains a

3D scene painting network that synthesizes color values for

the input 3D scene. We exploit an off-the-shelf 2D seman-

tic image synthesis method to teach the 3D painting net-

work without explicit color supervision. Experiments show

that our approach produces images with geometrically cor-

rect structures and supports scene manipulation, such as

the change of viewpoint, object poses, and painting style.

Our approach provides rich controllability to synthesized

images in the aspect of 3D geometry.

1. Introduction

Creating realistic 3D scenes becomes crucial due to the

increasing demands of unobserved content for virtual real-

ism. However, it is regarded as a challenging problem be-

cause many components depend on human labor [5, 7, 10,

24] or manual capture of real scenes [45]. In particular,

painting a scene is hard for a human, and it takes extra effort

if we want to change the style after the creation. There are

some attempts to focus on automatic 3D scene painting to

resolve the issues. For instance, given a 3D scene and ref-

erence image, they find a texture from a texture database,

which has a similar color distribution to the reference im-

age [54]. However, making a large-scale texture set is a bur-

den due to the variety of scene geometry.

We propose an automatic painting approach for 3D scene

creation in this work. For 3D scene painting, our approach

learns a 3D scene painting network that takes a 2D semantic

map and 3D coordinate map as input and produces a 2D im-

age with realistic RGB colors. Training a 3D scene painting

network, on the other hand, requires numerous colored 3D

scenes with semantic labels for supervision, which are hard

to acquire. To overcome this, we propose to utilize tech-

niques already developed for 2D image synthesis. Specif-
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Figure 1. The colored 3D scenes using the proposed method. Our

framework learns to paint a scene given 3D geometry and semantic

label map. The images are rendered from colored 3D scenes and

provide a way to change viewpoints, scene style manipulation, and

scene editing.

ically, given a 3D scene with object-wise semantic labels,

we render 2D maps of 3D coordinates and semantic labels.

The rendered maps are then fed to a realistic image synthe-

sis module to synthesize 2D RGB images, which are used as

pseudo-ground-truth labels for training our 3D scene paint-

ing network to produce realistic colors. As our network is

conditioned on 3D coordinates, it produces consistent col-

ors under the change of viewpoint.

2262



The proposed method has a few merits compared to pre-

vious works on 3D scene painting or texture mapping. First,

our approach can generate a quality texture of a scene with

the aid of a generative adversarial loss. Second, our ap-

proach can change the style of a scene by simply manipulat-

ing a style vector. Third, our approach allows a user detailed

control of scene layouts, and change of the viewpoint or the

positions of objects for image rendering.

The proposed scene painting network can be regarded as

a geometrically conditioned image synthesis from an im-

age synthesis perspective. Concurrent image synthesis ap-

proaches utilize a rough guide, such as image class [2, 21,

31, 34, 51], semantic labels [18, 38, 41, 47], attributes [43],

poses [3], voxelized scenes [14], or viewing-directions [32].

On the other hand, our approach opens a new research di-

rection for cases when 3D scenes are provided.

We apply our approach to various indoor scenes. Our

qualitative and quantitative experimental results verify that

our method is highly controllable and produces high-quality

colored scenes and images.

Our contributions can be summarized as follows:

• We propose a novel approach for automatic 3D scene

painting, which is based on a novel 3D scene painting

network that produces realistic RGB colors from 3D

coordinates and semantic class labels.

• Our approach can learn 3D scene painting without

ground-truth colored 3D scenes by combining off-the-

shelf 2D semantic image synthesis and 2D renderings

of 3D semantic labels and coordinates.

• Our approach allows detailed control over scene lay-

outs and change of the viewpoint and object poses.

2. Related Work

Semantic image synthesis. Since the emergence of gen-

erative adversarial networks (GANs) [11] and conditional

GANs (cGANs) [18], a number of approaches have been

proposed that utilize 2D semantic label maps to control

the image synthesis process. Wang et al. [47] proposed a

coarse-to-fine generator and a multi-scale discriminator to

achieve high-resolution image synthesis. Park et al. [38]

proposed spatially-adaptive normalization (SPADE) layers.

Schönfeld et al. [41] utilize a semantic segmentation net-

work as a discriminator. Zhu et al. [55] proposed a group

convolution-based network. Ntavelis et al. [33] proposed a

method for image editing using semantic labels. While these

approaches show astonishing results, these approaches are

limited to the synthesis of 2D images that are neither multi-

view consistent nor conditioned by 3D geometries. On the

other hand, we tackle the problem of realistic 3D scene col-

oring, where we aim to produce multi-view consistent im-

ages with realistic colors for a given 3D scene.

Material suggestion. Material suggestion methods [6, 19,

54] aim to automatically assign texture maps to input 3D

meshes by searching an external database. They require a

large-scale database of textured 3D models [19, 54] or im-

ages with 3D material annotations [6], but both of which

are expensive to acquire. We aim to automatically generate

a realistic 3D scene coloring with a deep generative model.

Image synthesis for 3D scenes. There have been vari-

ous attempts to incorporate 3D information for image gen-

eration, such as novel view synthesis, texture synthesis,

and 3D-aware generative models. Novel view synthesis ap-

proaches aim at generating images of novel viewpoints from

a single input image or multiple images [36, 49, 53]. How-

ever, it is hard to synthesize an image that is largely deviated

from the original viewing directions or to allow the manip-

ulation of objects, such as the adjustment of objects’ poses.

Most previous texture synthesis approaches for 3D

scenes aim at generating textures of a single 3D object.

Grigorev et al. [12] and Huang et al. [17] proposed image

synthesis methods conditioned on the arbitrary viewpoint

for an object. Henderson et al. [15] proposed a method for

synthesizing a textured 3D mesh. Martin-Brualla et al. [28]

presented a compact representation for reconstructing thin

3D structures by combining a coarse shape collection with

their learned textures. Oechsle et al. [35] and Schwarz et

al. [42] proposed a texture field and a radiance field, respec-

tively, both of which is a mapping function from a 3D point

to a color value. Unfortunately, these methods focus on a

single 3D object, and it is not trivial to extend them to han-

dle 3D scenes having multiple objects of different classes.

Recently, Liao et al. [25] introduced a generative model for

textures of multiple 3D objects. However, their approach is

limited to a small number of simple objects due to the com-

plexity of the approach. Liu et al. [26] proposed a pipeline

that uses camera trajectories and generates an outdoor nat-

ural image sequence of an infinite length. However, as their

approach relies on depth prediction, handling indoor scenes

with heavy occlusions and various thin structures gets hard.

Recently, GANcraft [14] introduces an approach that

generates geometrically consistent and realistic outdoor

images. Similarly to ours, GANcraft trains a 3D-aware

GAN using pseudo-ground-truth data and synthesizes im-

ages conditioned by 3D geometries. However, GANcraft

uses the voxel representation, which is limited in represent-

ing fine geometric details. Moreover, to synthesize each im-

age, it relies on frame-by-frame image synthesis procedure

that needs to render a voxel-based feature map to synthe-

size an image for each viewpoint. In contrast, our approach

is designed for indoor scenes with fine geometric details,

and assigns a color value for each 3D coordinate in a scene,

so it does not require frame-by-frame synthesis. In addition,

since our approach assigns a color value for each 3D coor-

dinate, it can be directly used for scene manipulation.
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Implicit representation. Another relevant work to ours

is implicit representation-based approaches. These ap-

proaches use implicit representations or continuous repre-

sentations, a class of learnable functions that map a coor-

dinate to a particular type of signal, e.g., color and voxel

occupancy. Occupancy Networks [29] and DeepSDF [37]

reconstruct a 3D model by introducing an implicit function

that takes a 3D coordinate as input and predicts the 3D oc-

cupancy of that position. Oechsle et al. [35] learn a func-

tion that maps a 3D coordinate to color. NeRF [30] takes a

3D coordinate and a viewing direction as input and predicts

a novel-view image. Schwarz et al. [42] designed a gen-

erative model based on NeRF. Anokhin et al. [1] propose

an image generator that independently calculates the color

value at each pixel given a random vector and a 2D coor-

dinate of that pixel. Sitzmann et al. [44] showed that peri-

odic activation functions could improve the representational

performance. Oechsle et al. [35] learn a function that maps

a 3D coordinate to a color value. Peng et al. [39] recon-

structs a whole scene using a convolutional neural network

that predicts occupancy. Encoding the coordinates is known

to yield successful results for the implicit mapping from a

coordinate to the desired output. NeRF [30] found that the

sinusoidal positional encoding improves the representation

power. Other approaches [1,46] show that mapping Fourier

features [40] enables to learn high-frequency functions.

These advances greatly inspire our approach. To effec-

tively learn consistent color information of an input 3D

scene from independently generated pseudo images, our

method is designed with an implicit function that maps a

3D coordinate to an RGB color. To enhance the image qual-

ity, we adopt positional encoding. Nevertheless, our method

allows scene-level image synthesis and object manipulation

for complex 3D scenes in contrast to prior work.

3. Method

This section introduces a problem definition for 3D

scene painting and our pipeline that benefits from condi-

tional image synthesis. Figure 2 shows an overview of our

3D scene painting framework.

3.1. Problem Definition

The objective of our approach is to colorize a 3D scene.

Specifically, a 3D scene S consists of 3D meshes of ob-

jects Mi with their semantic class labels li, i.e., S =
{(Mi, li)|1 ≤ i ≤ n(S)}, where n(S) is the number of

mesh models in the scene. For a given 3D scene S, our goal

is to generate a realistic RGB color cj ∈ R
3 for each point

pj on the surfaces of the meshes in S. In addition, we in-

corporate a style vector z to give ability to manipulate the

color distribution of the 3D scene.

3.2. Data Preparation

Learning to paint 3D scenes requires color supervision,

while it is not easy to access an extensive collection of

3D scenes with realistic colors. Instead, to train our scene

painting network without direct supervision, we synthe-

size pseudo-ground-truth labels using an off-the-shelf con-

ditional image synthesis method based on semantic segmen-

tation maps. In the following, we describe our training data

generation process.

Label map rendering. Given a 3D scene S, we sam-

ple a set of multiple viewpoints. Then, from each view-

point, we render a depth map D ∈ R
H×W and a label map

L ∈ R
H×W , where H and W are the height and width of

the map, respectively. We transform L to L
′ ∈ R

H×W×C

by converting the class label at each pixel to a one-hot vec-

tor, where C is the number of class labels. By using the

camera parameters of the current viewpoint, we convert the

depth map to a coordinate map P ∈ R
H×W×3 whose pixel

values indicate the world coordinates in the 3D scene. In

this manner, we render the input 3D scene from multiple

viewpoints and acquire various pairs of a coordinate map

and a label map that is denoted as {(Pv,L
′
v)|1 ≤ v ≤ V },

where V is the number of viewpoints.

Pseudo ground-truth generation. We then generate

pseudo-ground-truth images {I′} from generated label

maps {L′} using an off-the-shelf image synthesis network

as a pseudo image generator G′ where I
′ ∈ R

H×W×3 For

G′, we use OASIS [41] trained on the ADE20K dataset [52],

a state-of-the-art image synthesis network that produces a

realistic 2D image from a semantic label map and a style

vector z. Exploiting G′, we generate pseudo ground-truth

images {I′} as I′ = G′(L′, z). By sampling random z from

the normal distribution, we gather images of various styles

for each scene. While the pseudo-ground-truth images I
′

are realistic-looking thanks to the advances in the 2D im-

age synthesis, they are not multi-view consistent because

they are generated independently. Nonetheless, our scene

painting network can still learn multi-view consistent im-

age generation thanks to its network architecture and learn-

ing strategy, which will be explained in the following.

3.3. Scene Painting Network

Our 3D scene painting network G generates colors for

the points in a 3D scene for a given 3D coordinate map, a

label map, and a style vector. Specifically, G performs 3D

scene coloring as I = G(X,W(z)) where I ∈ R
H×W×3

is a resulting 2D RGB image, X is a concatenation of a

positional encoding map γ(P) and L
′, and W is a learn-

able style mapping network inspired by StyleGANv2 [22].

F is the sum of the number of channels in γ(P) and L
′.

We utilize sinusoidal function-based positional encoding

γ(·) [30]. For each 3D world coordinate x = [x, y, z] in P,
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Figure 2. Overview of the proposed method. Given a 3D scene, we render a coordinate map P and a semantic label map L
′ from arbitrary

viewpoints. Our scene painting network G is trained with pseudo images generated by G′. G generates color from the feature map X =
[γ(P);L′], which is a concatenation of γ(P) and L

′ in the channel dimension. γ(·) is a element-wise positional encoding function. G
and G′ share the style vector z, and z passes the style mapping network W . The generated image I is compared with the pseudo image

I
′ by Lrec. The segmentation-based discriminator classifies the authenticity of the generated images I and pseudo images I′. Note that G

generates color for each 3D point and Lrec is defined for each 3D point. After training, the generated colors are mapped to the 3D scene,

and we get the colored scene.

which is normalized into [−1, 1], γ(·)1 produces a (6T+3)-
dimensional encoding vector where T is a hyperparameter.

The scene painting network G consists of nine fully-

connected layers that independently assign a color to each

coordinate. The layers use style adaptive weight modula-

tion adopted from StyleGANv2 [22]. The detailed archi-

tecture is provided in the supplement. We train G with our

pseudo-ground-truth images by optimizing a reconstruction

loss Lrec and an adversarial loss Ladv . We define the recon-

struction loss Lrec as a combination of an L1, L2, and VGG

perceptual loss [20], i.e.,:

Lrec =
1

K

B
∑

b=1

H×W
∑

i=1

(

A
b
i

∥

∥I
b
i − I

′b
i

∥

∥

1
+

λL2A
b
i

∥

∥I
b
i − I

′b
i

∥

∥

2

)

+ LV GG

(1)

where K = BHW is a normalization factor, B is the mini-

batch size, and H and W are the height and width of a gen-

erated image, respectively. Ib and I
′b are the b-th generated

image and pseudo image in the current mini-batch, and I
b
i

indicates the i-th pixel of Ib. Ab is the b-th adaptive weight

map, which will be explained later. LV GG is a perceptual

loss [20] between I and I
′. λL2 is a scalar weight and we

use λL2 = 10.

Pseudo images from different viewpoints may have dif-

ferent textures (Figure 3 (b)) and artifacts (Figure 7 (a)),

which may eventually lead to artifacts in the final 3D scene

coloring results. The reconstruction loss adopts the adap-

tive weight map to discard such inconsistent parts of pseudo

1
γ(x) = [x⊺

, γ0(x), · · · , γT−1(x)]
⊺, where γt(x) =

[sin(2tπx), cos(2tπx), sin(2tπy), cos(2tπy), sin(2tπz), cos(2tπz)]

images during training. The adaptive weight map A ∈
R

H×W×3 is defined as:

Ai = exp

(

−
||I′i − µ(I′i,Li)||

2
2

σ

)

,

µ(I′i,Li) =

∑H×W

j=1 I
′
j1 [Lj = Li]

∑H×W

j=1 1 [Lj = Li]

(2)

where µ(I′i,Li) ∈ R
3 is a label-wise mean vector of pseudo

image pixel values whose semantic class is Li. 1 is an indi-

cator function. σ = 0.1 is a scalar that controls smoothness

of the Gaussian function.

Minimizing the reconstruction loss Lrec tends to mix

clashing colors from pseudo images of different viewpoints,

and it makes G to produce blurry images as a trivial solu-

tion. To alleviate this, we adopt adversarial learning to guide

G to synthesize more realistic-looking images with detailed

textures. We adopt the semantic segmentation-based adver-

sarial learning [41], where a discriminator learns to classify

each pixel of an image into (C + 1) semantic classes. The

additional class accounts for one fake class. Our framework

uses a label map L
′ as ground truth for the discriminator.

The adversarial loss Ladv is defined as:

Ladv = −
1

K

B
∑

b=1

C
∑

c=1

αc

H×W
∑

i=1

L
′b
i;c logD

(

I
b
)

i;c
(3)

where αc is a weight for each class to resolve the class im-

balance problem [41], D is a semantic segmentation-based

discriminator, and L
′b
i;c is the c-th element of the class la-

bel represented as a one-hot vector at the i-th pixel of the

2265



b-th label map, which is either 0 or 1. Similarly, D(Ib)i;c is

the c-th element at the i-th pixel of the discriminator output

D(Ib) ∈ R
H×W×C . The discriminator D is trained using a

loss defined as:

LD = λadv

(

−
1

K

B
∑

b=1

C
∑

c=1

αc

H×W
∑

i=1

L
′b
i;c logD

(

I
′b
)

i;c

−
1

K

B
∑

b

H×W
∑

i=1

logD
(

I
b
)

i;C+1

)

.

(4)

The total loss for training G is then defined as: LG = Lrec+
λadvLadv , where λadv is a scalar weight.

3.4. Texture Mapping

After training, we create a texture map of each mesh

model Mi in the scene S using coordinate maps Pv and

the corresponding generated images Iv . Specifically, we re-

trieve 3D points appearing at each coordinate map and col-

lect color values generated by the scene painting network.

Then, using the texture coordinates corresponding to the 3D

points, we reconstruct texture maps of meshes.

This step gives us texture-mapped meshes of the scene,

so we can quickly render arbitrary viewpoints of the colored

scenes, and the rearrangement of objects is straightforward.

4. Experiments

4.1. Implementation details

Network and training. We use the MLP architecture men-

tioned in Sec. 3.3 with the positional encoding parameter

T = 4. We use leaky-ReLU [27] with a negative slope of

0.2 for the activation functions in our network. For training,

we used the Adam [23] optimizer with β1 = 0, β2 = 0.999,

and the learning rate of 1 × 10−4. We set the batch size as

8. For the adversarial loss, we set λadv = 0.1. We train our

scene painting network for 40,000 iterations.

Data preparation. For our experiments, we utilize 3D

models and their arrangements from the SceneNet [13]

dataset, as it provides complete object meshes, which

enable scene editing, unlike other 3D datasets such as

Replica [45], MatterPort3D [4], and ScanNet [9]. For qual-

itative experiments, we use four scenes in the SceneNet

dataset: bedroom, kitchen, living room, and office, each of

which provides 1.1k, 0.8k, 1k, and 1.8k training frames, re-

spectively, and 49, 48, 64, and 64 test frames, respectively.

We separately train the scene painting network for each

scene. As SceneNet has no semantic labels on the objects,

we assign each 3D model a class label using the 150 labels

in the ADE20k [52] dataset2. We use Blender [8] to render

label maps and depth maps from multiple viewpoints.

2Available on our project webpage: http://cvlab.postech.

ac.kr/research/3DScenePainting.

Toy scene. For quantitative experiments, including abla-

tion studies, we create a toy example scene by modifying

a bedroom scene of SceneNet [13]. The scene is of a room

with objects of 15 classes.

4.2. Qualitative results

Image quality and view consistency. In Figure 3, we visu-

ally compare the quality and view consistency of our results

with images generated by OASIS [41]. As shown in Figure

3 (b), OASIS produces unnatural textures, especially in the

scene with complex geometry and large homogeneous re-

gions. In contrast, our method produces geometrically valid

and consistent images (Figure 3 (c)).

Scene style control. Our approach is readily able to con-

trol the style of a scene by changing the style vector z. We

can change the style during the test time, so it does not

involve re-training the network. Figure 4 shows example

scenes generated with different style vectors.

3D scene editing. Our approach directly assigns texture

colors to each mesh in a 3D scene. Thus, once texture col-

ors are assigned, a 3D scene can be easily edited using ordi-

nary 3D operations in contrast to other 3D image synthesis

techniques [14, 26]. Figure 5 shows such an example of 3D

scene editing where we first synthesized texture maps for a

3D scene using our scene painting network, edited the 3D

scene using Blender [8], and rendered new images with the

synthesized textures.

4.3. Evaluation metrics

We evaluate our method using the following metrics.

We focus on assessing the quality of generated images for

quantitative evaluation because there is no available precise

quantitative quality measure for colored 3D scenes to our

best knowledge.

Frechet Inception Distance (FID). We measure FID [16]

between the generated images and real images from the

ADE20k dataset [52]. A smaller value indicates that the dis-

tribution of generated images is closer to that of real images.

Mean Intersection-over-Union (mIoU). Our method gen-

erates a 2D image from a rendered 2D semantic label map.

To measure how semantically faithful a generated image

is for a given input semantic label map, we measure the

mIoU between the input semantic label map and the seman-

tic segmentation result of a generated image predicted by

a pre-trained semantic segmentation network [48]. A higher

mIoU score indicates that the generated image is more faith-

ful in terms of semantic labels.

View consistency (VC). We also measure the consistency

of images generated by different viewpoints. To measure

the view consistency among images generated by different

viewpoints, we collect color values of 3D points from the

images. Then, we compare the color values of 3D points
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(a)

(b)

(c)

Figure 3. We compared images generated by our method and the images produced by OASIS [41] on the three scenes. For each scene, two

images from two different views were compared. (a) Semantic label map, (b) Pseudo images produced by OASIS, and (c) Our results.

Figure 4. Examples of style manipulation using our scene painting network.

in a local neighborhood in the 3D space. Specifically, we

define a local neighborhood Np as a cell in the 3D space

whose center is the 3D point p, and define C(Np) as a set

of pixel colors in p. Then, we define the VC metric as:

1

n(N )

∑

Np∈N

max
y∈C(Np),y′∈C(Np)

|y − y
′|2 (5)

where y and y
′ are color values in the neighborhood Np.

N = {Np|n(C(Np)) >= 2} is the set of the local neigh-

borhoods having two or more corresponding pixels. A lower

VC score indicates higher view consistency.

4.4. Ablation Study

We conduct ablation studies on the scene painting net-

work architecture, dimensions of positional encoding, and

loss function. In this ablation study, we use the configura-

tion described in the following as our baseline. We use the

MLP architecture mentioned in Sec. 3.3 with positional en-

coding T = 4. We use the reconstruction loss Lrec without

adaptive weight A and adversarial loss with pseudo images

with λadv = 1. We utilize early stopping and the number of

training iterations of 10,000 or 40,000 to avoid overfitting

the discriminator. Unless otherwise mentioned, we use this

setting in the quantitative experiments.

Architecture of the scene painting network. We con-

duct an experiment on two architectures. Previous methods

based on implicit representations [14, 32] adopt CNNs to

improve their performance. In this study, we also examine

whether adopting a CNN can improve the generation quality

of our framework. In Table 1, MLP+CNN is an MLP archi-

tecture followed by four 3×3 convolution layers. A residual

connection is added to the output of each convolution layer.

The number of training iterations is 10,000. The results indi-

cate there exists a trade-off between the single image quality

and view consistency. As architecture has more CNN lay-

ers, the receptive field gets larger, and the view consistency

ge1qts worse. MLP+CNN achieves better mIoU and FID

than MLP for the single image quality. However, we choose

the MLP for the scene painting network because the change

of colors of CNN layers is noticeable (Figure 6 (a), (b) ,(c)).

Dimension of positional encoding. We use positional en-

coding γ(·) for the input of G, which has a hyperparameter

2267



Figure 5. Colored meshes generated with our method, and scene editing examples. (From left to right) the original scene, removed chairs,

rearranged chairs, more bottles on the table, and different style of the table.

Table 1. Comparison on scene painting network architectures.

Architecture
Measure

mIoU (↑) FID (↓) VC (↓)

MLP+CNN 0.461 111.69 37.51

MLP 0.391 132.93 1.23

Table 2. Evaluation on various T of positional encoding.

T Training iter.
Measure

mIoU (↑) FID (↓) VC (↓)

0 10,000 0.290 174.39 0.76

2 10,000 0.396 151.23 0.92

4 10,000 0.391 132.93 1.23

4 40,000 0.427 115.75 3.14

6 10,000 0.386 155.02 3.99

10 10,000 0.381 179.77 11.58

10 40,000 0.431 148.33 14.36

T that can affect the quality of generated images. To study

the effect of T on the generation quality, we test various

values for T in Table 2. The scene painting network pro-

duces blurry images without positional encoding (T = 0).

We found that a large T catches the high-frequency details

in the pseudo images when the number of training iterations

is large enough to reach the convergence of the reconstruc-

tion loss. However, when the number of training iterations

is large, artifacts of pseudo images emerge in the generated

images (Figure 7 (a), (d)). An extensive T causes a grid-

like artifact in generated images when the number of train-

ing iterations is insufficient to converge the reconstruction

loss (Figure 7 (b)). The mIoU values are similar except for

T = 0 when the number of iterations is 10,000. The mIoU

and FID improve when the networks are trained for 40,000

iterations, yet the resulting images have significant artifacts

that are not shown in mIoU and FID (Figure 6 (d), (e)). The

setting with the number of training iterations of 10,000 and

T = 4 shows the best FID.

Loss function. We experiment to determine the best con-

figuration for the loss functions. Table 3 shows the effects of

Lrec, adversarial loss Ladv with pseudo images (GAN-p),

adaptive weight A, and λadv . While the first row shows that

employing only Lrec achieves the lowest VC, it is because

using only Lrec results in blurry images (Figure 7 (b)). We

achieve better mIoU and FID scores when combining L1,

Table 3. Ablation study on loss functions. GAN-p is the adversarial

loss with pseudo images, and GAN-r is the adversarial loss with

real images (ADE20K [52]). When λadv = 1, # of iter. is 10k, and

when λadv = 0.1, # of iter. is 40k.

Setting λadv use A
Measure

mIoU (↑) FID (↓) VC (↓)

Lrec 1.0 0.291 151.57 0.44

L1 + GAN-p 1.0 0.370 140.35 2.06

L1 + L2 + GAN-p 1.0 0.366 141.16 1.24

Lrec+ GAN-p 1.0 0.391 132.93 1.23

Lrec+ GAN-p + GAN-r 1.0 0.385 138.35 1.24

Lrec+ GAN-p 0.1 0.394 124.30 1.08

Lrec+ GAN-p 1.0 ✓ 0.393 129.69 1.35

Lrec+ GAN-p 0.1 ✓ 0.419 116.33 1.00

OASIS [41] - - 0.5728 84.74 57.863

L2, VGG perceptual losses, and GAN-p. GAN-p enhances

perceptual quality, as evidenced by improved mIoU when

looking at the first and fourth rows. In this experiment, we

also evaluate the adversarial learning with real indoor im-

ages from the ADE20k dataset [52], which is denoted as

(GAN-r) in the table. The table shows that GAN-r does not

improve the quality because the domain gap between the

real images and labels from the 3D scene is enormous, mak-

ing the training difficult. As mentioned earlier, a large num-

ber of iterations causes a GAN artifact, and we resolve this

by balancing the λadv . In the sixth row, when λadv = 0.1,

training progresses for significant iterations without artifact,

and the result shows the better mIoU and FID compared

with the fourth row. In the seventh row, when using adap-

tive weight A, the result shows the better mIoU and FID

compared with the fourth row. Finally, the last row shows

the best configuration.

We also show the measures of OASIS [41], which is our

pseudo image generator (Figure 7 (a)). We generate pseudo

images with the same labels used in the other experiments

and evaluate the measures with those pseudo images. Al-

though OASIS’s perceptual quality is superior to ours, it is

difficult for OASIS to create coherent images for different

viewpoints. We also emphasize that our goal differs signif-

icantly from the image synthesis methods. It is unfair to

compare our approach against previous ones solely based

on conventional metrics.
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(a) (b) (c) (d) (e)

Figure 6. Images that are generated with different architectures. (a), (b) and (c) are generated by MLP + 3 × 3CNN architecture from

different viewpoints. (a) and (b) show the color shift of the table, and (b) and (c) show the color shift of the floor. (d) shows the result of

MLP architecture with 10k training iterations. (e) shows the result of MLP architecture with 40k iterations.

(a) (b) (c) (d) (e)

Figure 7. Examples of artifacts. (a) A pseudo image generated from OASIS [41]. (b) T = 4, 40k iter., and no adversarial loss. (c) T = 10
and 10k iter. (d) T = 10 and 40k iter. (e) T = 4, 40k iter., and adaptive weight A, and λadv = 0.1.

Averaging Generated Averaging(top) Generated(top)

Figure 8. Comparison between the averaging approach and ours.

Comparison with averaging. An alternative to generating

view-consistent images from pseudo-ground-truth images

would be simply averaging colors from pseudo-ground-

truth images for each 3D point. We compare our approach

with the averaging approach. The results of the averaging

approach show noisy results (Fig. 8). It is because averaging

requires many training images without holes. On the other

hand, our approach does not suffer from such a problem be-

cause it learns a function from a 3D coordinate to a color

rather than simply memorizing color for each coordinate.

5. Conclusion

This paper proposed a novel 3D scene coloring approach

synthesizing the color of configurable 3D scene layout and

a training scheme that does not require direct supervision

from colored 3D scenes. Given 3D coordinate and semantic

label maps, our scene painting network synthesizes view-

consistent colored scenes. Our method ensures the view

consistency of synthesis, which is not addressed in the se-

mantic image synthesis method. In addition, our method can

be used to generate the color of a scene containing multiple

objects, allowing users to modify scene color and configura-

tion using 3D graphics tools. An interesting future direction

would be to make the pipeline faster and support explain-

able adjustments of scene styles (make the scenes brighter,

darker, or warmer).

Limitation Our approach has several limitations. While

our approach can produce coherent images and be com-

bined with any image generation approach, our results de-

pend on the quality of the pseudo image generator. Our ap-

proach also shows limited diversity in generated images due

to the limited diversity of a pre-trained OASIS model [41]

as discussed by Yang et al. [50]. The example is shown in

Fig. 4, where the bed cover is consistently red regardless

of the different style vectors. The adaptive weight map as-

sumes each class has a single color, which may lead to over-

smoothing in some areas. Besides, our approach hardly

generates transparent objects such as a window or view-

dependent appearances. This limitation stems from the in-

put representation. The network assigns one color to each

3D coordinate, so it cannot model the view-dependent light-

ing effect. Finally, our approach requires training of a new

network for a new scene.
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