
Multi-Scale Memory-Based Video Deblurring

Bo Ji Angela Yao
National University of Singapore
{jibo,ayao}@comp.nus.edu.sg

Abstract
Video deblurring has achieved remarkable progress

thanks to the success of deep neural networks. Most meth-
ods solve for the deblurring end-to-end with limited in-
formation propagation from the video sequence. How-
ever, different frame regions exhibit different characteris-
tics and should be provided with corresponding relevant
information. To achieve fine-grained deblurring, we de-
signed a memory branch to memorize the blurry-sharp fea-
ture pairs in the memory bank, thus providing useful infor-
mation for the blurry query input. To enrich the memory
of our memory bank, we further designed a bidirectional
recurrency and multi-scale strategy based on the memory
bank. Experimental results demonstrate that our model out-
performs other state-of-the-art methods while keeping the
model complexity and inference time low. The code is avail-
able at https://github.com/jibo27/MemDeblur.

1. Introduction
Video deblurring is a core restoration and enhancement

task aiming to recover a sharp video from a blurry input
video. Blur in videos arises from various sources, e.g. ob-
ject motion, camera shake, and depth of field. Video deblur-
ring is a highly ill-posed problem as multiple sharp sources
may correspond to a single blurred result. The problem
becomes especially pertinent as more and more videos are
captured by smartphones.

Video deblurring distinguishes itself from the image de-
blurring task in that it is critical to use the information from
the entire sequence of frames effectively. To do so, window-
based models [17,22,23,27] feed consecutive blurry frames
to an encoder-decoder to directly restore a sharp frame. Re-
current models [6,15,30,35,36] on the other hand maintain
a hidden state across the frames to sequentially propagate
features from the first frame to the last. However, these
methods cannot utilize the information from all the frames
in the video sequence. Moreover, neighbouring frames are
often used in simplistic manners, e.g. via an alignment.

An underexplored aspect in video-deblurring is that blur-
ring occurs from non-uniform blur kernels. The blur ar-
tifacts differ not only for the same object across different

(a) Frame 0 (b) Frame 16

(c) Frame 20 (d) Frame 86

Figure 1. Different image regions have different blurry artifacts.

frames but also for different objects or regions in the same
frame. As shown in Fig. 1, the same flower in different
frames of a sequence exhibits different extents of blur (com-
pare the blue sample in frame 16 and 86 vs. 0 and 20). Dif-
ferent flowers in the same frame (see frames 16, 20) also
have various blur distortions due to object motion. This
makes spatio-temporal information aggregation difficult as
it is necessary to provide the appropriate information to dif-
ferent regions of a frame.

To remedy this problem, we adopt the principle of mem-
ory networks [2, 12, 16, 24]. Memory networks were orig-
inally developed for language modeling [24] and are cur-
rently popular in vision for video object segmentation [2,
16]. In segmentation, the memory encodes high-level se-
mantics like objects, but they have not been explored in the
context of low-level enhancement tasks like deblurring. The
memory networks used in our model record blurry-sharp
feature pairs. We compute a spatio-temporal attention be-
tween each location of the memory features and that of a
query frame region to find helpful sharp information. The
implicit advantage is that even if the blur kernel is unknown,
we can still extract the corresponding sharp information
simply by matching the queried region with memorized fea-
tures.

Different from previous works using memory networks,
we use memory to supplement information to the deblur-
ring backbone. The core deblurring branch is still responsi-
ble for recovering low-level details. To enrich the features

1919



(a) Window-based method [17, 22, 27].

(b) Recurrent method [6, 15, 30, 36].

(c) Our proposal.

Figure 2. Temporal receptive field comparison between differ-
ent methods for video deblurring. Window-based approach re-
constructs sharp images referencing neighbouring frames within
a small fixed-size window. Recurrent methods collectively aggre-
gate frame features till up-to-date to provide restoration cues. In
contrast, our method allows the feature propagation from the entire
sequence when restoring the given frame.

in the memory bank, we propose a bidirectional and multi-
scale structure that better captures information from the en-
tire video sequence at different scales. The multi-scale de-
sign also allows our model to handle large displacements
more effectively. Our contributions can be listed as follows:

• We present a novel memory-based architecture that
stores blurry and sharp spatio-temporal patterns to
achieve fine-grained video deblurring. To the best of
our knowledge, we are the first to adopt a memory net-
work for a video enhancement task.

• To increase the diversity of memories in the mem-
ory bank, we developed a bidirectional and multi-scale
structure based on the memory bank. The multiple
scales share the same memory bank, which allows
cross-scale matching and effective handling of large
motions.

• The experimental results demonstrate that our model
achieves superior results than state-of-the-art methods
under comparable computational budgets.

2. Related work

Video deblurring methods. Image or video deblurring
methods are widely used in computer vision tasks, such as
SLAM [9], 3D reconstruction [19] and visual tracking [31].
In recent years, deep learning methods have achieved re-
markable success in low-level enhancement tasks such as
super-resolution [10, 18, 33], denoising [4, 7] and deblur-
ring [14,22,25]. Contemporary deep learning video deblur-
ring methods can be roughly divided into window-based
and recurrent methods. Window-based methods [17,22,27]

(see Fig. 2a) take 3-7 consecutive frames and try to recon-
struct the middle frame. One derivative [23] uses reinforce-
ment learning to select the most effective frames based on
the current input and concatenate them with the input of the
model.

Recurrent models [6, 15, 30, 35, 36] deblur frames in
sequence, maintaining a recurrent hidden state to propa-
gate information from frame to frame (see Fig. 2b). ES-
TRNN [35] proposes a spatio-temporal attention module to
fuse the neighboring features further. Our model is also re-
current, though we supplement the hidden vector with in-
formation from the memory network to extend the range of
contextual information (see Fig. 2c)

Existing methods, be it window-based or recurrent, do
not consider the characteristics of a localized region within
a frame. Furthermore, they utilize only a portion of the
frames in the sequence. Our method uses memory banks
to provide appropriate spatio-temporal information for each
region and exploits the features of all frames.

Memory networks. Memory networks are a class of
learning models [29] that construct an external memory
bank module to store potentially useful features for future
use. Memory networks were originally developed for NLP
applications [12,24,29], but the property of storing features
lends itself naturally to being used in video where there
is large redundancy across frames. As such, memory net-
works have been extended to several other video tasks such
as movie understanding [13], object tracking [32] and, more
recently, video object segmentation [2, 11, 16, 20].

To the best of our knowledge, memory networks have not
been used for low-level enhancement tasks like video de-
blurring. As memory networks traditionally encode seman-
tic information, it is not known if they can effectively han-
dle the underlying feature reconstruction of low-level tasks.
Different from existing works, we designed a new memory
network customized for the video deblurring task. Espe-
cially noteworthy is our novel multi-scale memories which
can be shared across different scales.

3. Approach
We adopt a multi-scale memory-based structure to solve

the video deblurring task. There are two branches: the de-
blurring branch and the memory branch (see Fig. 3). The
deblurring branch features a bidirectional recurrent struc-
ture, while the memory branch stores blurry-sharp feature
pairs.

3.1. Preliminaries

Given a blurry video sequence I= {I1, . . . , Ii, . . . , IN}
as input, our objective is to recover a deblurred output se-
quence R = {R1, . . . , Ri, . . . , RN}. Considering a blurry
frame i, the recovered frame Ri can be given by a learned

1920



decoding or “upsampling”1 U(·) of a hidden vector hi, i.e.

Ri = U(hi),

where hi = F([xi, xi−1, hi−1,mi]),
(1)

where F represents a recurrent feature extraction module,
D is a learned encoding or “downsampling”, xi = D(Ii),
xi−1 = D(Ii−1) and mi is a retrieved deblurred memory
feature. From Eq. (1), one can see that the feature extraction
module F has a recurrent structure, in that hi relies on the
current downsampled input feature xi, retrieved mi and also
the previous hi−1. We also feed the previous downsampled
feature xi−1 into the feature extraction module as this has
been shown to be effective [3].

3.2. Memory-enhanced feature aggregation

The memory bank stores the blurry-sharp feature pairs
in the latent space so that the relevant sharp features are
retrieved with the blurry query input. We consider past re-
stored frames as memory frames saved in the memory bank
and the current blurry frame as the query frame.

Saved memory frames follow a key-value format. The
key is encoded from the blurry frame Ii, while the values are
features extracted from the corresponding hidden features
hi and deblurred result Ri. Given a query frame, we com-
pare it with memory frames in the key space and retrieve the
associated values. Then, we decode the values back as rel-
evant effective information for the query input. For clarity,
we ignore the bidirectional design and scale level s when
describing the details of the memory alignment.

Key encoding. We reuse the downsampling module D to
reduce input frame Ii into xi, though the spatial size is still
too large for the matching between the query and memory
keys. Inspired by [16], we use a key encoder K to further
reduce the computational overhead to a key ki:

ki = K(xi). (2)

Value encoding. Regarding the value, we apply the
encoder-decoder architecture and save the values in the la-
tent space to reduce the memory cost and computational
cost. The value encoding module V is responsible for en-
coding the corresponding pair into their latent values:

vri = Vr([xi, ri]),

vhi = Vh([xi, hi]),
(3)

where ri = D(Ri) and [·] represents the concatenation op-
eration. While it is feasible to directly store a value triplet,

1We abuse the terms “upsampling” and “downsampling” to emphasize
a transformation in both features space and spatial dimensionality.

i.e. vi = V([xi, ri, hi]), we find through preliminary studies
that such a design is too limiting and degrades the perfor-
mance (see Section 5), likely because it does not distinguish
the different roles of ri and hi.

For more flexibility, we store vri and vhi in two differ-
ent memories. For storage, we concatenate them with the
current memory vr,M , vh,M and update:

kM = [kM , ki]

vr,M
i = [vr,M

i−1 , vi]

vh,M
i = [vh,M

i−1 , vi].

(4)

Note that the two values share the same key. While it
is possible to update vM with values at every temporal in-
dex i, increasing the frequency of memorization increases
the memory cost without necessarily improving the per-
formance. As such, we update the memory with every T
frames.

Memory readout. Here, we ignore the frame index i for
a given query key ki and use q to denote the q-th location of
ki as kQq . Similarly, we denote kMp as the p-th location of
the memory key kM . Then, we compute the affinity matrix
S between kQq and kMp :

Sq,p = d(kQq , k
M
p ), (5)

where d is any similarity measure. The affinity matrix S is
then normalized by a softmax to matrix W:

Wq,p =
exp(Sq,p)√

Ck ·
∑

z exp(Sq,z)
, (6)

where Ck is the key dimension and
√
Ck serves as a nor-

malization term [26]. This operation is a form of spatio-
temporal attention, where W can be viewed as an attention
map, as we are looking for locations on the memory frames
that are most relevant for restoring the current query loca-
tion.

The matrix W is shared across the readout operation for
two memory values, vri and vhi , where i is the frame index.
The readout memory for the query key ki is given as

vr,Qi = vr,M
i W

vh,Qi = vh,M
i W,

(7)

where vr,M
i and vh,M

i represent the current memory for the
two pairs when we try to restore i-th frame Ii, v

r,Q
i and vh,Qi

are the corresponding aggregated memory outputs.

Memory decoding. The readout memory vr,Qi and vh,Qi

are further decoded by the corresponding decoders Gr and

1921



Figure 3. Overview. The input is represented at three different scales. We recover the entire video sequence at the corresponding scale,
starting from the lowest scale, until the sequence of the original input size is restored. For each scale, we sequentially restore from the first
to the last frame. The same memory bank is shared between scales, which ensures information propagation across multiple scales.

Gh:

mr,Q
i = Gr(v

r,Q
i )

mh,Q
i = Gh(v

h,Q
i ).

(8)

We then concatenate the two decoded memories to get mi:

mi = [mr,Q
i ,mh,Q

i ], (9)

where mi is the final memory output for the input frame
Ii. As the encoders K and V downsample the input feature
xi, the decoder G upscales the memory back to the original
spatial size.

3.3. Bidirectional recurrency

If a video sequence is deblurred in a uni-directional man-
ner, e.g. forwards, then frame Ii receives context and mem-
ory only from frames up to i − 1. Yet, there likely exist
helpful details in frames after i+1. Therefore, we make the
recurrent framework bidirectional, incorporating a forward
and a backward pass of the sequence to further enrich the
memory bank. Just as we establish a memory bank in the
forward pass of the sequence, we can also do the same for

the backward pass. Note that the sharp frame is restored
with information from both passes. As we perform the
backward pass first, there are no sharp frames available dur-
ing the backward procedure, so we encode only the hidden
features hi when establishing the backward memory bank.

For the backward pass, the input sequence is fed in as
{IN , IN−1, . . . , I1}, where each recurrent unit operates as

hb
i = Fb([xi, xi+1, h

b
i+1,m

b
i ]), (10)

and hb
i is the hidden state of the backward module Fb for

i-th downsampled feature xi, mb
i is the aggregated memory

with the query key ki. We store the forward and backward
features separately in two memory banks. This allows the
two memories to be extracted separately during the forward
pass, which we find to be more beneficial for the model to
distinguish and learn. Then, in the forward pass, the fea-
ture extraction module can utilize the backward memory to
refine the current features:

hf
i = Ff ([xi, xi−1, h

f
i−1,m

f
i ,m

b
i ]), (11)

where hf
i is the hidden state of the forward module Ff , and

mf
i is the memory aggregated from the previous frames. We

1922



fuse hf
i and hb

i using one convolutional layer to get hi:

hi = conv([hf
i , h

b
i ]) (12)

The final reconstruction operation is given by Eq. 1.
The bidirectional design is important. The backward

module not only provides the visibility of the future frames,
but also gives more sufficient information for the restoration
of the first frame x1 in the forward pass. In Eq. 11, as x1 is
the first frame in the video sequence, xi−1, hf

i−1 and mf
i are

all initialized as zeros. If we do not retrieve memory from
the backward pass, i.e., mb

i , the model only uses the infor-
mation of the current frame to perform the deblurring. In
that case, it downgrades into a single-image deblurring task
and would produce an inferior result. Moreover, in Eq. 12,
the backward pass provides an additional helpful feature hb

i .

3.4. Multi-scale design

Memorizing the relationship among the downsampled
feature xi, hidden state hi, and sharp frame Ri occupies
memory and computational cost. To balance efficiency and
performance, we only memorize every T frame, as men-
tioned in Section 3.2, and perform the temporally intensive
memorization for downsample sequences. This motivates
us to adopt a multi-scale strategy. Multi-scaling has proven
to be effective in image deblurring [14, 25] but is not yet
explored in video tasks.

Adopting a multi-scale strategy causes limited memory
and computational overhead, but comes with the key advan-
tage of allowing the matching between patterns at different
scales. It also handles large displacement more effectively,
as downscaling reduces the size of the original (large) dis-
placements.

To consider multiple scales, we downsample the input
frame Ii ∈ RH×W×C into I2i ∈ RH/2×W/2×C and I3i ∈
RH/4×W/4×C , where the original input Ii can be consid-
ered as I1i . Note that the downsampling and upsampling
in the multi-scale strategy are different from downsampling
module D and upsample module U in the deblurring branch.
The former uses a deterministic method, e.g. bilinear inter-
polation, as the objective is purely scaling and not feature
extraction. At scale level s for the forward pass, we obtain
the hidden state by

hf,s
i = Ff ([x

s
i , x

s
i−1, x

s+1↑
i ,mf,s

i ,mb,s
i ]), (13)

where hf,s
i is the hidden state at scale level s, xs+1↑

i is the
upscaled version of the downsampled feature from the de-
blurred frames at scale s+1, i.e. xs+1↑

i =(D(Rs+1
i )) ↑, mf,s

i

and mb,s
i are aggregated memories from forward and back-

ward memory banks for the given input xs
i . The ↑ denotes

bilinear upsampling.
The forward module of different scales share the same

memory bank. This makes it possible for the query frame to

match features to multiple scales and enhances the memory
utilization. The shared-scale memory is a key distinction of
our work from previous multi-scale methods.

3.5. Architecture

We use residual dense blocks [34], residual blocks [10]
and transposed convolution as the basic building blocks for
D, F and U in the deblurring branch, respectively. For
our memory branch, the 3 encoders K, Vr and Vh are of
the same architecture, which is residual blocks followed the
first stage of pre-trained ResNet50 [5]. The decoder G com-
bines the output of 2 decoders Gr and Gh, which contains
residual blocks and a single ×4 pixel shuffle layer [21].
More details are in the Supplementary.

4. Experiments
4.1. Setting

Dataset. We experimented on the GOPRO dataset [14],
which features 22 training sequences with 2103 frames and
11 validation sequences with 1111 frames. We experi-
mented with two variants: the original version [17] and
the downsampled version with gamma correction [15, 35],
which downsamples the original videos from 1280×720 to
960× 540 to reduce noise and video compression artifacts.

Evaluation metrics. We use the peak signal-to-noise ra-
tio (PSNR) and SSIM [28] to evaluate the deblurred results.
For complexity, we compare the runtime and the multiply-
accumulate operation (MAC). The runtime is calculated per
frame on the input video containing 100 frames using a sin-
gle NVIDIA RTX A5000 GPU. Both runtime and MAC as-
sume the input frame is of shape 720× 1280× 3.

Implementation details. For training, we used the
ADAM optimizer [8] with parameters β1=0.9, β2=0.999
and ϵ = 10−8. The initial learning rate was set as 0.0005
and was decayed by half in [200, 350, 450, 500] epochs. We
trained the model for 600 epochs in total. For augmentation,
we applied random rotations and flipping. To manage the
memory for scale s, we set T1=5, T2=2 and T3=1. The
training patch size was 256× 256, and the batch size was 8.
The training subsequence contained 8 frames. To manage
the memory cost and run-time, we empirically maintained
a maximum of five recent frames in the memory. This tech-
nique reduced the runtime to one-fifth of the original , while
the PSNR dropped by only 0.02dB. We borrowed the multi-
scale content loss [14] to train our model, but we replaced
the mean-square error with Charbonnier loss [1].

4.2. Comparisons with state of the art

A quantitative comparison on the Downsampled GoPro
dataset shown in Table 1 and on the Original GoPro dataset
shown in Table 2 indicates that our model achieves the best
performance compared with other state-of-the-art models.

1923



Table 1. Quantitative comparison on the downsampled GOPRO dataset [14].

Model STRCNN [6] DBN [22] IFIRNN(c2h2) [15] IFIRNN(c2h3) ESTRNN(B9C80) [35] ESTRNN(B9C90) Ours (Slim) Ours
PSNR 28.74 29.91 29.92 29.97 30.79 31.07 31.21 31.77
SSIM 0.8465 0.8823 0.8838 0.8859 0.9016 0.9023 0.9203 0.9275

GMACs 276.2 784.75 167.09 217.89 163.61 206.70 197.34 344.49

Table 2. Quantitative comparison on the original GOPRO dataset [14]. We do not fill in the GMACs of STFAN [36] as the GMACs
calculated for filter adaptive layer may be not accurate.

Model SRN [25] DBN [22] Kim et al. [6] EDVR [27] STFAN [36] ESTRNN [35] CDVD-TSP [17] Ours
PSNR 30.29 27.31 26.82 26.83 28.59 30.91 31.67 31.76
SSIM 0.9014 0.8255 0.8245 0.8426 0.8426 0.9091 0.9275 0.9230

GMACs 1527.01 784.75 276.2 468.25 - 204.19 5122.29 344.49

Table 3. Runtime comparison with state-of-the-art models.

Model SRN STRCNN DBN IFI-RNN
Runtime (s) 0.222 0.0448 0.085 0.054

Model ESTRNN CDVD-TSP Ours(Slim) Ours
Runtime (s) 0.083 1.015 0.079 0.191

For Downsampled GoPro, we designed a slim version of
our model to match our GMACs with ESTRNN [35]. The
slim version does not use the bidirectional and multi-scale
design, yet it outperforms other state-of-the-art methods.
Table 3 also shows that our runtime is less than ESTRNN.
Our final model, which includes the bidirectional and multi-
scale structures, uses 147.15 GMACs more than the slim
version and improves performance by 0.57dB.

On the Original GoPro dataset in Table 2, the clos-
est competing state-of-the-art model is CDVD-TSP [17].
Our model has 0.09dB higher PSNR than CDVD-TSP even
though the GMACs is an order of magnitude less (7%
specifically) and the runtime is one-fifth that of CDVD-TSP
(see Table 3). CDVD-TSP has significantly higher com-
putational complexity, because it relies on optical flow and
uses a cascaded training strategy.

We present the qualitative comparisons in Fig. 4 and
5. Fig. 4 shows the performance on a frame with mild
blur, while Fig. 5 presents the performance on consecutive
frames with severe blur due to object motion. Our model
recovers clearer and sharper images than other state-of-the-
art models. Even on video sequences with particularly large
motion and severe blur, our method can still recover some
image structures. For example, in Fig. 5, only our deblurred
images can be seen to have roughly 5 characters. This is
because our memory bank aggregates information of the
whole video sequence and stores diverse features, so that
when processing extremely blurred images, we can find rel-
evant memory features from the memory bank to help re-
store them. More results are provided in the Supplementary.

5. Network analysis
We conducted extensive ablation studies to verify our

approach. All ablations in this section were performed on

Table 4. Ablation of model components.

Memory Bidirection Multi-scale PSNR SSIM
30.88 0.9145

✓ 31.22 0.9203
✓ ✓ 31.63 0.9256
✓ ✓ 31.44 0.9237
✓ ✓ ✓ 31.79 0.9278

Downsampled GOPRO [14].
Effects of proposed components. We evaluate the

memory branch, bidirectional recurrency and our multi-
scale strategy and show results in Table 4. The vanilla ver-
sion with deblurring branch only achieves the worst per-
formance. Adding the proposed components increases both
PSNR and SSIM. The bidirectionality has slightly more im-
pact than the multi-scale architecture, though the two com-
ponents complement each other.

Memory branch design. We first followed a naive
approach from the original memory network [16, 24, 29],
where we only had memory branches and decoded the
memory directly into a sharp frame with an upsample mod-
ule (‘w/o Deblur.’ in Table 5), to establish our baseline.
Fig. 8 shows that this naive form of stand-alone memory
is insufficient to solve the deblurring task. The quantita-
tive measures in Table 5 support this finding. The results
illustrate that for video deblurring, the deep network used
to extract deep low-level features is essential.

We also experimented with a memory variant, which al-
ways stores the previous adjacent blurry-sharp feature pairs
as a temporary item in the memory bank [16] (‘Temp’ in Ta-
ble 5). This approach increases the complexity but hurts the
performance. This is because the adjacent frames are simi-
lar and contain fine details for sharpening the current frame.
Saving them in the memory space is likely to compress out
these details and the corresponding attention weights will be
distracted by other memories, as the attention is calculated
on the entire memory bank. This motivated us to design a
more straightforward approach to directly concatenate the
previously restored sharp results with the current frame and

1924



(a) Input (b) DBN [22] (c) ESTRNN [35] (d) CDVD-TSP [17] (e) Ours (f) Ground-truth

Figure 4. Qualitative comparisons on the original GOPRO dataset [14].

(a) Input (b) DBN [22]

(c) CDVD-TSP [17] (d) ESTRNN [35]

(e) Ours (f) Ground-truth

Figure 5. Qualitative comparisons of frames with severe blur on the original GOPRO dataset [14].

Table 5. Experimental results on high-level designs of our mod-
els. The ‘w/o Mem.’ and ‘w/o Deblur.’ columns show the results
without memory branch and deblurring branch, respectively; the
‘Temp.’ column shows the results using the temporary memory
for the previous adjacent frame.

Design w/o Mem. w/o Deblur. Temp. Ours
PSNR 30.88 30.58 31.03 31.22
SSIM 0.9145 0.9105 0.9169 0.9203

feed them into the network. Since the motion between ad-
jacent frames is generally small, our model can capture the
correlation well. This approach achieves the best result as
shown in Table 5.

Separate h and r memories. Previous methods using
memory networks work well when encoding only the target
output, e.g. only the segmentation map in object segmenta-
tion [2,16]. In our case, this would correspond to memoriz-
ing only the deblurred results r. However, given the impor-
tance of the hidden feature h in recurrent methods [15, 35],
it is also logical to memorize h. Table 6 shows that of these

Table 6. Comparison of different variants of utilizing features h
and r. [h, r] means we concatenate two features and save them as
a single memory value.

Variant h only r only [h, r] Ours
PSNR 31.03 30.94 31.00 31.22
SSIM 0.9178 0.9152 0.9174 0.9203

two, memorizing h is more beneficial than r. It is also pos-
sible to concatenate the two (‘[h, r]’) and save them as a
single memory value, but this gives only a marginal bump
in performance compared to only memorizing r. Storing
the two in separate memories under the same key gives a
much bigger boost.

Memorization period. As mentioned in Section 3.2,
we memorize every T frames. As we adopt the multi-scale
strategy, for scale levels larger than 1, the input resolution
is small, so decreasing T does not result in a large amount
of computation. However, for the scale level s=1, decreas-
ing the memory period T1 results in a significant increase
in the computational and memory cost. We performed the

1925



(a) Query frame and pattern (b) Matched frame (c) Attention map (d) Matched pattern (e) Matched deblurred result

Figure 6. Visualization of spatio-temporal attention map obtained by our memory branch.

(a) Query frame and pattern (b) s = 3

(c) s = 1 (d) s = 2

Figure 7. Visualization of attention map with multi-scale architec-
ture. The same patterns that reoccur but are not of the same scale
are matched. Note that all these matched memories contribute to
the deblurring task for the input. Zoom in for a better view.

(a) Naive memory network (b) Our memory solution

Figure 8. Qualitative comparison between naive memory approach
and our memory network.

experiment on scale level of s = 1 to evaluate the effect
of memorization period. Table 7 shows that even though
memorizing every frame performs the best, its runtime is
expensive. Therefore, to balance the trade-off between ef-
ficiency and performance, we memorize every 5 frames at
scale level s=1. Similarly, for s=2 and s=3, we empiri-
cally memorize every 2 and 1 frame, respectively.

Visualizations. To get a better sense of what the mem-
ory retrieves for a query pattern, we calculated the attention
map encoded in W in Eq. 6 on the memory bank. The visu-
alized result is shown in Fig. 6, where we select one of the
matched frames for reference. It can be observed that since
we need to deblur the license plate number, most of the at-

Table 7. Memorization period comparison. The PSNR is calcu-
lated on the downsampled GOPRO dataset.

T PSNR SSIM GMACs Runtime (s)
1 31.42 0.9231 218.79 0.582
3 31.21 0.9202 201.10 0.154
5 31.22 0.9203 197.34 0.095

tention is given to the license plate number in the matched
frame. The attention maps for the multi-scale memory are
shown in Fig. 7. We observe that the memory bank pro-
vides different scales of matching. This further enhances
the query and utilization of features.

Limitations. The size of the memory in the memory
bank affects the GPU memory overhead and computational
cost. In Section 4.1, we consider a simple way of reducing
the memory size by discarding old memories under the as-
sumption that the most recent memories are more important.
We find this approach effective, but we believe that more
principled memory management strategies can be consid-
ered for future work.

6. Conclusion

We proposed a multi-scale memory-based network for
deep video deblurring, which saves blurry-sharp feature
pairs in the memory bank. To restore a blurry input frame,
we retrieve relevant information for each image region by
performing the spatio-temporal attention in the memory
bank. The memory bank allows region-aware information
retrieval to achieve fine-grained deblurring. To enrich the
diversity and utility of the memory bank, we developed
a bidirectional and multi-scale strategy. Both quantitative
and qualitative experimental results show that our proposal
outperforms the state-of-the-art models while maintaining a
minimal cost in computational complexity and runtime.

7. Acknowledgement

This research is supported by the National Research
Foundation, Singapore under its NRF Fellowship for AI
(NRF-NRFFAI1-2019-0001). Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore.

1926



References
[1] Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert, and

Michel Barlaud. Two deterministic half-quadratic regular-
ization algorithms for computed imaging. In Proceedings
of 1st International Conference on Image Processing, vol-
ume 2, pages 168–172. IEEE, 1994. 5

[2] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Re-
thinking space-time networks with improved memory cov-
erage for efficient video object segmentation. arXiv preprint
arXiv:2106.05210, 2021. 1, 2, 7

[3] Jochen Gast and Stefan Roth. Deep video deblurring: The
devil is in the details. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision Workshops, pages
0–0, 2019. 3

[4] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei
Zhang. Toward convolutional blind denoising of real pho-
tographs. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1712–
1722, 2019. 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[6] Tae Hyun Kim, Kyoung Mu Lee, Bernhard Scholkopf, and
Michael Hirsch. Online video deblurring via dynamic tem-
poral blending network. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 4038–4047,
2017. 1, 2, 6

[7] Yoonsik Kim, Jae Woong Soh, Gu Yong Park, and Nam Ik
Cho. Transfer learning from synthetic to real-noise denois-
ing with adaptive instance normalization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3482–3492, 2020. 2

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[9] Hee Seok Lee, Junghyun Kwon, and Kyoung Mu Lee. Si-
multaneous localization, mapping and deblurring. In 2011
International Conference on Computer Vision, pages 1203–
1210. IEEE, 2011. 2

[10] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 2, 5

[11] Xiankai Lu, Wenguan Wang, Martin Danelljan, Tianfei
Zhou, Jianbing Shen, and Luc Van Gool. Video object seg-
mentation with episodic graph memory networks. In Com-
puter Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part III 16,
pages 661–679. Springer, 2020. 2

[12] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein
Karimi, Antoine Bordes, and Jason Weston. Key-value mem-
ory networks for directly reading documents. arXiv preprint
arXiv:1606.03126, 2016. 1, 2

[13] Seil Na, Sangho Lee, Jisung Kim, and Gunhee Kim. A read-
write memory network for movie story understanding. In

Proceedings of the IEEE International Conference on Com-
puter Vision, pages 677–685, 2017. 2

[14] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3883–3891,
2017. 2, 5, 6, 7

[15] Seungjun Nah, Sanghyun Son, and Kyoung Mu Lee. Re-
current neural networks with intra-frame iterations for video
deblurring. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8102–
8111, 2019. 1, 2, 5, 6, 7

[16] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo
Kim. Video object segmentation using space-time memory
networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9226–9235, 2019. 1,
2, 3, 6, 7

[17] Jinshan Pan, Haoran Bai, and Jinhui Tang. Cascaded deep
video deblurring using temporal sharpness prior. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3043–3051, 2020. 1, 2, 5, 6, 7

[18] Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew
Brown. Frame-recurrent video super-resolution. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6626–6634, 2018. 2

[19] Hee Seok Lee and Kuoung Mu Lee. Dense 3d reconstruction
from severely blurred images using a single moving camera.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 273–280, 2013. 2

[20] Hongje Seong, Junhyuk Hyun, and Euntai Kim. Kernelized
memory network for video object segmentation. In European
Conference on Computer Vision, pages 629–645. Springer,
2020. 2

[21] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 5

[22] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo
Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video
deblurring for hand-held cameras. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1279–1288, 2017. 1, 2, 6, 7

[23] Maitreya Suin and AN Rajagopalan. Gated spatio-temporal
attention-guided video deblurring. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7802–7811, 2021. 1, 2

[24] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. End-to-end memory networks. arXiv preprint
arXiv:1503.08895, 2015. 1, 2, 6

[25] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-
aya Jia. Scale-recurrent network for deep image deblurring.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8174–8182, 2018. 2, 5, 6

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

1927



Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 3

[27] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019. 1, 2, 6

[28] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 5

[29] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory
networks. arXiv preprint arXiv:1410.3916, 2014. 2, 6

[30] Patrick Wieschollek, Michael Hirsch, Bernhard Scholkopf,
and Hendrik Lensch. Learning blind motion deblurring. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 231–240, 2017. 1, 2

[31] Yi Wu, Haibin Ling, Jingyi Yu, Feng Li, Xue Mei, and
Erkang Cheng. Blurred target tracking by blur-driven tracker.
In 2011 International Conference on Computer Vision, pages
1100–1107. IEEE, 2011. 2

[32] Tianyu Yang and Antoni B Chan. Learning dynamic mem-
ory networks for object tracking. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 152–
167, 2018. 2

[33] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very
deep residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV), pages
286–301, 2018. 2

[34] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2472–2481, 2018. 5

[35] Zhihang Zhong, Ye Gao, Yinqiang Zheng, and Bo Zheng.
Efficient spatio-temporal recurrent neural network for video
deblurring. In European Conference on Computer Vision,
pages 191–207. Springer, 2020. 1, 2, 5, 6, 7

[36] Shangchen Zhou, Jiawei Zhang, Jinshan Pan, Haozhe Xie,
Wangmeng Zuo, and Jimmy Ren. Spatio-temporal filter
adaptive network for video deblurring. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 2482–2491, 2019. 1, 2, 6

1928


